NO2

Column

NO2

SO2

Column

SO2

PM2.5

Column

PM2.5

Monthly/Annual plot per contaminant

Column

Monthly mean values (bands for annual mean and maxima) for three contaminants (μg/m3)

Monthly/Annual plot per contaminant V.2

Column

Monthly/Annual plot per contaminant V.3

Column

Monthly mean values (bands for annual mean and maxima) for three contaminants (μg/m3)

Monthly/Annual plot - NO2

Column

Monthly mean values (bands for annual mean and maxima) for NO2 (μg/m3)

Monthly/Annual plot - PM2.5

Column

Monthly mean values (bands for annual mean and maxima) for PM2.5 (μg/m3)

Monthly/Annual plot - SO2

Column

Monthly mean values (bands for annual mean and maxima) for SO2 (μg/m3)

Relative Humidity

Column

Relative Humidity (%): Monthly and yearly (mean and median, respectively) values

Precipitation

Column

Monthly Precipitation (mm), with yearly maximum tendency over time

Precipitation V.2

Column

Monthly Precipitation (mm), with yearly maximum tendency over time

Temperature

Column

Temperature (°C, minimum-mean-maximum)

Humidity-Precipitation-Temperature

Column

Column

Relative Humidity (%): Monthly and yearly (mean and median, respectively) values

Precipitation (mm)

Temp [minimum-mean-maximum]

Column

Column

J:00-02

Column

J:00; Yearly cases (mean and median) for Guatemala Department

J:00; Yearly cases for Guatemala Department

Column

J:02; Yearly cases (mean and median) for Guatemala Department

J:02; Yearly cases for Guatemala Department

J:03-06

J:03

J:03; Yearly cases (mean and median) for Guatemala Department

J:03; Yearly cases for Guatemala Department

J:06

J:06; Yearly cases (mean and median) for Guatemala Department

J:06; Yearly cases for Guatemala Department

J:20

J:20

Plot

Plot

J:00, J:02, J:03, J:06, J:20 (Ciudad Guatemala)

Column

J:00 Ciudad Guatemala

J:03 Ciudad Guatemala

J:20 Ciudad Guatemala

Column

J:02 Ciudad Guatemala

J:06 Ciudad Guatemala

Cantidad relativa de casos (Js) (Ciudad Guatemala)

Column

Cases of Respiratory Diseases per month (2012-2019)

Casos (Js) & Hum.Relativa (Ciudad Guatemala)

Column

Contrastes de Cases of enfermedades respiratorias

Humedad Relativa

Casos (Js) & Precipitation (Ciudad Guatemala)

Column

Contrastes de Cases of enfermedades respiratorias

Precipitación Pluvial

Casos (Js) & Temperatura (Ciudad Guatemala)

Column

Contrastes de Cases of enfermedades respiratorias

Temp [min, media, max]

Casos (Js) & Contaminantes (Ciudad Guatemala)

Column

Contrastes de Cases of enfermedades respiratorias

Contaminantes (Annual)

Enfermedades por grupo

Column

Enfermedades: Casos acumulados

Sexo Femenino

Column

Enfermedades: Casos acumulados por código

Sexo masculino

J:01-04

Column

Municipio de Guatemala Contrastado

Plot

Column

Plot

Plot

J:21-22

J:21

Plot

Plot

J:22

Plot

Plot

Agudas [J:01, J:04, J:21, J:22] (Ciudad Guatemala)

Column

J:01 Ciudad Guatemala

J:04 Ciudad Guatemala

Column

J:21 Ciudad Guatemala

J:22 Ciudad Guatemala

Cantidad relativa de casos (Js Agudas) (Guatemala)

Column

Cases of Acute Respiratory Diseases per month (2012-2019)

Casos Js Agudas & Contaminantes (Ciudad Guatemala)

Column

Contrastes de Cases of enfermedades respiratorias

Contaminantes (Annual)

Enfermedades Agudas por grupo

Column

Enfermedades: Casos acumulados

Sexo Femenino

Column

Enfermedades: Casos acumulados por código

Sexo masculino

J:30-32

Column

Municipio de Guatemala Contrastado

Plot

Column

Plot

Plot

J:44-45

J:44

Plot

Plot

J:45

Plot

Plot

Crónicas [J:30, J:32, J:44, J:45] (Ciudad Guatemala)

Column

J:30 Ciudad Guatemala

J:32 Ciudad Guatemala

Column

J:44 Ciudad Guatemala

J:45 Ciudad Guatemala

Cantidad relativa de casos (Js Crónicas]) (Guatemala)

Column

Cases of Chronic Respiratory Diseases per month (2012-2019)

Casos Js Crónicas & Contaminantes (Ciudad Guatemala)

Column

Contrastes de Cases of enfermedades respiratorias

Contaminantes (Annual)

Enfermedades Crónicas por grupo

Column

Enfermedades: Casos acumulados

Sexo Femenino

Column

Enfermedades: Casos acumulados por código

Sexo masculino

J:18-40

Column

Municipio de Guatemala Contrastado

Plot

Column

Plot

Plot

J:98

J:98

Plot

Plot

No Especif. [J:18, J:40, J:98] (Ciudad Guatemala)

Column

J:18 Ciudad Guatemala

J:40 Ciudad Guatemala

Column

J:98 Ciudad Guatemala

Cantidad relativa de casos (Js No Especif.]) (Guatemala)

Column

Cases of Not Specified Respiratory Diseases per month (2012-2019)

Casos Js No Especific. & Contaminantes (Ciudad Guatemala)

Column

Contrastes de Cases of enfermedades respiratorias

Contaminantes (Annual)

Enfermedades No Especific. por grupo

Column

Enfermedades: Casos acumulados

Sexo Femenino

Column

Enfermedades: Casos acumulados por código

Sexo masculino

Incendios y vientos

Column

Personas afectadas

Contrastes de Cases of enfermedades respiratorias

Incendios y vientos

Column

Personas afectadas

Contrastes de Cases of enfermedades respiratorias Agudas

Socio.organiza y act.Volcanica

Column

Personas afectadas

Contrastes de Cases of enfermedades respiratorias

Multivariado (Masas,Incendios, Lluvias)

Column

Componentes principales


***VECTORS

                   PC1      PC2     r2 Pr(>r)    
Gatherings    -0.80006  0.59992 0.6989  0.001 ***
Fires         -0.28550 -0.95838 0.1422  0.003 ** 
Precipitation  0.89490  0.44627 0.2088  0.001 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Permutation: free
Number of permutations: 999

Column {data-width= 600}

Componentes principales

Enf.Respiratorias y Ambiente - Unconstrained

Column Análisis Componentes principales - Matriz de enfermedades [Mes]

Enfermedades respiratorias_Year [biplot - Mes]

Column AMBIENTE [Mes]

Unconstrained_Ambiente

Ambiente (Contaminantes) - Unconstrained

AMBIENTE - CONTAMINANTES

Unconstrained_Contaminantes

Column

Unconstrained_Contaminantes

Enfermedades & Contaminantes: Model Built

Column

MODEL Building [Vegan PCKG functions]

Este es el método más recomendado según Blanchet, Legendre & Borcard. 2008. Ecology 89, 2623-2623 para seleccionar las variables del modelo.

Es un ‘Forward selection’ pero se detiene una vez el r^2 del modelo globas es sobrepasado por el modelo que se está poniendo a prueba.
upr <- vegan::cca(M1[,4:8] ~ . , data=M2[,c(-1)]) # Full Model
lwr <- vegan::cca(M1[,4:8] ~ 1 , data=M2[,c(-1)]) # Null model
## Stepwise Selection via Adjusted R^2
### 1. Global test
### 2. Radjusted forward selection

finalModel <- ordiR2step(lwr, upr, trace = FALSE)

finalModel

# VIF 
 #finalModel <- mods2

vif.cca(finalModel) # estamos "OK"!

De todas las variables ambientales y las de contaminantes, solo el SO2 y el PM2.5 mostraron un asociación significativa con la lista completa de enfermedades respiratorias (i.e, J:00, J:02, J:03, J:06 y J:20). Esto no descarta que algún contaminante o variable ambiental (o cualquiera de sus combinaciones) se asocien específicatmente con alguna enfermedad en particular.Habrá que ver esto con un análisis univariado (i.e.,incluso regresiones múltiples)

Permutation test for cca under reduced model
Terms added sequentially (first to last)
Permutation: free
Number of permutations: 999

Model: cca(formula = M1[, 4:8] ~ SO2 + PM2.5, data = M2[, -1])
         Df ChiSquare       F Pr(>F)    
SO2       1 0.0031738 10.0912  0.001 ***
PM2.5     1 0.0009931  3.1577  0.038 *  
Residual 62 0.0194997                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Constrained (RDA)

RDA Triplot

Enf.Respiratorias AGUDAS y Ambiente - Unconstrained

Column Análisis Componentes principales - Matriz de enfermedades [Mes]

Enfermedades respiratorias_Year [biplot - Mes]

Column AMBIENTE [Mes]

Unconstrained_Ambiente

Enfermedades Agudas & Contaminantes: Model Built

Column

MODEL Building [Vegan PCKG functions]

Este es el método más recomendado según Blanchet, Legendre & Borcard. 2008. Ecology 89, 2623-2623 para seleccionar las variables del modelo.

