# Load packages

# Core
library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.3.3
## Warning: package 'forcats' was built under R version 4.3.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyquant)
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## 
## ######################### Warning from 'xts' package ##########################
## #                                                                             #
## # The dplyr lag() function breaks how base R's lag() function is supposed to  #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or       #
## # source() into this session won't work correctly.                            #
## #                                                                             #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop           #
## # dplyr from breaking base R's lag() function.                                #
## #                                                                             #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning.  #
## #                                                                             #
## ###############################################################################
## 
## Attaching package: 'xts'
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## 
## Attaching package: 'PerformanceAnalytics'
## 
## The following object is masked from 'package:graphics':
## 
##     legend
## 
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo

Goal

Take raw prices of five individual stocks and transform them into monthly returns five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

1 Import stock prices

# Choose stocks

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x = symbols, 
                 get = "stock.prices", 
                 from = "2012-01-01",
                 to = "2017-01-01")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    tq_transmute(select = adjusted,
                 mutate_fun = periodReturn,
                 period = "monthly",
                 type = "log") %>%
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

asset_returns_tbl
## # A tibble: 300 × 3
##    asset date        returns
##    <chr> <date>        <dbl>
##  1 SPY   2012-01-31  0.0295 
##  2 SPY   2012-02-29  0.0425 
##  3 SPY   2012-03-30  0.0317 
##  4 SPY   2012-04-30 -0.00670
##  5 SPY   2012-05-31 -0.0619 
##  6 SPY   2012-06-29  0.0398 
##  7 SPY   2012-07-31  0.0118 
##  8 SPY   2012-08-31  0.0247 
##  9 SPY   2012-09-28  0.0250 
## 10 SPY   2012-10-31 -0.0184 
## # ℹ 290 more rows

3 Make plot

asset_returns_tbl %>%
    
    ggplot(aes(x = returns)) +
    geom_density(aes(color = asset), show.legend = FALSE, alpha = 1) +
    geom_histogram(aes(fill = asset), show.legend = FALSE, alpha = 0.3, binwidth = 0.01) +
    facet_wrap(~asset, ncol = 1) +
    
    # labeling
    labs(title = "distrobution of Monthly Returns, 2012-2016",
         y ="frequency",
         x = "Rate of Returns",
         capition = "A typical monthly return is higher for SPY and IJS than for AGG, EEM, and EFA")