Input Data

datafungisida <- data.frame(
  perlakuan = factor(rep(c("A", "B", "C", "D", "E", "F", "G", "H"), each = 6)),
  response = c(8,8,9,7,7,5, 16,19,24,22,19,19, 14,16,14,13,14,13, 10,11,12,8,
                7,3, 12,19,9,11,9,5, 8,8,3,3,3,7, 7,6,6,6,4,4, 8,7,1,1,3,2),
  ulangan = factor(rep(1:6, times = 8))
)
datafungisida
##    perlakuan response ulangan
## 1          A        8       1
## 2          A        8       2
## 3          A        9       3
## 4          A        7       4
## 5          A        7       5
## 6          A        5       6
## 7          B       16       1
## 8          B       19       2
## 9          B       24       3
## 10         B       22       4
## 11         B       19       5
## 12         B       19       6
## 13         C       14       1
## 14         C       16       2
## 15         C       14       3
## 16         C       13       4
## 17         C       14       5
## 18         C       13       6
## 19         D       10       1
## 20         D       11       2
## 21         D       12       3
## 22         D        8       4
## 23         D        7       5
## 24         D        3       6
## 25         E       12       1
## 26         E       19       2
## 27         E        9       3
## 28         E       11       4
## 29         E        9       5
## 30         E        5       6
## 31         F        8       1
## 32         F        8       2
## 33         F        3       3
## 34         F        3       4
## 35         F        3       5
## 36         F        7       6
## 37         G        7       1
## 38         G        6       2
## 39         G        6       3
## 40         G        6       4
## 41         G        4       5
## 42         G        4       6
## 43         H        8       1
## 44         H        7       2
## 45         H        1       3
## 46         H        1       4
## 47         H        3       5
## 48         H        2       6

Tabel Anova

anova_model <- aov(response ~ ulangan + perlakuan, data = datafungisida)
summary(anova_model)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## ulangan      5  102.5   20.50   3.549   0.0106 *  
## perlakuan    7 1210.6  172.94  29.940 5.69e-13 ***
## Residuals   35  202.2    5.78                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Mendefinisikan koefisien kontras orthogonal

contrasts(datafungisida$perlakuan) <- cbind(
  c(-7,1,1,1,1,1,1,1),  # A vs B+C+D+E+F+G+H
  c(0,-5,-5,2,2,2,2,2),  # B+C vs D+E+F+G+H
  c(0,-1,1,0,0,0,0,0),   # B vs C
  c(0,0,0,-3,-3,2,2,2),  # D+E vs F+G+H
  c(0,0,0,-1,1,0,0,0),   # D vs E
  c(0,0,0,0,0,-2,1,1),   # F vs G+H
  c(0,0,0,0,0,0,-1,1)    # G vs H
)

Tabel Uji Lanjut Kontras Orthogonal

anova_model_contrast <- aov(response ~ ulangan + perlakuan, data = datafungisida)
summary(anova_model_contrast, split = list(perlakuan = list(
  "A vs B+C+D+E+F+G+H" = 1, 
  "B+C vs D+E+F+G+H" = 2,
  "B vs C" = 3,
  "D+E vs F+G+H" = 4,
  "D vs E" = 5,
  "F vs G+H" = 6,
  "G vs H" = 7)))
##                                 Df Sum Sq Mean Sq F value   Pr(>F)    
## ulangan                          5  102.5    20.5   3.549 0.010627 *  
## perlakuan                        7 1210.6   172.9  29.940 5.69e-13 ***
##   perlakuan: A vs B+C+D+E+F+G+H  1   28.6    28.6   4.948 0.032659 *  
##   perlakuan: B+C vs D+E+F+G+H    1  883.1   883.1 152.878 2.50e-14 ***
##   perlakuan: B vs C              1  102.1   102.1  17.673 0.000172 ***
##   perlakuan: D+E vs F+G+H        1  168.2   168.2  29.120 4.83e-06 ***
##   perlakuan: D vs E              1   16.3    16.3   2.828 0.101554    
##   perlakuan: F vs G+H            1    2.2     2.2   0.390 0.536594    
##   perlakuan: G vs H              1   10.1    10.1   1.746 0.194995    
## Residuals                       35  202.2     5.8                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1