mydata<-data.frame("ID"=c(1,2,3,4),
"AGE"=c(10,11,18,20),
"Gender"=c("M","M","F","M"))
print(mydata)
## ID AGE Gender
## 1 1 10 M
## 2 2 11 M
## 3 3 18 F
## 4 4 20 M
mean(mydata$AGE)
## [1] 14.75
sd(mydata$AGE)
## [1] 4.99166
The average age of students is 14,75 years.
mydata$height<-c(100,119,120,130)
mydata$weight<-c(40,50,45,44)
mydata$BMI<-mydata$weight/mydata$height
print(mydata)
## ID AGE Gender height weight BMI
## 1 1 10 M 100 40 0.4000000
## 2 2 11 M 119 50 0.4201681
## 3 3 18 F 120 45 0.3750000
## 4 4 20 M 130 44 0.3384615
mydata2<-mydata[ ,c(2,4)]
mydata3<-mydata2[-3, ]
summary(mydata[ ,c(-1,-3)])
## AGE height weight BMI
## Min. :10.00 Min. :100.0 Min. :40.00 Min. :0.3385
## 1st Qu.:10.75 1st Qu.:114.2 1st Qu.:43.00 1st Qu.:0.3659
## Median :14.50 Median :119.5 Median :44.50 Median :0.3875
## Mean :14.75 Mean :117.2 Mean :44.75 Mean :0.3834
## 3rd Qu.:18.50 3rd Qu.:122.5 3rd Qu.:46.25 3rd Qu.:0.4050
## Max. :20.00 Max. :130.0 Max. :50.00 Max. :0.4202
#install.packages("pastecs")
library(pastecs)
round(stat.desc(mydata[ ,c(-1,-3)]))
## AGE height weight BMI
## nbr.val 4 4 4 4
## nbr.null 0 0 0 0
## nbr.na 0 0 0 0
## min 10 100 40 0
## max 20 130 50 0
## range 10 30 10 0
## sum 59 469 179 2
## median 14 120 44 0
## mean 15 117 45 0
## SE.mean 2 6 2 0
## CI.mean.0.95 8 20 7 0
## var 25 157 17 0
## std.dev 5 13 4 0
## coef.var 0 0 0 0
mydataM<-mydata[mydata$Gender=="M"&mydata$AGE>12, ]