1. load libraries

2. Load Seurat Object

DimPlot(All_samples_Merged,group.by = "cell_line", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)

DimPlot(All_samples_Merged,
        group.by = "SCT_snn_res.0.9", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)


cluster_table <- table(Idents(All_samples_Merged))


DimPlot(All_samples_Merged, group.by = "predicted.celltype.l2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T)


library(clustree)
clustree(All_samples_Merged, prefix = "SCT_snn_res.")



DimPlot(All_samples_Merged, group.by = "predicted.celltype.l1", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)


DimPlot(All_samples_Merged, group.by = "predicted.celltype.l1", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)


DimPlot(All_samples_Merged, group.by = "predicted.celltype.l2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)


DimPlot(All_samples_Merged, group.by = "predicted.celltype.l2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = F)



DimPlot(All_samples_Merged, group.by = "predicted.celltype.l2", 
        reduction = "umap",
        label.size = 3,
        repel = T,
        label = T, label.box = T)




table(All_samples_Merged$predicted.celltype.l2, All_samples_Merged$SCT_snn_res.0.9)
                   
                       0    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16   17   18
  CD4 CTL              0    0    0    0    0    0    2    0    4    0    0    0    0    0    0    0    0    0    0
  CD4 Naive            0    0    0    0    0    0  595    0  100    0    0    1    0    0    0    0    6    0    4
  CD4 Proliferating 5124 5231 3823 2401 1748 2535    0 2547    0 1263 1329   20 1327  598   41  237    0  154    1
  CD4 TCM            978  158  501 1366   21   24 2170   22 1892  266  585 1859   41  111  406   57  235   35   61
  CD4 TEM              0    0    0    8    0    0   19    0   27    0    0   15    0    0    0    0    0    0    0
  CD8 Naive            6    0    2    0    0    0  304    0   61    0   19    0    1    3    2    0   12    0    3
  CD8 TCM              0    0    0   76    0    0  115    0  137   10    0   72    0    0    0    0    2    0    1
  CD8 TEM              0    0    0    0    0    0   27    0  182    8    0    0    0    0    0    0    0    0    0
  cDC2                 9    0  155    0    0   23    0    5    1    0   67    0    9   43    0   22    0    2    0
  dnT                  1    0    0    2    2    0    4    0   33    0    0    0    0    0    0    7   11    0    1
  gdT                  0    0    0    0    0    0    0    0   13    0    0    0    0    0    0    0    0    0    0
  HSPC               167    8  285    1    0  744    1  652    1    1   12    8  401   43    1   26    0    6    0
  ILC                  0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    0
  MAIT                 0    0    0    0    0    0    4    0   50    0    0    0    0    0    0    0    2    0    0
  NK                   0    0    0    0    0    0    0    0   91    0    0    0    0    0    0    0    0    0    1
  NK Proliferating     7   11  162   20 1971    4    0    4    0  644   10    0    0    0    0   31    0    0    0
  Treg                11    0    2    1    0    0   50    0  103    0    0    0    0    1    0   20   12    0    5

3. Data PREPERATION

DefaultAssay(All_samples_Merged) <- 'ADT'

VariableFeatures(All_samples_Merged) <- rownames(All_samples_Merged[["ADT"]])

# we will use all ADT features for dimensional reduction
# we set a dimensional reduction name to avoid overwriting the 
All_samples_Merged <- NormalizeData(All_samples_Merged, normalization.method = 'CLR', margin = 2) %>% 
  ScaleData() %>% RunPCA(reduction.name = 'apca', npcs =28, maxit = 5000)
Normalizing across cells