Es un ‘Forward selection’ pero se detiene una vez el r^2 del modelo globas es sobrepasado por el modelo que se está poniendo a prueba.
upr <- vegan::cca(M1[,4:7] ~ . , data=M2[,-1]) # Full Model
lwr <- vegan::cca(M1[,4:7] ~ 1 , data=M2[,-1]) # Null model
## Stepwise Selection via Adjusted R^2
### 1. Global test
### 2. Radjusted forward selection

finalModel <- ordiR2step(lwr, upr, trace = FALSE)

finalModel

# VIF 
 #finalModel <- mods2

vif.cca(finalModel) # estamos "OK"!

** De todas las variables ambientales y las de contaminantes, solo las variables que se muestran abajo mostraron un asociación significativa con la lista completa de enfermedades AGUDAS (i.e, J:01, J:04, J:21 y J:22). Esto no descarta que algún contaminante o variable ambiental (o cualquiera de sus combinaciones) se asocien específicatmente con alguna enfermedad en particular.Habrá que ver esto con un análisis univariado (i.e.,incluso regresiones múltiples)**

Permutation test for cca under reduced model
Terms added sequentially (first to last)
Permutation: free
Number of permutations: 999

Model: cca(formula = M1[, 4:7] ~ Temp.min, data = M2[, -1])
         Df ChiSquare      F Pr(>F)  
Temp.min  1  0.015518 3.7399  0.044 *
Residual 63  0.261416                
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Constrained (RDA)

RDA Triplot

Enf.Respiratorias AGUDAS y Ambiente _ ALL.Acute - YEAR - Unconstrained

Column Análisis Componentes principales - Matriz de enfermedades [Mes]

Enfermedades respiratorias_Year [biplot - Mes]

Column AMBIENTE [Mes]

Unconstrained_Ambiente

Enf.Respiratorias AGUDAS y Ambiente _ ALL.Acute - Month - Unconstrained

Column Análisis Componentes principales - Matriz de enfermedades [Mes]

Enfermedades respiratorias_Year [biplot - Mes]

Column AMBIENTE [Mes]

Unconstrained_Ambiente

Enfermedades Agudas & Contaminantes_ All.Acute: Model Built

Column

MODEL Building [Vegan PCKG functions]

Este es el método más recomendado según Blanchet, Legendre & Borcard. 2008. Ecology 89, 2623-2623 para seleccionar las variables del modelo.

Es un ‘Forward selection’ pero se detiene una vez el r^2 del modelo globas es sobrepasado por el modelo que se está poniendo a prueba.
M1 <- decostand(M1[,4:12], method = "hellinger")
#M2 <- as_tibble(M2)
upr <- cca(M1 ~ . , data= M2[,c(-1)]) # Full Model
lwr <- cca(M1 ~ 1, data=M2[,c(-1)]) # Null model
## Stepwise Selection via Adjusted R^2
### 1. Global test
### 2. Radjusted forward selection

finalModel <- ordiR2step(lwr, upr, trace = TRUE,
                         permutations = 100)

finalModel

# VIF 
 #finalModel <- mods2

vif.cca(finalModel) # estamos "OK"!

** De todas las variables ambientales y las de contaminantes, solo las variables que se muestran abajo mostraron un asociación significativa con la lista completa de enfermedades AGUDAS (i.e, J:01, J:04, J:21 y J:22). Esto no descarta que algún contaminante o variable ambiental (o cualquiera de sus combinaciones) se asocien específicatmente con alguna enfermedad en particular.Habrá que ver esto con un análisis univariado (i.e.,incluso regresiones múltiples)**

Call: cca(formula = M1. ~ SO2 + Temp.min + Precipitation, data = M2[, -1])

-- Model Summary --

              Inertia Proportion Rank
Total         0.02152    1.00000     
Constrained   0.00347    0.16124    3
Unconstrained 0.01805    0.83876    8

Inertia is scaled Chi-square

-- Eigenvalues --

Eigenvalues for constrained axes:
     CCA1      CCA2      CCA3 
0.0018414 0.0015061 0.0001222 

Eigenvalues for unconstrained axes:
     CA1      CA2      CA3      CA4      CA5      CA6      CA7      CA8 
0.007702 0.004589 0.002365 0.001178 0.000900 0.000624 0.000431 0.000260 
Permutation test for cca under reduced model
Terms added sequentially (first to last)
Permutation: free
Number of permutations: 999

Model: cca(formula = M1. ~ SO2 + Temp.min + Precipitation, data = M2[, -1])
              Df ChiSquare      F Pr(>F)    
SO2            1 0.0017743 5.9964  0.001 ***
Temp.min       1 0.0008432 2.8495  0.038 *  
Precipitation  1 0.0008523 2.8803  0.034 *  
Residual      61 0.0180497                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Constrained (RDA)

RDA Triplot

Enf.Respiratorias Crónicas y Ambiente - Year - Unconstrained

Column Análisis Componentes principales - Matriz de enfermedades [Mes]

Enfermedades respiratorias_Year [biplot - Year]

Column AMBIENTE [Year]

Unconstrained_Ambiente

## WORKing

Enf.Respiratorias Crónicas y Ambiente - Month - Unconstrained

Column Análisis Componentes principales - Matriz de enfermedades [Mes]

Enfermedades respiratorias_Year [biplot - Year]

Column AMBIENTE [Year]

Unconstrained_Ambiente

Enfermedades Crónicas & Contaminantes: Model Built

Column

MODEL Building [Vegan PCKG functions]

Este es el método más recomendado según Blanchet, Legendre & Borcard. 2008. Ecology 89, 2623-2623 para seleccionar las variables del modelo.

Es un ‘Forward selection’ pero se detiene una vez el r^2 del modelo globa es sobrepasado por el modelo que se está poniendo a prueba.
upr <- vegan::cca(M1[,4:7] ~ . , data=M2[,c(-1)]) # Full Model
lwr <- vegan::cca(M1[,4:7] ~ 1 , data=M2[,c(-1)]) # Null model
## Stepwise Selection via Adjusted R^2
### 1. Global test
### 2. Radjusted forward selection

finalModel <- ordiR2step(lwr, upr, trace = FALSE)

finalModel

# VIF 
 #finalModel <- mods2

vif.cca(finalModel) # estamos "OK"!

** De todas las variables ambientales y las de contaminantes, solo las variables que se muestran abajo mostraron un asociación significativa con la lista completa de enfermedades AGUDAS (i.e, J:01, J:04, J:21 y J:22). Esto no descarta que algún contaminante o variable ambiental (o cualquiera de sus combinaciones) se asocien específicatmente con alguna enfermedad en particular.Habrá que ver esto con un análisis univariado (i.e.,incluso regresiones múltiples)**

Permutation test for cca under reduced model
Terms added sequentially (first to last)
Permutation: free
Number of permutations: 999

Model: cca(formula = M1[, 4:7] ~ SO2, data = M2[, -1])
         Df ChiSquare      F Pr(>F)  
SO2       1 0.0014445 4.1296  0.032 *
Residual 63 0.0220369                
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Constrained (RDA)

RDA Triplot

Enf[All.Acute] & PM2.5

Column

Componente.Princ 1 [J:00, J:02, J:03, J:20]

Predictor: PM2.5


Call:
glm(formula = enf.PC1 ~ PM2.5 + I(PM2.5^2), data = m1)

Coefficients:
              Estimate Std. Error t value Pr(>|t|)  
(Intercept) -3.2781656  1.3924177  -2.354   0.0207 *
PM2.5        0.1643916  0.0707806   2.323   0.0224 *
I(PM2.5^2)  -0.0017726  0.0008344  -2.124   0.0363 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 4.413727)

    Null deviance: 435.56  on 95  degrees of freedom
Residual deviance: 410.48  on 93  degrees of freedom
AIC: 419.92

Number of Fisher Scoring iterations: 2

Column

Modelo Unimodal: Componente 1 [J:00, J:02, J:03, J:20] ~ PM2.5

Enf[All.Acute_J:01,J:04,J:06,J:21,J:22] & SO2

Column

Componente.Princ 1 [J:01, J:04, J:06, J:21, J:22]

Predictor: SO2


Call:
glm(formula = enf.PC2 ~ SO2 + I(SO2^2), data = m1)

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.897037   0.256142  -3.502 0.000854 ***
SO2          0.371863   0.094728   3.926 0.000217 ***
I(SO2^2)    -0.017976   0.006127  -2.934 0.004668 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.9755507)

    Null deviance: 83.373  on 65  degrees of freedom
Residual deviance: 61.460  on 63  degrees of freedom
  (30 observations deleted due to missingness)
AIC: 190.6

