# Load Packages
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyquant)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## ── Attaching core tidyquant packages ──────────────────────── tidyquant 1.0.9 ──
## ✔ PerformanceAnalytics 2.0.4 ✔ TTR 0.24.4
## ✔ quantmod 0.4.26 ✔ xts 0.14.0── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date() masks base::as.Date()
## ✖ zoo::as.Date.numeric() masks base::as.Date.numeric()
## ✖ dplyr::filter() masks stats::filter()
## ✖ xts::first() masks dplyr::first()
## ✖ dplyr::lag() masks stats::lag()
## ✖ xts::last() masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ quantmod::summary() masks base::summary()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
1 Get Stock Prices and COnvert to Returns
Ra <- c("AAPL", "GOOG", "NFLX") %>%
tq_get (get = "stock.prices",
from = "2010-01-01",
to = "2015-12-31") %>%
group_by (symbol) %>%
tq_transmute (select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 216 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 AAPL 2010-01-29 -0.103
## 2 AAPL 2010-02-26 0.0654
## 3 AAPL 2010-03-31 0.148
## 4 AAPL 2010-04-30 0.111
## 5 AAPL 2010-05-28 -0.0161
## 6 AAPL 2010-06-30 -0.0208
## 7 AAPL 2010-07-30 0.0227
## 8 AAPL 2010-08-31 -0.0550
## 9 AAPL 2010-09-30 0.167
## 10 AAPL 2010-10-29 0.0607
## # ℹ 206 more rows
2 Get Baseline and Convert to Returns
Rb <- "XLK" %>%
tq_get (get = "stock.prices",
from = "2010-01-01",
to = "2015-12-31") %>%
group_by (symbol) %>%
tq_transmute (select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 72 × 3
## # Groups: symbol [1]
## symbol date Rb
## <chr> <date> <dbl>
## 1 XLK 2010-01-29 -0.0993
## 2 XLK 2010-02-26 0.0348
## 3 XLK 2010-03-31 0.0684
## 4 XLK 2010-04-30 0.0126
## 5 XLK 2010-05-28 -0.0748
## 6 XLK 2010-06-30 -0.0540
## 7 XLK 2010-07-30 0.0745
## 8 XLK 2010-08-31 -0.0561
## 9 XLK 2010-09-30 0.117
## 10 XLK 2010-10-29 0.0578
## # ℹ 62 more rows
3 Join the Two Tables
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 216 × 5
## symbol.x date Ra symbol.y Rb
## <chr> <date> <dbl> <chr> <dbl>
## 1 AAPL 2010-01-29 -0.103 XLK -0.0993
## 2 AAPL 2010-02-26 0.0654 XLK 0.0348
## 3 AAPL 2010-03-31 0.148 XLK 0.0684
## 4 AAPL 2010-04-30 0.111 XLK 0.0126
## 5 AAPL 2010-05-28 -0.0161 XLK -0.0748
## 6 AAPL 2010-06-30 -0.0208 XLK -0.0540
## 7 AAPL 2010-07-30 0.0227 XLK 0.0745
## 8 AAPL 2010-08-31 -0.0550 XLK -0.0561
## 9 AAPL 2010-09-30 0.167 XLK 0.117
## 10 AAPL 2010-10-29 0.0607 XLK 0.0578
## # ℹ 206 more rows
4 Calculate the CAPM
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 1 × 12
## ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 NA 0.0216 NA 0.880 0.150 0.737 0.285
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>