  |                                                  | 0 % ~calculating  
  |+                                                 | 1 % ~00s          
  |+                                                 | 2 % ~00s          
  |++                                                | 3 % ~00s          
  |++                                                | 4 % ~00s          
  |+++                                               | 5 % ~00s          
  |+++                                               | 6 % ~00s          
  |++++                                              | 7 % ~00s          
  |++++                                              | 8 % ~00s          
  |+++++                                             | 9 % ~00s          
  |+++++                                             | 10% ~00s          
  |++++++                                            | 11% ~00s          
  |++++++                                            | 12% ~00s          
  |+++++++                                           | 13% ~00s          
  |+++++++                                           | 14% ~00s          
  |++++++++                                          | 15% ~00s          
  |++++++++                                          | 16% ~00s          
  |+++++++++                                         | 17% ~00s          
  |+++++++++                                         | 18% ~00s          
  |++++++++++                                        | 19% ~00s          
  |++++++++++                                        | 20% ~00s          
  |+++++++++++                                       | 21% ~00s          
  |+++++++++++                                       | 22% ~00s          
  |++++++++++++                                      | 23% ~00s          
  |++++++++++++                                      | 24% ~00s          
  |+++++++++++++                                     | 25% ~00s          
  |+++++++++++++                                     | 26% ~00s          
  |++++++++++++++                                    | 27% ~00s          
  |++++++++++++++                                    | 28% ~00s          
  |+++++++++++++++                                   | 29% ~00s          
  |+++++++++++++++                                   | 30% ~00s          
  |++++++++++++++++                                  | 31% ~00s          
  |++++++++++++++++                                  | 32% ~00s          
  |+++++++++++++++++                                 | 33% ~00s          
  |+++++++++++++++++                                 | 34% ~00s          
  |++++++++++++++++++                                | 35% ~00s          
  |++++++++++++++++++                                | 36% ~00s          
  |+++++++++++++++++++                               | 37% ~00s          
  |+++++++++++++++++++                               | 38% ~00s          
  |++++++++++++++++++++                              | 39% ~00s          
  |++++++++++++++++++++                              | 40% ~00s          
  |+++++++++++++++++++++                             | 41% ~00s          
  |+++++++++++++++++++++                             | 42% ~00s          
  |++++++++++++++++++++++                            | 43% ~00s          
  |++++++++++++++++++++++                            | 44% ~00s          
  |+++++++++++++++++++++++                           | 45% ~00s          
  |+++++++++++++++++++++++                           | 46% ~00s          
  |++++++++++++++++++++++++                          | 47% ~00s          
  |++++++++++++++++++++++++                          | 48% ~00s          
  |+++++++++++++++++++++++++                         | 49% ~00s          
  |+++++++++++++++++++++++++                         | 50% ~00s          
  |++++++++++++++++++++++++++                        | 51% ~00s          
  |++++++++++++++++++++++++++                        | 52% ~00s          
  |+++++++++++++++++++++++++++                       | 53% ~00s          
  |+++++++++++++++++++++++++++                       | 54% ~00s          
  |++++++++++++++++++++++++++++                      | 55% ~00s          
  |++++++++++++++++++++++++++++                      | 56% ~00s          
  |+++++++++++++++++++++++++++++                     | 57% ~00s          
  |+++++++++++++++++++++++++++++                     | 58% ~00s          
  |++++++++++++++++++++++++++++++                    | 59% ~00s          
  |++++++++++++++++++++++++++++++                    | 60% ~00s          
  |+++++++++++++++++++++++++++++++                   | 61% ~00s          
  |+++++++++++++++++++++++++++++++                   | 62% ~00s          
  |++++++++++++++++++++++++++++++++                  | 63% ~00s          
  |++++++++++++++++++++++++++++++++                  | 64% ~00s          
  |+++++++++++++++++++++++++++++++++                 | 65% ~00s          
  |+++++++++++++++++++++++++++++++++                 | 66% ~00s          
  |++++++++++++++++++++++++++++++++++                | 67% ~00s          
  |++++++++++++++++++++++++++++++++++                | 68% ~00s          
  |+++++++++++++++++++++++++++++++++++               | 69% ~00s          
  |+++++++++++++++++++++++++++++++++++               | 70% ~00s          
  |++++++++++++++++++++++++++++++++++++              | 71% ~00s          
  |++++++++++++++++++++++++++++++++++++              | 72% ~00s          
  |+++++++++++++++++++++++++++++++++++++             | 73% ~00s          
  |+++++++++++++++++++++++++++++++++++++             | 74% ~00s          
  |++++++++++++++++++++++++++++++++++++++            | 75% ~00s          
  |++++++++++++++++++++++++++++++++++++++            | 76% ~00s          
  |+++++++++++++++++++++++++++++++++++++++           | 77% ~00s          
  |+++++++++++++++++++++++++++++++++++++++           | 78% ~00s          
  |++++++++++++++++++++++++++++++++++++++++          | 79% ~00s          
  |++++++++++++++++++++++++++++++++++++++++          | 80% ~00s          
  |+++++++++++++++++++++++++++++++++++++++++         | 81% ~00s          
  |+++++++++++++++++++++++++++++++++++++++++         | 82% ~00s          
  |++++++++++++++++++++++++++++++++++++++++++        | 83% ~00s          
  |++++++++++++++++++++++++++++++++++++++++++        | 84% ~00s          
  |+++++++++++++++++++++++++++++++++++++++++++       | 85% ~00s          
  |+++++++++++++++++++++++++++++++++++++++++++       | 86% ~00s          
  |++++++++++++++++++++++++++++++++++++++++++++      | 87% ~00s          
  |++++++++++++++++++++++++++++++++++++++++++++      | 88% ~00s          
  |+++++++++++++++++++++++++++++++++++++++++++++     | 89% ~00s          
  |+++++++++++++++++++++++++++++++++++++++++++++     | 90% ~00s          
  |++++++++++++++++++++++++++++++++++++++++++++++    | 91% ~00s          
  |++++++++++++++++++++++++++++++++++++++++++++++    | 92% ~00s          
  |+++++++++++++++++++++++++++++++++++++++++++++++   | 93% ~00s          
  |+++++++++++++++++++++++++++++++++++++++++++++++   | 94% ~00s          
  |++++++++++++++++++++++++++++++++++++++++++++++++  | 95% ~00s          
  |++++++++++++++++++++++++++++++++++++++++++++++++  | 96% ~00s          
  |+++++++++++++++++++++++++++++++++++++++++++++++++ | 97% ~00s          
  |+++++++++++++++++++++++++++++++++++++++++++++++++ | 98% ~00s          
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 99% ~00s          
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=00s  
Centering and scaling data matrix