Number of Fisher Scoring iterations: 2

Column

Modelo Unimodal: Componente 1 [J:01, J:04, J:06, J:21, J:22] ~ SO2

EnfJ:01 & SO2 + (NO2)^2

Column

J:01

Predictor: SO2 + (NO2)^2


Call:
glm(formula = J01 ~ SO2 + NO2 + I(NO2^2), family = poisson, data = m1)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  2.6566437  0.2508429  10.591  < 2e-16 ***
SO2          0.0132218  0.0051738   2.556  0.01060 *  
NO2          0.0427312  0.0133555   3.200  0.00138 ** 
I(NO2^2)    -0.0005617  0.0001726  -3.255  0.00113 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 458.28  on 64  degrees of freedom
Residual deviance: 437.09  on 61  degrees of freedom
  (31 observations deleted due to missingness)
AIC: 784.3

Number of Fisher Scoring iterations: 4

Modelo Lineal: J:01 ~ SO2

Column

Modelo unimodal: J:01 ~ NO2

Column

EnfJ:04 & SO2 + (NO2)^2

Column

J:04

Predictor: SO2 + (NO2)^2


Call:
glm(formula = J04 ~ SO2 + NO2 + I(NO2^2), family = poisson, data = m1)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  2.8267550  0.2350162  12.028  < 2e-16 ***
SO2          0.0155360  0.0048493   3.204  0.00136 ** 
NO2          0.0392781  0.0125245   3.136  0.00171 ** 
I(NO2^2)    -0.0005171  0.0001619  -3.194  0.00140 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 319.02  on 64  degrees of freedom
Residual deviance: 293.62  on 61  degrees of freedom
  (31 observations deleted due to missingness)
AIC: 650.45

Number of Fisher Scoring iterations: 4

Modelo Lineal: J:04 ~ SO2

Column

Modelo unimodal: J:04 ~ NO2

Column

EnfJ:02 & SO2 + (NO2)^2 + (PM2.5)^2

Column

J:02

Predictor: SO2 + NO2 ^ 2 + PM2.5 ^ 2


Call:
glm(formula = J02 ~ PM2.5 + I(PM2.5^2) + SO2 + NO2 + I(NO2^2), 
    family = poisson, data = m1)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  5.032e+00  5.508e-02   91.36   <2e-16 ***
PM2.5        3.800e-02  1.893e-03   20.07   <2e-16 ***
I(PM2.5^2)  -5.531e-04  2.456e-05  -22.52   <2e-16 ***
SO2          1.196e-02  1.017e-03   11.76   <2e-16 ***
NO2          6.181e-02  2.806e-03   22.03   <2e-16 ***
I(NO2^2)    -8.154e-04  3.606e-05  -22.61   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 11995  on 64  degrees of freedom
Residual deviance: 10490  on 59  degrees of freedom
  (31 observations deleted due to missingness)
AIC: 11054

Number of Fisher Scoring iterations: 4

Modelo Lineal: J:02 ~ SO2

Column

Modelo unimodal: J:02 ~ NO2

Modelo unimodal: J:02 ~ PM2.5

Column

Enf[All.Acute] & NO2

Column

Componente.Princ 1 [J:00, J:02, J:03, J:20]

Predictor: NO2


Call:
glm(formula = enf.PC1 ~ NO2 + I(NO2^2), data = m1)

Coefficients:
             Estimate Std. Error t value Pr(>|t|)  
(Intercept) -5.168226   1.979610  -2.611   0.0106 *
NO2          0.277979   0.109377   2.541   0.0127 *
I(NO2^2)    -0.003436   0.001448  -2.372   0.0198 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 4.399807)

    Null deviance: 430.78  on 93  degrees of freedom
Residual deviance: 400.38  on 91  degrees of freedom
  (2 observations deleted due to missingness)
AIC: 410.98

Number of Fisher Scoring iterations: 2

Column

Modelo Unimodal: Componente 1 [J:00, J:02, J:03, J:20] ~ NO2

Enf[All.Acute] & SO2

Column

Componente.Princ 1 [J:00, J:02, J:03, J:20]

Predictor: SO2


Call:
glm(formula = enf.PC1 ~ SO2, data = m1)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept)  0.67259    0.39458   1.705   0.0931 .
SO2         -0.03458    0.06230  -0.555   0.5808  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 4.573962)

    Null deviance: 294.14  on 65  degrees of freedom
Residual deviance: 292.73  on 64  degrees of freedom
  (30 observations deleted due to missingness)
AIC: 291.61

Number of Fisher Scoring iterations: 2

NO2 ~ SO2


Call:
glm(formula = SO2 ~ NO2, data = m1)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  9.13790    1.92131   4.756 1.19e-05 ***
NO2         -0.11972    0.04944  -2.421   0.0184 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 16.8442)

    Null deviance: 1159.9  on 64  degrees of freedom
Residual deviance: 1061.2  on 63  degrees of freedom
  (31 observations deleted due to missingness)
AIC: 371.99

Number of Fisher Scoring iterations: 2

Column

Modelo Unimodal: Componente 1 [J:00, J:02, J:03, J:20] ~ SO2

J:21 ~ SO2 & NO2

Column

Enf. Respiratoria J:21

Predictor: SO2 + NO2


Call:
glm(formula = J21 ~ SO2 + I(SO2^2) + NO2 + I(NO2^2), family = poisson, 
    data = m1)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  1.2168146  0.3071446   3.962 7.44e-05 ***
SO2          0.2313072  0.0221371  10.449  < 2e-16 ***
I(SO2^2)    -0.0141242  0.0014384  -9.820  < 2e-16 ***
NO2          0.0671286  0.0155881   4.306 1.66e-05 ***
I(NO2^2)    -0.0007123  0.0002003  -3.556 0.000377 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 920.86  on 64  degrees of freedom
Residual deviance: 795.95  on 60  degrees of freedom
  (31 observations deleted due to missingness)
AIC: 1112.3

Number of Fisher Scoring iterations: 5

Modelo Unimodal: J:21 ~ SO2

Column

Modelo Unimodal: J:21 ~ NO2

[1] "Peak of cases NO2 = 43.8 μg/m3"

J:22 ~ PM2.5 & SO2

Column

Enf. Respiratoria J:22

Predictor: PM2.5 + SO2


Call:
glm(formula = J22 ~ PM2.5 + I(PM2.5^2) + SO2 + I(SO2^2), family = poisson, 
    data = m1)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  0.6957071  0.2486214   2.798  0.00514 ** 
PM2.5        0.0863751  0.0115707   7.465 8.33e-14 ***
I(PM2.5^2)  -0.0008477  0.0001381  -6.137 8.39e-10 ***
SO2          0.1669453  0.0223394   7.473 7.83e-14 ***
I(SO2^2)    -0.0093895  0.0014382  -6.529 6.63e-11 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 1115.78  on 65  degrees of freedom
Residual deviance:  978.62  on 61  degrees of freedom
  (30 observations deleted due to missingness)
AIC: 1276.8

Number of Fisher Scoring iterations: 5

Column

Modelo Unimodal: J:22 ~ PM2.5

Column

Modelo Unimodal: J:22 ~ SO2

[1] "Peak of cases SO2 = 8.98 μg/m3"

J:00 ~ PM2.5

Column

Enf. Respiratoria [J:00]

Predictor: PM2.5


    Shapiro-Wilk normality test

data:  m1$J0
W = 0.98371, p-value = 0.2807

Call:
glm(formula = J0 ~ PM2.5 + I(PM2.5^2), data = m1)

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 2069.6765   606.8088   3.411  0.00096 ***
PM2.5         78.3261    30.8458   2.539  0.01277 *  
I(PM2.5^2)    -0.8535     0.3636  -2.347  0.02104 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 838243.5)

    Null deviance: 83558974  on 95  degrees of freedom
Residual deviance: 77956648  on 93  degrees of freedom
AIC: 1586.7

Number of Fisher Scoring iterations: 2

Column

Modelo Unimodal: J:00 ~ PM2.5

J:03 ~ PM2.5

Column

Enf. Respiratoria J:02

Predictor: PM2.5


    Shapiro-Wilk normality test

data:  m1$J03
W = 0.94716, p-value = 0.000723

Call:
glm(formula = J03 ~ PM2.5 + I(PM2.5^2), family = poisson, data = m1)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  6.818e+00  1.704e-02  400.00   <2e-16 ***
PM2.5        3.198e-02  8.580e-04   37.28   <2e-16 ***
I(PM2.5^2)  -3.370e-04  1.013e-05  -33.27   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 24790  on 95  degrees of freedom
Residual deviance: 23179  on 93  degrees of freedom
AIC: 24072

Number of Fisher Scoring iterations: 4

Column

Modelo Unimodal: J:02 ~ PM2.5

J:00 ~ NO2

Column

Enf. Respiratoria [J:00]

