library(paqueteMETODOS)
## Cargando paquete requerido: dplyr
##
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Cargando paquete requerido: ggplot2
library(nortest)
data(biomasa)
modelo=lm(bio_total ~ diametro, data=biomasa)
summary(modelo)
##
## Call:
## lm(formula = bio_total ~ diametro, data = biomasa)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.3775 -2.6594 0.0237 1.8758 11.9876
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9.0203 1.4129 -6.384 7.86e-09 ***
## diametro 5.1026 0.2508 20.346 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.435 on 88 degrees of freedom
## Multiple R-squared: 0.8247, Adjusted R-squared: 0.8227
## F-statistic: 414 on 1 and 88 DF, p-value: < 2.2e-16
lm(formula = log(bio_total) ~ diametro, data = biomasa)
Este resultado muestra el valor del coeficiente de determinación (R2) que corresponde al porcentaje de la variabilidad de Y explicada por el modelo. Para el ejemplo R2=0.8227 indicando que el modelo explica un 82.27% de la variación de Y.
par(mfrow=c(2,2))
plot(modelo)
### Test de Shapiro
shapiro.test(modelo$residuals)
##
## Shapiro-Wilk normality test
##
## data: modelo$residuals
## W = 0.95356, p-value = 0.002793
nortest::ad.test(modelo$residuals)
##
## Anderson-Darling normality test
##
## data: modelo$residuals
## A = 0.86658, p-value = 0.02517
lillie.test(modelo$residuals)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: modelo$residuals
## D = 0.078633, p-value = 0.1856
lmtest::bptest(modelo)
##
## studentized Breusch-Pagan test
##
## data: modelo
## BP = 11.76, df = 1, p-value = 0.0006052
lmtest::gqtest(modelo)
##
## Goldfeld-Quandt test
##
## data: modelo
## GQ = 2.0131, df1 = 43, df2 = 43, p-value = 0.01196
## alternative hypothesis: variance increases from segment 1 to 2
lmtest::dwtest(modelo)
##
## Durbin-Watson test
##
## data: modelo
## DW = 1.0719, p-value = 1.035e-06
## alternative hypothesis: true autocorrelation is greater than 0
library(paqueteMETODOS)
data("biomasa")
modelo1=lm(bio_total ~ diametro, data=biomasa) # Lin - Lin
modelo2=lm(bio_total ~ log(diametro), data=biomasa) # Lin - Log
modelo3=lm(log(bio_total) ~ diametro, data=biomasa) # Log - Lin
modelo4=lm(log(bio_total) ~ log(diametro), data=biomasa) # Log - Log
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
stargazer(modelo1, modelo2, modelo3, modelo4, type="text", df=FALSE)
##
## ===============================================================
## Dependent variable:
## -------------------------------------------
## bio_total log(bio_total)
## (1) (2) (3) (4)
## ---------------------------------------------------------------
## diametro 5.103*** 0.278***
## (0.251) (0.011)
##
## log(diametro) 23.369*** 1.344***
## (1.564) (0.058)
##
## Constant -9.020*** -19.909*** 1.328*** 0.618***
## (1.413) (2.629) (0.060) (0.098)
##
## ---------------------------------------------------------------
## Observations 90 90 90 90
## R2 0.825 0.717 0.887 0.858
## Adjusted R2 0.823 0.714 0.885 0.857
## Residual Std. Error 3.435 4.362 0.145 0.162
## F Statistic 413.961*** 223.224*** 687.562*** 532.232***
## ===============================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Los mejores indicadores los tiene el modelo (3) : log - lin
() = 1.328 + 0.278 _i ]