  |                                                                                                                                
  |                                                                                                                          |   0%
  |                                                                                                                                
  |==========================================================================================================================| 100%
Warning: You're computing too large a percentage of total singular values, use a standard svd instead.Warning: Requested number is larger than the number of available items (28). Setting to 28.Warning: Requested number is larger than the number of available items (28). Setting to 28.Warning: Requested number is larger than the number of available items (28). Setting to 28.Warning: Requested number is larger than the number of available items (28). Setting to 28.Warning: Requested number is larger than the number of available items (28). Setting to 28.PC_ 1 
Positive:  CD5, CD274, TCRab, CD7, CD3, CD28, CD45RO, CD26, CD44, CD62L 
       CXCR3, CD127, CD45, CCR8 
Negative:  CD25, CD30, CD2, CD95, CD45RA, CD4, CCR6, CCR4, CXCR4, CD40 
       CD19, CCR7, PD1, CCR10 
PC_ 2 
Positive:  CD45, CD44, CD45RO, CD4, CD3, CD40, CCR4, CD45RA, CD26, CD95 
       CD2, CD5, CD62L, CD28 
Negative:  CD127, CD19, PD1, CCR7, CCR10, CXCR3, CCR8, CCR6, CD7, CD274 
       CD30, CXCR4, CD25, TCRab 
PC_ 3 
Positive:  CD62L, TCRab, CD28, CD3, CD4, CXCR4, CCR7, CD45RA, CD127, CD5 
       PD1, CCR4, CD95, CD2 
Negative:  CD26, CXCR3, CD45RO, CD274, CD40, CD44, CCR10, CCR6, CD7, CD30 
       CD19, CD25, CD45, CCR8 
PC_ 4 
Positive:  CCR4, CD5, CD274, CD4, CD30, CCR6, CD44, CD28, CD25, CD45RA 
       CD19, CCR10, CXCR3, PD1 
Negative:  CD40, CD45, CD2, CD62L, CD7, CD26, CXCR4, CCR7, CD127, CD95 
       CD45RO, CCR8, CD3, TCRab 
PC_ 5 
Positive:  CD45RO, CD28, CCR8, CD26, CCR4, PD1, CD4, CCR10, CD40, CD127 
       CD19, TCRab, CD2, CCR7 
Negative:  CD7, CD45RA, CD5, CD44, CCR6, CXCR3, CXCR4, CD274, CD62L, CD30 
       CD3, CD95, CD45, CD25 
Warning: Key 'PC_' taken, using 'apca_' instead
# Identify multimodal neighbors. These will be stored in the neighbors slot, 
# and can be accessed using bm[['weighted.nn']]
# The WNN graph can be accessed at bm[["wknn"]], 
# and the SNN graph used for clustering at bm[["wsnn"]]
# Cell-specific modality weights can be accessed at bm$RNA.weight

All_samples_Merged <- FindMultiModalNeighbors(
  All_samples_Merged, reduction.list = list("pca", "apca"), 
  dims.list = list(1:20, 1:18), modality.weight.name = "RNA.weight"
)
Calculating cell-specific modality weights
Finding 20 nearest neighbors for each modality.