Predictor: NO2


    Shapiro-Wilk normality test

data:  m1$J0
W = 0.98371, p-value = 0.2807

Call:
glm(formula = J0 ~ NO2 + I(NO2^2), data = m1)

Coefficients:
             Estimate Std. Error t value Pr(>|t|)   
(Intercept) 1192.6046   865.9138   1.377  0.17180   
NO2          133.1846    47.8431   2.784  0.00653 **
I(NO2^2)      -1.6757     0.6335  -2.645  0.00962 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 841828.5)

    Null deviance: 83328334  on 93  degrees of freedom
Residual deviance: 76606390  on 91  degrees of freedom
  (2 observations deleted due to missingness)
AIC: 1554.2

Number of Fisher Scoring iterations: 2

Column

Modelo Unimodal: J:00 ~ PM2.5

J:02 ~ NO2

Column

Enf. Respiratoria J:02

Predictor: NO2


    Shapiro-Wilk normality test

data:  m1$J02
W = 0.93817, p-value = 0.0002055

Call:
glm(formula = J02 ~ NO2 + I(NO2^2), family = poisson, data = m1)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  5.792e+00  3.727e-02  155.41   <2e-16 ***
NO2          4.854e-02  2.046e-03   23.72   <2e-16 ***
I(NO2^2)    -6.252e-04  2.708e-05  -23.08   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 16714  on 93  degrees of freedom
Residual deviance: 16113  on 91  degrees of freedom
  (2 observations deleted due to missingness)
AIC: 16907

Number of Fisher Scoring iterations: 4

Column

Modelo Unimodal: J:02 ~ PM2.5

J:03 ~ NO2

Column

Enf. Respiratoria J:03

Predictor: NO2


    Shapiro-Wilk normality test

data:  m1$J03
W = 0.94716, p-value = 0.000723

Call:
glm(formula = J03 ~ NO2 + I(NO2^2), family = poisson, data = m1)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  6.701e+00  2.461e-02  272.26   <2e-16 ***
NO2          4.393e-02  1.355e-03   32.41   <2e-16 ***
I(NO2^2)    -5.795e-04  1.799e-05  -32.21   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 24321  on 93  degrees of freedom
Residual deviance: 23204  on 91  degrees of freedom
  (2 observations deleted due to missingness)
AIC: 24078

Number of Fisher Scoring iterations: 4

Column

Modelo Unimodal: J:03 ~ PM2.5

J:06 ~ NO2

Column

Enf. Respiratoria J:06

Predictor: SO2, NO2


Call:
glm(formula = J06 ~ SO2 + +NO2 + I(NO2^2), data = m1)

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -308.2729   233.9980  -1.317 0.192626    
SO2          -25.2919     5.4470  -4.643 1.87e-05 ***
NO2           48.8569    12.3498   3.956 0.000201 ***
I(NO2^2)      -0.6019     0.1580  -3.811 0.000325 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 30944.81)

    Null deviance: 3068443  on 64  degrees of freedom
Residual deviance: 1887633  on 61  degrees of freedom
  (31 observations deleted due to missingness)
AIC: 862.43

Number of Fisher Scoring iterations: 2

Call:
glm(formula = J06 ~ NO2 + I(NO2^2), data = m1)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept)    2.699    203.611   0.013   0.9895  
NO2           23.441     11.250   2.084   0.0400 *
I(NO2^2)      -0.269      0.149  -1.806   0.0742 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 46545.41)

    Null deviance: 4516085  on 93  degrees of freedom
Residual deviance: 4235632  on 91  degrees of freedom
  (2 observations deleted due to missingness)
AIC: 1282

Number of Fisher Scoring iterations: 2

** El NO2 se asocia negativamente con el SO2. POr eso la asociación de la J06 con el SO2 parece ser “negativa”. Es decir, la asociación negativa con el SO2 es muy posiblmente coincidental, y la asociación positiva con el NO2 es a la que es más priudente ponerele atención.

Column

NO2 - SO2

Modelo Unimodal: J:06 ~ NO2

Column

Modelo Unimodal: J:06 ~ PM2.5

J:20 ~ SO2, NO2

Column

Enf. Respiratoria J:20

Predictor: SO2, NO2


Call:
glm(formula = J20 ~ SO2 + NO2 + I(NO2^2), family = poisson, data = m1)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  4.830e+00  7.013e-02   68.86   <2e-16 ***
SO2         -2.427e-02  1.514e-03  -16.03   <2e-16 ***
NO2          7.291e-02  3.631e-03   20.08   <2e-16 ***
I(NO2^2)    -8.731e-04  4.589e-05  -19.03   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 3751.1  on 64  degrees of freedom
Residual deviance: 2984.2  on 61  degrees of freedom
  (31 observations deleted due to missingness)
AIC: 3507

Number of Fisher Scoring iterations: 4

Call:
glm(formula = J20 ~ NO2 + I(NO2^2), family = poisson, data = m1)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  5.209e+00  4.991e-02  104.37   <2e-16 ***
NO2          4.310e-02  2.709e-03   15.91   <2e-16 ***
I(NO2^2)    -4.900e-04  3.543e-05  -13.83   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 5425.2  on 93  degrees of freedom
Residual deviance: 5045.2  on 91  degrees of freedom
  (2 observations deleted due to missingness)
AIC: 5788.6

Number of Fisher Scoring iterations: 4

** El NO2 se asocia negativamente con el SO2. Por eso la asociación de la enfermedad J20 con el SO2 parece ser “negativa”. Es decir, la asociación negativa con el SO2 es muy posiblmente coincidental, y la asociación positiva con el NO2 es a la que es más prudente ponerele atención.

Column

NO2 - SO2

Modelo Unimodal: J:20 ~ NO2

Column

J:21 ~ SO2, NO2

Column

Enf. Respiratoria J:21

Predictor: SO2, NO2


    Shapiro-Wilk normality test

data:  m1$J21
W = 0.87589, p-value = 1.935e-07

Call:
glm(formula = J21 ~ SO2 + I(SO2^2) + NO2 + I(NO2^2), family = poisson, 
    data = m1)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  1.2168146  0.3071446   3.962 7.44e-05 ***
SO2          0.2313072  0.0221371  10.449  < 2e-16 ***
I(SO2^2)    -0.0141242  0.0014384  -9.820  < 2e-16 ***
NO2          0.0671286  0.0155881   4.306 1.66e-05 ***
I(NO2^2)    -0.0007123  0.0002003  -3.556 0.000377 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 920.86  on 64  degrees of freedom
Residual deviance: 795.95  on 60  degrees of freedom
  (31 observations deleted due to missingness)
AIC: 1112.3

Number of Fisher Scoring iterations: 5

Call:
glm(formula = J21 ~ NO2 + I(NO2^2), family = poisson, data = m1)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  1.5930615  0.2331330   6.833 8.30e-12 ***
NO2          0.0769173  0.0125110   6.148 7.85e-10 ***
I(NO2^2)    -0.0008780  0.0001623  -5.411 6.28e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 1228.3  on 93  degrees of freedom
Residual deviance: 1170.7  on 91  degrees of freedom
  (2 observations deleted due to missingness)
AIC: 1613.9

Number of Fisher Scoring iterations: 5

Column

Modelo Unimodal: J:21 ~ NO2

Column

Modelo Unimodal: J:21 ~ SO2

Column

Modelo Unimodal: J:21 ~ SO2

Enf.CP1[J0,J02,J03, J20] ~ AmbienteCP.1Temperature

Column

Componente.Princ 1 [J0,J02,J03, J20]

Predictor: AMB.CP1[Temprature]


Call:
glm(formula = enf.PC1 ~ amb.PCA.1, data = m1)

Coefficients:
              Estimate Std. Error t value Pr(>|t|)  
(Intercept) -7.564e-17  2.154e-01   0.000    1.000  
amb.PCA.1    2.574e-01  1.330e-01   1.935    0.056 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 4.45605)

    Null deviance: 435.56  on 95  degrees of freedom
Residual deviance: 418.87  on 94  degrees of freedom
AIC: 419.86

Number of Fisher Scoring iterations: 2

El Amb.CP.1Temperature se asocia levemente con los puntajes del C.Pr-1_J[00,01, 02, 03, 20]. Esto no implica relación causal, pero sugiere asociación entre la temperatura ambiental (Tem. mínima y promedio) y algunas de las enfermedades J0, J01,J02, J03, J20.

Column

Modelo Unimodal: Componente 1 [J01, J04,J06,J:21,J:22] ~ PM2.5

Enf.CP.2[J01,J04,J06,J:21,J:22] ~ AmbienteCP.1Temperature

Column

Componente.Princ.2[J01,J04,J06,J:21,J:22]

Predictor: AMB.CP1[Temprature]


Call:
glm(formula = enf.PC2 ~ amb.PCA.1, data = m1)

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.884e-17  1.125e-01   0.000    1.000
amb.PCA.1   7.524e-02  6.942e-02   1.084    0.281

(Dispersion parameter for gaussian family taken to be 1.214156)

    Null deviance: 115.56  on 95  degrees of freedom
Residual deviance: 114.13  on 94  degrees of freedom
AIC: 295.04

Number of Fisher Scoring iterations: 2

El Amb.CP.1Temperature No se asocia con los puntajes del C.Pr-2_J[J04,J06,J:21,J:22]. Esto sugiere asociación quizas entre la temperatura ambiental (Tem. mínima y promedio) y solo con algunas de las enfermedades.

