# Load packages

# Core
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyquant)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo 
## ── Attaching core tidyquant packages ──────────────────────── tidyquant 1.0.9 ──
## ✔ PerformanceAnalytics 2.0.4      ✔ TTR                  0.24.4
## ✔ quantmod             0.4.26     ✔ xts                  0.14.0── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date()                 masks base::as.Date()
## ✖ zoo::as.Date.numeric()         masks base::as.Date.numeric()
## ✖ dplyr::filter()                masks stats::filter()
## ✖ xts::first()                   masks dplyr::first()
## ✖ dplyr::lag()                   masks stats::lag()
## ✖ xts::last()                    masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ quantmod::summary()            masks base::summary()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Goal

Take raw prices of five individual stocks and transform them into monthly returns five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

1 Import stock prices

# choose stocks
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x = symbols,
                 get = "stock.prices",
                 from = "2012-01-01", 
                 to  = "2017-01-01")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    tq_transmute(select = adjusted, 
                 mutate_fun = periodReturn, 
                 period = "monthly",
                 type   = "log" ) %>%
    
    set_names(c("asset", "date", "returns"))

asset_returns_tbl
## # A tibble: 300 × 3
## # Groups:   asset [5]
##    asset date        returns
##    <chr> <date>        <dbl>
##  1 SPY   2012-01-31  0.0295 
##  2 SPY   2012-02-29  0.0425 
##  3 SPY   2012-03-30  0.0317 
##  4 SPY   2012-04-30 -0.00670
##  5 SPY   2012-05-31 -0.0619 
##  6 SPY   2012-06-29  0.0398 
##  7 SPY   2012-07-31  0.0118 
##  8 SPY   2012-08-31  0.0247 
##  9 SPY   2012-09-28  0.0250 
## 10 SPY   2012-10-31 -0.0184 
## # ℹ 290 more rows

3 Make plot

asset_returns_tbl %>%
    
    ggplot(aes(x = returns)) + 
    geom_density(aes(color = asset), show.legend = FALSE, alpha = 1) +
    geom_histogram(aes(fill = asset), show.legend = FALSE, alpha = 0.3, binwidth = 0.01) +
    facet_wrap(~asset, ncol = 1) +
    
    #labeling
    labs(title = "Distribution of Monthly Returns, 2012-2017",
         y     = "Frequency",
         x     = "Rate of Returns",
         caption = "A typical monthly return is higher for SPY and IJS than for AGG, EEM, and EFA.")