barplot(apply(data,1,mean))#按行做均值条形图
221527139伍泉至
各省消费项目均值条形图
省份过多,各省的名称均不能全部显示
将横轴左边旋转90度,各省的名称均可显示
barplot(apply(data,1,mean),las=3)#按行做均值条形图
利用ggplot2包作图较为美观
%>%
data mutate(Average_Consumption = rowMeans(select(., -1), na.rm = TRUE)) %>%
ggplot(aes(x = reorder(row.names(data), -Average_Consumption), y = Average_Consumption)) +
geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = "steelblue") +
labs(title = "各省消费项目均值条形图", x = "", y = "均值") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
各消费项目均值条形图
按消费项目做均值图条形图
barplot(apply(data,2,mean))#按列做均值图条形图
对不同项目的条形添加不同颜色
barplot(apply(data,2,mean),col=1:8) #按列做彩色均值图条形图
去掉食品列后的数据按列做均值条形图
barplot(apply(data[,2:8],2,mean))
按消费项目做中位数条形图
barplot(apply(data,2,median))
利用ggplot作均值条形图
%>% summarise(across(everything(), mean, na.rm = TRUE)) %>%
data pivot_longer(cols = everything(), names_to = "Consumption_Type", values_to = "Average") %>%
mutate(
Consumption_Type=factor(Consumption_Type,level=c('食品','衣着','设备','医疗','交通','教育','居住','杂项')),
%>%
) ggplot(aes(x = Consumption_Type, y = Average, fill = Consumption_Type)) +
geom_bar(stat = "identity", position = position_dodge(), colour = "black") +
theme_minimal() +
labs(title = "各消费项目均值条形图", x = "类别", y = "均值",fill = "消费种类")
Warning: There was 1 warning in `summarise()`.
ℹ In argument: `across(everything(), mean, na.rm = TRUE)`.
Caused by warning:
! The `...` argument of `across()` is deprecated as of dplyr 1.1.0.
Supply arguments directly to `.fns` through an anonymous function instead.
# Previously
across(a:b, mean, na.rm = TRUE)
# Now
across(a:b, \(x) mean(x, na.rm = TRUE))
使各条形的颜色相同
%>% summarise(across(everything(), mean, na.rm = TRUE)) %>%
data pivot_longer(cols = everything(), names_to = "Consumption_Type", values_to = "Average") %>%
mutate(
Consumption_Type=factor(Consumption_Type,level=c('食品','衣着','设备','医疗','交通','教育','居住','杂项')),
%>%
) ggplot(aes(x = Consumption_Type, y = Average)) +
geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = "steelblue") +
theme_minimal() +
labs(title = "各消费项目均值条形图", x = "类别", y = "均值")
各消费项目箱线图
boxplot函数直接作箱线图,默认每个变量(列)作一个箱线,并将全部变量的箱线在同一个图中展示。
boxplot(data)#按列做箱线图
boxplot(data,horizontal=T,las=1)#箱线图中图形按水平放置
利用ggplot函数作箱线图,需要对数据转化为长结果数据
%>% pivot_longer(cols = 1:8, names_to = "Consumption_Type", values_to = "Value") %>%
data mutate(
Consumption_Type=factor(Consumption_Type,level=c('食品','衣着','设备','医疗','交通','教育','居住','杂项')),
%>%
) ggplot(aes(x = Consumption_Type, y = Value)) +
geom_boxplot() +
labs(title = "各消费项目箱线图", x = "", y = "消费水平") +
theme_minimal() # + coord_flip()
各消费项目星相图
stars(data) #具有图例的360度星相图
stars(data,key.loc=c(17,7)) #具有图例的360度星相图
stars(data,full=F,key.loc=c(17,7)) #具有图例的180度星相图
stars(data,draw.segments=T,key.loc=c(17,7))#具有图例的360度彩色圆形星相图
stars(data,full=F,draw.segments=T,key.loc=c(17,7))#具有图例的180度彩色圆形星相图
各消费项目脸谱图
library(andrews)
See the package vignette with `vignette("andrews")`
faces(data)
layout(matrix(1:7, ncol = 7))# 设置图形布局
faces(data[, 2:8])#去掉第一个变量按每行7个做脸谱图
faces(data[c(1,9,19,28,29,30),])#选择第1,9,19,28,29,30个观测的多元数据做脸谱图
library("TeachingDemos") #install.packages("TeachingDemos")
faces2(data,ncols=7) #TeachingDemos::faces(data)
各消费项目雷达图
ggplot2的扩展包ggiraphExtra能作雷达图
c(1,9,19,28,29,30),] %>%
data[mutate(省份=rownames(.)) %>%
ggRadar(aes(group = 省份))
各消费项目调和曲线图
msa.andrews(data)#绘制调和曲线图
msa.andrews(data[c(1,9,19,28,29,30),])#选择第 1、9、19、28、29 和 30 行的数据绘制调和曲线图
andrews(data,clr=5,ymax=6)
andrews(data[c(1,9,19,28,29,30),],clr=5,ymax=6)