Column

Modelo Unimodal: Componente.Princ.2[J01,J04,J06,J:21,J:22] ~ amb.PCA.1

Enfermedades ~ Ambiente.CP.2[Humedad, Precipit.Pluvial]

Column

Predictor: AMB.CP.2[Hum., Precip.Pluvial]

Componente.Princ 2 [J04,J06,J:21,J:22]


Call:
glm(formula = enf.PC2 ~ amb.PCA.2 + SO2 + I(SO2^2), data = m1)

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.841206   0.242933  -3.463 0.000975 ***
amb.PCA.2   -0.239040   0.082105  -2.911 0.004994 ** 
SO2          0.372587   0.089563   4.160 9.97e-05 ***
I(SO2^2)    -0.019330   0.005812  -3.326 0.001485 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.8720619)

    Null deviance: 83.373  on 65  degrees of freedom
Residual deviance: 54.068  on 62  degrees of freedom
  (30 observations deleted due to missingness)
AIC: 184.14

Number of Fisher Scoring iterations: 2

El Amb.CP.2[Hum.Precip.Pluv] se asocia fuertemente con los puntajes del C.Pr-2_J[J04,J06,J:21,J:22]. Esto sugiere asociación entre la combinación de cantidad de lluvia & humedad y los niveles de SO2, con las enfermedades J21, J:22 y J:06.

Column

Column

Modelo: Componente 1 [J:00, J:01, J:02, J:03, J:20] ~ Amb.CP.2[Hum.Precip.Pluv]

Enf.CP1[J:00,J:02,J:03,J:20] ~ Ambiente, Contaminantes,etc

Column

Componente.Princ 1 [J:00,J:02,J:03,J:20]


Call:
glm(formula = enf.PC1 ~ cnrd.pca.1, data = m1)

Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.782e-16  2.196e-01   0.000    1.000
cnrd.pca.1  -7.058e-02  2.004e-01  -0.352    0.726

(Dispersion parameter for gaussian family taken to be 4.627479)

    Null deviance: 435.56  on 95  degrees of freedom
Residual deviance: 434.98  on 94  degrees of freedom
AIC: 423.49

Number of Fisher Scoring iterations: 2

Enfermedades y PM2.5

Column

Enfermedades y Ambiente

Column

CONRED Componentes Principales


***VECTORS

               PC1      PC2     r2 Pr(>r)    
con.masas -0.80006  0.59992 0.6989  0.001 ***
incendios -0.28550 -0.95838 0.1422  0.005 ** 
lluvias    0.89490  0.44627 0.2088  0.001 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Permutation: free
Number of permutations: 999

Call:
glm(formula = enf.PC1 ~ cnrd.pca.1 + cnrd.pca.2, data = m1)

Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.785e-16  2.207e-01   0.000    1.000
cnrd.pca.1  -7.058e-02  2.015e-01  -0.350    0.727
cnrd.pca.2   2.997e-02  2.083e-01   0.144    0.886

(Dispersion parameter for gaussian family taken to be 4.676196)

    Null deviance: 435.56  on 95  degrees of freedom
Residual deviance: 434.89  on 93  degrees of freedom
AIC: 425.47

Number of Fisher Scoring iterations: 2

Column

J0, J02 ~ Ambiente, Contaminantes,etc

Column


    Shapiro-Wilk normality test

data:  m1$J0
W = 0.98371, p-value = 0.2807

Call:
glm(formula = J0 ~ cnrd.pca.1 + cnrd.pca.2, family = poisson, 
    data = m1)

Coefficients:
            Estimate Std. Error  z value Pr(>|z|)    
(Intercept) 8.194027   0.001697 4829.706  < 2e-16 ***
cnrd.pca.1  0.012247   0.001550    7.899 2.81e-15 ***
cnrd.pca.2  0.005088   0.001613    3.154  0.00161 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 23294  on 95  degrees of freedom
Residual deviance: 23221  on 93  degrees of freedom
AIC: 24187

Number of Fisher Scoring iterations: 4

Call:
glm(formula = J02 ~ cnrd.pca.1 + I(cnrd.pca.1^2) + cnrd.pca.2 + 
    I(cnrd.pca.2^2), family = poisson, data = m1)

Coefficients:
                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)      6.663599   0.005042 1321.62   <2e-16 ***
cnrd.pca.1      -0.074718   0.004671  -15.99   <2e-16 ***
I(cnrd.pca.1^2)  0.248648   0.010467   23.76   <2e-16 ***
cnrd.pca.2      -0.507054   0.020865  -24.30   <2e-16 ***
I(cnrd.pca.2^2) -0.265693   0.011326  -23.46   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 17224  on 95  degrees of freedom
Residual deviance: 16656  on 91  degrees of freedom
AIC: 17471

Number of Fisher Scoring iterations: 4

Column

CONRED (conc.masas y lluvias)

CONRED (incendios)

Column

CONRED (conc.masas y lluvias)

CONRED (incendios)

J03 ~ Ambiente, Contaminantes,etc

Column


Call:
glm(formula = J03 ~ cnrd.pca.1 + I(cnrd.pca.1^2) + cnrd.pca.2 + 
    I(cnrd.pca.2^2), family = poisson, data = m1)

Coefficients:
                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)      7.465244   0.003382 2207.36   <2e-16 ***
cnrd.pca.1      -0.061130   0.003114  -19.63   <2e-16 ***
I(cnrd.pca.1^2)  0.248440   0.006984   35.58   <2e-16 ***
cnrd.pca.2      -0.504874   0.013906  -36.31   <2e-16 ***
I(cnrd.pca.2^2) -0.263204   0.007552  -34.85   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 24790  on 95  degrees of freedom
Residual deviance: 23581  on 91  degrees of freedom
AIC: 24478

Number of Fisher Scoring iterations: 4

Column

CONRED (conc.masas y lluvias)

CONRED (incendios)

J06 ~ Ambiente, Contaminantes,etc

Column

J06


Call:
glm(formula = J06 ~ amb.PCA.1 + cnrd.pca.1 + I(cnrd.pca.1^2) + 
    cnrd.pca.2 + I(cnrd.pca.2^2) + PM2.5 + I(PM2.5^2) + NO2 + 
    I(NO2^2), family = poisson, data = m1)

Coefficients:
                  Estimate Std. Error z value Pr(>|z|)    
(Intercept)      4.948e+00  5.764e-02  85.842  < 2e-16 ***
amb.PCA.1        9.091e-02  3.848e-03  23.622  < 2e-16 ***
cnrd.pca.1      -8.984e-02  6.678e-03 -13.454  < 2e-16 ***
I(cnrd.pca.1^2)  2.402e-01  1.354e-02  17.744  < 2e-16 ***
cnrd.pca.2      -4.777e-01  2.675e-02 -17.857  < 2e-16 ***
I(cnrd.pca.2^2) -2.697e-01  1.474e-02 -18.294  < 2e-16 ***
PM2.5            3.459e-02  1.738e-03  19.900  < 2e-16 ***
I(PM2.5^2)      -3.522e-04  2.019e-05 -17.443  < 2e-16 ***
NO2              1.706e-02  2.847e-03   5.990  2.1e-09 ***
I(NO2^2)        -1.028e-04  3.778e-05  -2.722   0.0065 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 9999.7  on 93  degrees of freedom
Residual deviance: 7835.6  on 84  degrees of freedom
  (2 observations deleted due to missingness)
AIC: 8594.1

Number of Fisher Scoring iterations: 4

Column

Ambiente [Temperatura]

PM2.5

Column

CONRED (conc.masas y lluvias)

CONRED (incendios)

J20 ~ Ambiente, Contaminantes,etc

Column

J20


Call:
glm(formula = J20 ~ amb.PCA.1 + amb.PCA.2 + +PM2.5 + I(PM2.5^2) + 
    NO2 + I(NO2^2), family = poisson, data = m1)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  4.793e+00  5.799e-02  82.645  < 2e-16 ***
amb.PCA.1    4.106e-02  3.403e-03  12.067  < 2e-16 ***
amb.PCA.2    2.597e-02  3.840e-03   6.762 1.36e-11 ***
PM2.5        2.911e-02  1.756e-03  16.578  < 2e-16 ***
I(PM2.5^2)  -2.733e-04  2.021e-05 -13.526  < 2e-16 ***
NO2          2.840e-02  2.845e-03   9.979  < 2e-16 ***
I(NO2^2)    -2.747e-04  3.787e-05  -7.254 4.05e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 5425.2  on 93  degrees of freedom
Residual deviance: 4476.4  on 87  degrees of freedom
  (2 observations deleted due to missingness)
AIC: 5227.9

Number of Fisher Scoring iterations: 4

Column

AMB.PC.1 [Temperatura(-)]

AMB.CP.2[Precip.Pluvial-Hum.Relativa]

Column

PM2.5

NO2

Enf.PC1 ~ .

