# Load packages
library(tidyverse)
library(tidyquant)
Get stock prices and convert to returns
Ra <- c("XOM", "NVDA", "SNAP","TSLA","WIX") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 165 × 3
## # Groups: symbol [5]
## symbol date Ra
## <chr> <date> <dbl>
## 1 XOM 2022-01-31 0.195
## 2 XOM 2022-02-28 0.0438
## 3 XOM 2022-03-31 0.0532
## 4 XOM 2022-04-29 0.0322
## 5 XOM 2022-05-31 0.138
## 6 XOM 2022-06-30 -0.108
## 7 XOM 2022-07-29 0.132
## 8 XOM 2022-08-31 -0.00424
## 9 XOM 2022-09-30 -0.0866
## 10 XOM 2022-10-31 0.269
## # ℹ 155 more rows
Get baseline and convert to returns
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 33 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## # ℹ 23 more rows
Join the two data tables
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 165 × 4
## # Groups: symbol [5]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 XOM 2022-01-31 0.195 -0.101
## 2 XOM 2022-02-28 0.0438 -0.0343
## 3 XOM 2022-03-31 0.0532 0.0341
## 4 XOM 2022-04-29 0.0322 -0.133
## 5 XOM 2022-05-31 0.138 -0.0205
## 6 XOM 2022-06-30 -0.108 -0.0871
## 7 XOM 2022-07-29 0.132 0.123
## 8 XOM 2022-08-31 -0.00424 -0.0464
## 9 XOM 2022-09-30 -0.0866 -0.105
## 10 XOM 2022-10-31 0.269 0.0390
## # ℹ 155 more rows
Calculate CAPM
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 5 × 13
## # Groups: symbol [5]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 XOM 0.240 0.0237 0.325 0.101 0.0374 -0.0711 0.0798
## 2 NVDA 0.587 0.0424 0.645 2.27 2.77 1.63 0.867
## 3 SNAP -0.474 -0.0298 -0.305 1.10 0.873 2.20 0.350
## 4 TSLA -0.218 -0.0101 -0.115 1.82 2.20 3.96 0.646
## 5 WIX -0.0463 0.0049 0.0608 1.14 0.334 1.02 0.481
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
Which stock has a positive distrubtion of returns
RaRb_skewness <- RaRb %>%
tq_performance(Ra = Ra,
Rb = NULL,
performance_fun = skewness)
RaRb_skewness
## # A tibble: 5 × 2
## # Groups: symbol [5]
## symbol skewness.1
## <chr> <dbl>
## 1 XOM 0.763
## 2 NVDA -0.182
## 3 SNAP -0.0816
## 4 TSLA 0.312
## 5 WIX 0.0477