barplot(apply(data,1,mean))#按行做均值条形图多元数据直观表示
各省消费项目均值条形图
省份过多,各省的名称均不能全部显示
将横轴左边旋转90度,各省的名称均可显示
barplot(apply(data,1,mean),las=3)#按行做均值条形图利用ggplot2包作图较为美观
data %>%
mutate(Average_Consumption = rowMeans(select(., -1), na.rm = TRUE)) %>%
ggplot(aes(x = reorder(row.names(data), -Average_Consumption), y = Average_Consumption)) +
geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = "steelblue") +
labs(title = "各省消费项目均值条形图", x = "", y = "均值") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) 各消费项目均值条形图
按消费项目做均值图条形图
barplot(apply(data,2,mean))#按列做均值图条形图对不同项目的条形添加不同颜色
barplot(apply(data,2,mean),col=1:8) #按列做彩色均值图条形图去掉食品列后的数据按列做均值条形图
barplot(apply(data[,2:8],2,mean))按消费项目做中位数条形图
barplot(apply(data,2,median))利用ggplot作均值条形图
data %>% summarise(across(everything(), mean, na.rm = TRUE)) %>%
pivot_longer(cols = everything(), names_to = "Consumption_Type", values_to = "Average") %>%
mutate(
Consumption_Type=factor(Consumption_Type,level=c('食品','衣着','设备','医疗','交通','教育','居住','杂项')),
) %>%
ggplot(aes(x = Consumption_Type, y = Average, fill = Consumption_Type)) +
geom_bar(stat = "identity", position = position_dodge(), colour = "black") +
theme_minimal() +
labs(title = "各消费项目均值条形图", x = "类别", y = "均值",fill = "消费种类")Warning: There was 1 warning in `summarise()`.
ℹ In argument: `across(everything(), mean, na.rm = TRUE)`.
Caused by warning:
! The `...` argument of `across()` is deprecated as of dplyr 1.1.0.
Supply arguments directly to `.fns` through an anonymous function instead.
# Previously
across(a:b, mean, na.rm = TRUE)
# Now
across(a:b, \(x) mean(x, na.rm = TRUE))
使各条形的颜色相同
data %>% summarise(across(everything(), mean, na.rm = TRUE)) %>%
pivot_longer(cols = everything(), names_to = "Consumption_Type", values_to = "Average") %>%
mutate(
Consumption_Type=factor(Consumption_Type,level=c('食品','衣着','设备','医疗','交通','教育','居住','杂项')),
) %>%
ggplot(aes(x = Consumption_Type, y = Average)) +
geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = "steelblue") +
theme_minimal() +
labs(title = "各消费项目均值条形图", x = "类别", y = "均值")各消费项目箱线图
boxplot函数直接作箱线图,默认每个变量(列)作一个箱线,并将全部变量的箱线在同一个图中展示。
boxplot(data)#按列做箱线图boxplot(data,horizontal=T,las=1)#箱线图中图形按水平放置利用ggplot函数作箱线图,需要对数据转化为长结果数据
data %>% pivot_longer(cols = 1:8, names_to = "Consumption_Type", values_to = "Value") %>%
mutate(
Consumption_Type=factor(Consumption_Type,level=c('食品','衣着','设备','医疗','交通','教育','居住','杂项')),
) %>%
ggplot(aes(x = Consumption_Type, y = Value)) +
geom_boxplot() +
labs(title = "各消费项目箱线图", x = "", y = "消费水平") +
theme_minimal() # + coord_flip() 各消费项目星相图
运用stars函数,将各消费项目用星相图显示,但没有相关图例显示。
stars(data) 通过key.loc函数显示具有图例的360度星相图,由图可知,北京、上海、天津、广东与浙江的消费水平较高。
stars(data,key.loc=c(17,7)) full=F,表示半圆形的图例,北京和上海的各项消费指数都较高
stars(data,full=F,key.loc=c(17,7))通过draw.segments,显示为具有图例的360度彩色圆形星相图
stars(data,draw.segments=T,key.loc=c(17,7))各消费项目脸谱图
运用faces,将各省的消费指标值作为脸谱数据,眼睛鼻子嘴巴等面部内容表示不同指标的情况。
library(aplpack) #加载aplpack包
faces(data)去掉第五个变量按每行8个做脸谱图
aplpack::faces(data[,-5],ncol.plot=8)effect of variables:
modified item Var
"height of face " "食品"
"width of face " "衣着"
"structure of face" "设备"
"height of mouth " "医疗"
"width of mouth " "教育"
"smiling " "居住"
"height of eyes " "杂项"
"width of eyes " "食品"
"height of hair " "衣着"
"width of hair " "设备"
"style of hair " "医疗"
"height of nose " "教育"
"width of nose " "居住"
"width of ear " "杂项"
"height of ear " "食品"
各消费项目雷达图
ggplot2的扩展包ggiraphExtra能作雷达图
data[c(1,9,19,28,29,30),] %>%
mutate(省份=rownames(.)) %>%
ggRadar(aes(group = 省份)) 绘制多维雷达图,并将各方面的最大数据显示出来
library("fmsb")
rddat=data[c(1:3,7:9,12:15),]
maxmin=rbind(apply(rddat,2,max),apply(rddat,2,min))
rddat=rbind(maxmin,rddat)
radarchart(rddat, axistype=2, pcol=topo.colors(6), plty=1, pdensity=seq(5,40,by=5), pangle=seq(0,150,by=30), pfcol=topo.colors(6))各消费项目调和曲线图
source用于定义函数
source("msaR.R")#加自定义函数
msa.andrews(data)#绘制调和曲线图msa.andrews(data[c(1:3,7:9,12),])运用andrews绘制调和曲线
library(andrews) See the package vignette with `vignette("andrews")`
andrews(data,clr=5,ymax=6)#选择第1到第3,第7到第9以及第12个观测的多元数据做调和曲线图
andrews(data[c(1:3,7:9,12),],clr=5,ymax=6)