Column

enf.PCA1 [J0,J02,J03,J20]

Start:  AIC=284.3
enf.PC1 ~ PM2.5 + I(PM2.5^2) + NO2 + I(NO2^2) + Temp.min + Precipitation + 
    Rel.Humidity

                Df Deviance    AIC
- Rel.Humidity   1   228.97 282.31
- PM2.5          1   232.50 283.30
- I(PM2.5^2)     1   233.31 283.53
- Precipitation  1   235.69 284.19
<none>               228.93 284.30
- Temp.min       1   248.83 287.72
- NO2            1   262.58 291.21
- I(NO2^2)       1   263.59 291.46

Step:  AIC=282.31
enf.PC1 ~ PM2.5 + I(PM2.5^2) + NO2 + I(NO2^2) + Temp.min + Precipitation

                Df Deviance    AIC
- PM2.5          1   232.60 281.33
- I(PM2.5^2)     1   233.35 281.54
<none>               228.97 282.31
- Precipitation  1   240.83 283.59
+ Rel.Humidity   1   228.93 284.30
- Temp.min       1   248.97 285.75
- NO2            1   262.62 289.22
- I(NO2^2)       1   263.65 289.48

Step:  AIC=281.33
enf.PC1 ~ I(PM2.5^2) + NO2 + I(NO2^2) + Temp.min + Precipitation

                Df Deviance    AIC
- I(PM2.5^2)     1   233.65 279.62
<none>               232.60 281.33
+ PM2.5          1   228.97 282.31
- Precipitation  1   243.66 282.35
+ Rel.Humidity   1   232.50 283.30
- Temp.min       1   255.70 285.49
- NO2            1   276.04 290.46
- I(NO2^2)       1   276.47 290.56

Step:  AIC=279.62
enf.PC1 ~ NO2 + I(NO2^2) + Temp.min + Precipitation

                Df Deviance    AIC
<none>               233.65 279.62
- Precipitation  1   246.23 281.04
+ I(PM2.5^2)     1   232.60 281.33
+ PM2.5          1   233.35 281.54
+ Rel.Humidity   1   233.65 281.62
- Temp.min       1   257.00 283.82
- NO2            1   276.05 288.46
- I(NO2^2)       1   276.50 288.57

Call:
glm(formula = enf.PC1 ~ NO2 + I(NO2^2) + Temp.min + Precipitation, 
    data = m1.vars)

Coefficients:
               Estimate Std. Error t value Pr(>|t|)   
(Intercept)    0.004005   4.027751   0.001  0.99921   
NO2            0.461819   0.139961   3.300  0.00163 **
I(NO2^2)      -0.005979   0.001802  -3.317  0.00155 **
Temp.min      -0.520074   0.212398  -2.449  0.01728 * 
Precipitation  0.004596   0.002556   1.798  0.07726 . 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 3.894135)

    Null deviance: 292.37  on 64  degrees of freedom
Residual deviance: 233.65  on 60  degrees of freedom
AIC: 279.62

Number of Fisher Scoring iterations: 2

Column

Column

enf.PC1 ~ NO2 + I(NO2^2) + Temp.min + Precipitation

Recomiendo sacar Precipitation del modelo, debido a que contribuye solo un 9 % a explicar el número de casos.


Call:
glm(formula = enf.PC1 ~ NO2 + I(NO2^2) + Temp.min, data = m1.vars)

Coefficients:
             Estimate Std. Error t value Pr(>|t|)   
(Intercept) -2.006101   3.939567  -0.509  0.61244   
NO2          0.433898   0.141618   3.064  0.00325 **
I(NO2^2)    -0.005626   0.001824  -3.085  0.00306 **
Temp.min    -0.330934   0.187851  -1.762  0.08313 . 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 4.036595)

    Null deviance: 292.37  on 64  degrees of freedom
Residual deviance: 246.23  on 61  degrees of freedom
AIC: 281.03

Number of Fisher Scoring iterations: 2

J21 ~ .

Column

J21

Start:  AIC=1201.46
J21 ~ NO2 + I(NO2^2) + PM2.5 + Precipitation + Rel.Humidity

                Df Deviance    AIC
- PM2.5          1   883.62 1200.0
- Precipitation  1   883.96 1200.3
<none>               883.12 1201.5
- NO2            1   892.10 1208.5
- I(NO2^2)       1   892.26 1208.6
- Rel.Humidity   1   896.29 1212.6

Step:  AIC=1199.96
J21 ~ NO2 + I(NO2^2) + Precipitation + Rel.Humidity

                Df Deviance    AIC
- Precipitation  1   884.52 1198.9
<none>               883.62 1200.0
- NO2            1   893.90 1208.2
- I(NO2^2)       1   894.16 1208.5
- Rel.Humidity   1   899.18 1213.5

Step:  AIC=1198.86
J21 ~ NO2 + I(NO2^2) + Rel.Humidity

               Df Deviance    AIC
<none>              884.52 1198.9
- NO2           1   894.93 1207.3
- I(NO2^2)      1   895.54 1207.9
- Rel.Humidity  1   907.42 1219.8

Call:
glm(formula = J21 ~ NO2 + I(NO2^2) + Rel.Humidity, family = "poisson", 
    data = m1.vars)

Coefficients:
               Estimate Std. Error z value Pr(>|z|)    
(Intercept)   4.2996066  0.5199626   8.269  < 2e-16 ***
NO2           0.0485994  0.0154659   3.142  0.00168 ** 
I(NO2^2)     -0.0006381  0.0001979  -3.224  0.00126 ** 
Rel.Humidity -0.0260668  0.0054639  -4.771 1.84e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 920.86  on 64  degrees of freedom
Residual deviance: 884.52  on 61  degrees of freedom
AIC: 1198.9

Number of Fisher Scoring iterations: 5

Column

Column

###

J22 ~ .

Column

J22


Call:
glm(formula = J22 ~ PM2.5 + I(PM2.5^2) + Temp.max + I(Temp.max^2) + 
    Precipitation + Rel.Humidity, family = "poisson", data = m1.vars)

Coefficients:
                Estimate Std. Error z value Pr(>|z|)    
(Intercept)   -1.402e+01  1.055e+01  -1.329  0.18380    
PM2.5          6.583e-02  1.131e-02   5.823 5.79e-09 ***
I(PM2.5^2)    -6.183e-04  1.330e-04  -4.647 3.37e-06 ***
Temp.max       1.342e+00  8.212e-01   1.634  0.10228    
I(Temp.max^2) -2.555e-02  1.590e-02  -1.606  0.10818    
Precipitation  1.111e-03  4.006e-04   2.774  0.00554 ** 
Rel.Humidity  -2.843e-02  1.158e-02  -2.455  0.01410 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 1092.9  on 64  degrees of freedom
Residual deviance: 1003.4  on 58  degrees of freedom
AIC: 1302.5

Number of Fisher Scoring iterations: 5

Column

Column

J06 ~ .

Column

J06


Call:
glm(formula = J06 ~ NO2 + I(NO2^2) + PM2.5 + I(PM2.5^2) + Temp.min + 
    Precipitation + Rel.Humidity, family = "poisson", data = m1.vars)

Coefficients:
                Estimate Std. Error z value Pr(>|z|)    
(Intercept)    4.108e+00  1.822e-01  22.547  < 2e-16 ***
NO2            9.846e-02  3.981e-03  24.731  < 2e-16 ***
I(NO2^2)      -1.114e-03  5.009e-05 -22.248  < 2e-16 ***
PM2.5          3.864e-02  2.474e-03  15.621  < 2e-16 ***
I(PM2.5^2)    -4.460e-04  3.048e-05 -14.636  < 2e-16 ***
Temp.min      -2.960e-02  4.963e-03  -5.964 2.46e-09 ***
Precipitation  1.144e-03  8.321e-05  13.753  < 2e-16 ***
Rel.Humidity  -4.348e-03  1.920e-03  -2.264   0.0236 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 6338.2  on 64  degrees of freedom
Residual deviance: 4645.9  on 57  degrees of freedom
AIC: 5177.7

Number of Fisher Scoring iterations: 4

Column

Column

J01 ~ .

Column

J01


Call:
glm(formula = J01 ~ NO2 + I(NO2^2) + Temp.min + Precipitation, 
    family = "poisson", data = m1.vars)

Coefficients:
                Estimate Std. Error z value Pr(>|z|)    
(Intercept)    3.7330424  0.3619455  10.314  < 2e-16 ***
NO2            0.0501492  0.0134074   3.740 0.000184 ***
I(NO2^2)      -0.0007434  0.0001746  -4.258 2.06e-05 ***
Temp.min      -0.0609682  0.0184989  -3.296 0.000981 ***
Precipitation -0.0005102  0.0002361  -2.161 0.030691 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 458.28  on 64  degrees of freedom
Residual deviance: 413.60  on 60  degrees of freedom
AIC: 762.82

Number of Fisher Scoring iterations: 5

Column

Column

J04 ~ .

Column

J04

Start:  AIC=658.44
J04 ~ NO2 + I(NO2^2)

           Df Deviance    AIC
<none>          303.62 658.44
- NO2       1   315.88 668.70
- I(NO2^2)  1   317.68 670.50

Call:
glm(formula = J04 ~ NO2 + I(NO2^2), family = "poisson", data = m1.vars)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  2.8760684  0.2351118  12.233  < 2e-16 ***
NO2          0.0427341  0.0125017   3.418 0.000630 ***
I(NO2^2)    -0.0005863  0.0001608  -3.647 0.000265 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 319.02  on 64  degrees of freedom
Residual deviance: 303.62  on 62  degrees of freedom
AIC: 658.44

Number of Fisher Scoring iterations: 4

Column

J0 ~ .

Column

J0

Start:  AIC=11244.8
J0 ~ NO2 + I(NO2^2) + PM2.5 + I(PM2.5^2) + Temp.min + Precipitation + 
    Rel.Humidity

                Df Deviance   AIC
<none>                10575 11245
- Rel.Humidity   1    10662 11330
- PM2.5          1    10714 11382
- I(PM2.5^2)     1    10748 11417
- Precipitation  1    11157 11826
- Temp.min       1    11555 12224
- NO2            1    11866 12535
- I(NO2^2)       1    11984 12652

Call:
glm(formula = J0 ~ NO2 + I(NO2^2) + PM2.5 + I(PM2.5^2) + Temp.min + 
    Precipitation + Rel.Humidity, family = "poisson", data = m1.vars)

Coefficients:
                Estimate Std. Error z value Pr(>|z|)    
(Intercept)    8.586e+00  6.406e-02 134.033   <2e-16 ***
NO2            4.531e-02  1.286e-03  35.221   <2e-16 ***
I(NO2^2)      -6.080e-04  1.654e-05 -36.767   <2e-16 ***
PM2.5          9.685e-03  8.264e-04  11.720   <2e-16 ***
I(PM2.5^2)    -1.323e-04  1.016e-05 -13.023   <2e-16 ***
Temp.min      -5.513e-02  1.758e-03 -31.355   <2e-16 ***
Precipitation  7.198e-04  2.972e-05  24.216   <2e-16 ***
Rel.Humidity  -6.342e-03  6.792e-04  -9.338   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 13299  on 64  degrees of freedom
Residual deviance: 10575  on 57  degrees of freedom
AIC: 11245

Number of Fisher Scoring iterations: 4

Column

Column

NO2 & SO2 ~ Temperature.

Column

NO2 ~ Temp.min

Start:  AIC=486.83
NO2 ~ Temp.min + Temp.max + Precipitation + Rel.Humidity

                Df Deviance    AIC
- Rel.Humidity   1   5663.3 484.84
- Precipitation  1   5681.6 485.05
- Temp.max       1   5702.4 485.29
<none>               5662.0 486.83
- Temp.min       1   5991.7 488.51

Step:  AIC=484.84
NO2 ~ Temp.min + Temp.max + Precipitation

                Df Deviance    AIC
- Precipitation  1   5687.8 483.12
- Temp.max       1   5744.6 483.77
<none>               5663.3 484.84
- Temp.min       1   6001.5 486.61
+ Rel.Humidity   1   5662.0 486.83

Step:  AIC=483.12
NO2 ~ Temp.min + Temp.max

                Df Deviance    AIC
- Temp.max       1   5747.6 481.80
<none>               5687.8 483.12
+ Precipitation  1   5663.3 484.84
+ Rel.Humidity   1   5681.6 485.05
- Temp.min       1   6422.6 489.02

Step:  AIC=481.8
NO2 ~ Temp.min

                Df Deviance    AIC
<none>               5747.6 481.80
+ Temp.max       1   5687.8 483.12
+ Rel.Humidity   1   5736.5 483.68
+ Precipitation  1   5744.6 483.77
- Temp.min       1   6889.9 491.58

Call:
glm(formula = NO2 ~ Temp.min, data = m1.vars)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  82.5151    12.7848   6.454 1.77e-08 ***
Temp.min     -2.8303     0.7998  -3.539 0.000762 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 91.23111)

    Null deviance: 6889.9  on 64  degrees of freedom
Residual deviance: 5747.6  on 63  degrees of freedom
AIC: 481.8

Number of Fisher Scoring iterations: 2

Column

Column

SO2 ~ Temp.max

Start:  AIC=373.23
SO2 ~ Temp.max + Temp.min + Precipitation + Rel.Humidity

                Df Deviance    AIC
- Temp.min       1   989.67 371.46
- Rel.Humidity   1   992.44 371.64
- Precipitation  1  1002.43 372.29
<none>               986.25 373.23
- Temp.max       1  1060.35 375.94

Step:  AIC=371.46
SO2 ~ Temp.max + Precipitation + Rel.Humidity

                Df Deviance    AIC
- Rel.Humidity   1   998.62 370.04
- Precipitation  1  1002.96 370.32
<none>               989.67 371.46
+ Temp.min       1   986.25 373.23
- Temp.max       1  1124.96 377.78

Step:  AIC=370.04
SO2 ~ Temp.max + Precipitation

                Df Deviance    AIC
- Precipitation  1  1002.99 368.33
<none>               998.62 370.04
+ Rel.Humidity   1   989.67 371.46
+ Temp.min       1   992.44 371.64
- Temp.max       1  1152.09 377.33

Step:  AIC=368.33
SO2 ~ Temp.max

                Df Deviance    AIC
<none>              1002.99 368.33
+ Precipitation  1   998.62 370.04
+ Temp.min       1  1002.52 370.29
+ Rel.Humidity   1  1002.96 370.32
- Temp.max       1  1159.93 375.77

Call:
glm(formula = SO2 ~ Temp.max, data = m1.vars)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) -27.9182    10.3854  -2.688  0.00918 **
Temp.max      1.2548     0.3996   3.140  0.00257 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 15.92049)

    Null deviance: 1159.9  on 64  degrees of freedom
Residual deviance: 1003.0  on 63  degrees of freedom
AIC: 368.33

Number of Fisher Scoring iterations: 2

Column

SO2 ~ Temperature

NO2 & PM2.5 ~ Temperature.

Column

NO2 ~ PM2.5

Start:  AIC=492.9
NO2 ~ PM2.5 + I(PM2.5^2)

             Df Deviance    AIC
<none>            6611.0 492.90
- PM2.5       1   6856.7 493.27
- I(PM2.5^2)  1   6886.6 493.55

Call:
glm(formula = NO2 ~ PM2.5 + I(PM2.5^2), data = m1.vars)

Coefficients:
             Estimate Std. Error t value Pr(>|t|)   
(Intercept) 25.052187   9.101634   2.752  0.00775 **
PM2.5        0.724517   0.477293   1.518  0.13410   
I(PM2.5^2)  -0.009510   0.005916  -1.608  0.11301   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 106.6296)

    Null deviance: 6889.9  on 64  degrees of freedom
Residual deviance: 6611.0  on 62  degrees of freedom
AIC: 492.9

Number of Fisher Scoring iterations: 2

Column

Column

SO2 ~ Temp.max

Start:  AIC=373.23
SO2 ~ Temp.max + Temp.min + Precipitation + Rel.Humidity

                Df Deviance    AIC
- Temp.min       1   989.67 371.46
- Rel.Humidity   1   992.44 371.64
- Precipitation  1  1002.43 372.29
<none>               986.25 373.23
- Temp.max       1  1060.35 375.94

Step:  AIC=371.46
SO2 ~ Temp.max + Precipitation + Rel.Humidity

                Df Deviance    AIC
- Rel.Humidity   1   998.62 370.04
- Precipitation  1  1002.96 370.32
<none>               989.67 371.46
+ Temp.min       1   986.25 373.23
- Temp.max       1  1124.96 377.78

Step:  AIC=370.04
SO2 ~ Temp.max + Precipitation

                Df Deviance    AIC
- Precipitation  1  1002.99 368.33
<none>               998.62 370.04
+ Rel.Humidity   1   989.67 371.46
+ Temp.min       1   992.44 371.64
- Temp.max       1  1152.09 377.33

Step:  AIC=368.33
SO2 ~ Temp.max

                Df Deviance    AIC
<none>              1002.99 368.33
+ Precipitation  1   998.62 370.04
+ Temp.min       1  1002.52 370.29
+ Rel.Humidity   1  1002.96 370.32
- Temp.max       1  1159.93 375.77

Call:
glm(formula = SO2 ~ Temp.max, data = m1.vars)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) -27.9182    10.3854  -2.688  0.00918 **
Temp.max      1.2548     0.3996   3.140  0.00257 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 15.92049)

    Null deviance: 1159.9  on 64  degrees of freedom
Residual deviance: 1003.0  on 63  degrees of freedom
AIC: 368.33

Number of Fisher Scoring iterations: 2

Chronic Diseases: J30 ~ .

Column

J30

Start:  AIC=1454.97
`J:30` ~ NO2 + I(NO2^2) + PM2.5 + I(PM2.5^2) + Temp.min + Precipitation + 
    Rel.Humidity

                Df Deviance    AIC
<none>               972.30 1455.0
- PM2.5          1   986.16 1466.8
- I(PM2.5^2)     1   986.54 1467.2
- Rel.Humidity   1   987.56 1468.2
- Precipitation  1  1074.13 1554.8
- I(NO2^2)       1  1108.53 1589.2
- Temp.min       1  1122.99 1603.7
- NO2            1  1129.09 1609.8

Call:
glm(formula = `J:30` ~ NO2 + I(NO2^2) + PM2.5 + I(PM2.5^2) + 
    Temp.min + Precipitation + Rel.Humidity, family = "poisson", 
    data = m1.vars)

Coefficients:
                Estimate Std. Error z value Pr(>|z|)    
(Intercept)    5.371e+00  2.930e-01  18.331  < 2e-16 ***
NO2            8.648e-02  7.150e-03  12.095  < 2e-16 ***
I(NO2^2)      -9.924e-04  8.787e-05 -11.294  < 2e-16 ***
PM2.5          1.956e-02  5.305e-03   3.688 0.000226 ***
I(PM2.5^2)    -2.341e-04  6.283e-05  -3.726 0.000195 ***
Temp.min      -8.906e-02  7.254e-03 -12.277  < 2e-16 ***
Precipitation  1.299e-03  1.280e-04  10.145  < 2e-16 ***
Rel.Humidity  -1.170e-02  2.992e-03  -3.912 9.15e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 1316.3  on 64  degrees of freedom
Residual deviance:  972.3  on 57  degrees of freedom
AIC: 1455

Number of Fisher Scoring iterations: 4

Column

Column

J32 ~ .

Column

J32

Start:  AIC=482.81
`J:32` ~ NO2 + I(NO2^2) + Temp.min

           Df Deviance    AIC
<none>          193.85 482.81
- NO2       1   203.51 490.47
- I(NO2^2)  1   206.06 493.02
- Temp.min  1   235.47 522.43

Call:
glm(formula = `J:32` ~ NO2 + I(NO2^2) + Temp.min, family = "poisson", 
    data = m1.vars)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  3.6693935  0.6226804   5.893 3.79e-09 ***
NO2          0.0830049  0.0277077   2.996 0.002738 ** 
I(NO2^2)    -0.0011797  0.0003528  -3.343 0.000827 ***
Temp.min    -0.1530024  0.0234398  -6.527 6.69e-11 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 241.40  on 64  degrees of freedom
Residual deviance: 193.85  on 61  degrees of freedom
AIC: 482.81

Number of Fisher Scoring iterations: 4

Column

Column

J44 ~ .

Column

J44

Start:  AIC=389.38
`J:44` ~ NO2 + I(NO2^2) + PM2.5 + I(PM2.5^2)

             Df Deviance    AIC
<none>            126.28 389.38
- I(NO2^2)    1   129.27 390.38
- NO2         1   129.93 391.03
- I(PM2.5^2)  1   137.68 398.79
- PM2.5       1   138.10 399.21

Call:
glm(formula = `J:44` ~ NO2 + I(NO2^2) + PM2.5 + I(PM2.5^2), family = "poisson", 
    data = m1.vars)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)   
(Intercept) -1.1252930  0.9128206  -1.233  0.21766   
NO2          0.0643187  0.0345842   1.860  0.06292 . 
I(NO2^2)    -0.0007178  0.0004256  -1.687  0.09170 . 
PM2.5        0.0970765  0.0299911   3.237  0.00121 **
I(PM2.5^2)  -0.0011389  0.0003625  -3.142  0.00168 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 142.87  on 64  degrees of freedom
Residual deviance: 126.28  on 60  degrees of freedom
AIC: 389.38

Number of Fisher Scoring iterations: 5

Column

Column ———— ###

J45 ~ .

Column

J45

Start:  AIC=2705.25
`J:45` ~ NO2 + I(NO2^2) + PM2.5 + I(PM2.5^2) + Temp.min

             Df Deviance    AIC
<none>            2212.3 2705.2
- PM2.5       1   2215.8 2706.8
- I(PM2.5^2)  1   2221.6 2712.6
- Temp.min    1   2399.1 2890.1
- NO2         1   2431.7 2922.7
- I(NO2^2)    1   2442.6 2933.5

Call:
glm(formula = `J:45` ~ NO2 + I(NO2^2) + PM2.5 + I(PM2.5^2) + 
    Temp.min, family = "poisson", data = m1.vars)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  5.055e+00  1.800e-01  28.079  < 2e-16 ***
NO2          8.981e-02  6.296e-03  14.264  < 2e-16 ***
I(NO2^2)    -1.152e-03  7.910e-05 -14.561  < 2e-16 ***
PM2.5        9.003e-03  4.813e-03   1.871  0.06140 .  
I(PM2.5^2)  -1.755e-04  5.796e-05  -3.028  0.00246 ** 
Temp.min    -7.336e-02  5.337e-03 -13.744  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 2617.3  on 64  degrees of freedom
Residual deviance: 2212.3  on 59  degrees of freedom
AIC: 2705.2

Number of Fisher Scoring iterations: 4

Column

Column

Not_Specified Diseases: J18 ~ .

Column

J18

Start:  AIC=3598.61
`J:18` ~ NO2 + I(NO2^2) + PM2.5 + I(PM2.5^2)

Call:
glm(formula = `J:18` ~ NO2 + I(NO2^2) + PM2.5 + I(PM2.5^2), family = "poisson", 
    data = m1.vars)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  3.288e+00  1.154e-01   28.49   <2e-16 ***
NO2          5.819e-02  5.776e-03   10.07   <2e-16 ***
I(NO2^2)    -7.396e-04  7.331e-05  -10.09   <2e-16 ***
PM2.5        5.875e-02  4.209e-03   13.96   <2e-16 ***
I(PM2.5^2)  -8.164e-04  5.545e-05  -14.72   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 3597.6  on 64  degrees of freedom
Residual deviance: 3132.2  on 60  degrees of freedom
AIC: 3598.6

Number of Fisher Scoring iterations: 4

Column

Column

J98 ~ .

Column

J98

Start:  AIC=541.26
`J:98` ~ NO2 + I(NO2^2) + PM2.5 + I(PM2.5^2)

Call:
glm(formula = `J:98` ~ NO2 + I(NO2^2) + PM2.5 + I(PM2.5^2), family = "poisson", 
    data = m1.vars)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  1.4168071  0.3553203   3.987 6.68e-05 ***
NO2          0.0597128  0.0182508   3.272 0.001069 ** 
I(NO2^2)    -0.0008196  0.0002347  -3.492 0.000479 ***
PM2.5        0.0313581  0.0115102   2.724 0.006442 ** 
I(PM2.5^2)  -0.0003758  0.0001434  -2.621 0.008777 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 249.11  on 64  degrees of freedom
Residual deviance: 221.72  on 60  degrees of freedom
AIC: 541.26

Number of Fisher Scoring iterations: 4

Column

Column

J40 ~ .

Column

J40

Start:  AIC=492.92
`J:40` ~ NO2 + PM2.5 + Temp.avg

           Df Deviance    AIC
- PM2.5     1   220.07 491.30
- Temp.avg  1   220.42 491.65
<none>          219.69 492.92
- NO2       1   222.19 493.43

Step:  AIC=491.3
`J:40` ~ NO2 + Temp.avg

           Df Deviance    AIC
- Temp.avg  1   220.66 489.89
<none>          220.07 491.30
- NO2       1   222.51 491.74
+ PM2.5     1   219.69 492.92

Step:  AIC=489.89
`J:40` ~ NO2

           Df Deviance    AIC
- NO2       1   222.56 489.79
<none>          220.66 489.89
+ Temp.avg  1   220.07 491.30
+ PM2.5     1   220.42 491.65

Step:  AIC=489.79
`J:40` ~ 1

           Df Deviance    AIC
<none>          222.56 489.79
+ NO2       1   220.66 489.89
+ PM2.5     1   222.29 491.53
+ Temp.avg  1   222.51 491.74

Call:
glm(formula = `J:40` ~ 1, family = "poisson", data = m1.vars)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  2.39088    0.03753   63.71   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 222.56  on 64  degrees of freedom
Residual deviance: 222.56  on 64  degrees of freedom
AIC: 489.79

Number of Fisher Scoring iterations: 5

Column

Column