  |                                                  | 0 % ~calculating  
  |+++++++++++++++++++++++++                         | 50% ~08s          
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=17s  
Calculating kernel bandwidths

  |                                                  | 0 % ~calculating  
  |+++++++++++++++++++++++++                         | 50% ~01s          
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=01s  
Warning: The number of provided modality.weight.name is not equal to the number of modalities. SCT.weight ADT.weight are used to store the modality weightsFinding multimodal neighbors

  |                                                  | 0 % ~calculating  
  |+++++++++++++++++++++++++                         | 50% ~29s          
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=01m 00s

  |                                                  | 0 % ~calculating  
  |+++++++++++++++++++++++++                         | 50% ~01s          
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=02s  
Constructing multimodal KNN graph
Constructing multimodal SNN graph

4. Visualization RNA+ADT


All_samples_Merged <- RunUMAP(All_samples_Merged, nn.name = "weighted.nn", reduction.name = "wnn.umap", reduction.key = "wnnUMAP_")
11:40:53 UMAP embedding parameters a = 0.9922 b = 1.112
11:40:54 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 20
11:40:55 Initializing from normalized Laplacian + noise (using RSpectra)
11:40:59 Commencing optimization for 200 epochs, with 1470228 positive edges
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
11:41:16 Optimization finished
All_samples_Merged <- FindClusters(All_samples_Merged, graph.name = "wsnn", algorithm = 3, resolution = 0.5, verbose = FALSE)

p1 <- DimPlot(All_samples_Merged, reduction = 'wnn.umap', label = TRUE, repel = TRUE, label.size = 2.5) + NoLegend()
p2 <- DimPlot(All_samples_Merged, reduction = 'wnn.umap', group.by = 'predicted.celltype.l2', label = TRUE, repel = TRUE, label.size = 2.5) + NoLegend()
p1 + p2


DimPlot(All_samples_Merged, reduction = 'wnn.umap', group.by = "cell_line",label = TRUE, repel = TRUE, label.size = 2.5)

DimPlot(All_samples_Merged, reduction = 'wnn.umap', group.by = "wsnn_res.0.4",label = TRUE, repel = TRUE, label.size = 2.5)

DimPlot(All_samples_Merged, reduction = 'wnn.umap', group.by = 'predicted.celltype.l2', label = TRUE, repel = TRUE, label.size = 2.5)


All_samples_Merged <- RunUMAP(All_samples_Merged, reduction = 'pca', dims = 1:20, assay = 'RNA', 
              reduction.name = 'rna.umap', reduction.key = 'rnaUMAP_')
11:56:15 UMAP embedding parameters a = 0.9922 b = 1.112
11:56:15 Read 46976 rows and found 20 numeric columns
11:56:15 Using Annoy for neighbor search, n_neighbors = 30
11:56:15 Building Annoy index with metric = cosine, n_trees = 50
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
11:56:18 Writing NN index file to temp file /tmp/RtmpNFcsIF/filed20558ad9341
11:56:18 Searching Annoy index using 1 thread, search_k = 3000
11:56:29 Annoy recall = 100%
11:56:29 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
11:56:31 Initializing from normalized Laplacian + noise (using RSpectra)
11:56:38 Commencing optimization for 200 epochs, with 1992390 positive edges
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
11:56:54 Optimization finished
All_samples_Merged <- RunUMAP(All_samples_Merged, reduction = 'apca', dims = 1:18, assay = 'ADT', 
              reduction.name = 'adt.umap', reduction.key = 'adtUMAP_')
11:56:54 UMAP embedding parameters a = 0.9922 b = 1.112
11:56:54 Read 46976 rows and found 18 numeric columns
11:56:54 Using Annoy for neighbor search, n_neighbors = 30
11:56:54 Building Annoy index with metric = cosine, n_trees = 50
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
11:56:57 Writing NN index file to temp file /tmp/RtmpNFcsIF/filed20553965a86
11:56:57 Searching Annoy index using 1 thread, search_k = 3000
11:57:09 Annoy recall = 100%
11:57:09 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
11:57:11 Initializing from normalized Laplacian + noise (using RSpectra)
11:57:13 Commencing optimization for 200 epochs, with 2051920 positive edges
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
11:57:28 Optimization finished
p3 <- DimPlot(All_samples_Merged, reduction = 'rna.umap', group.by = 'predicted.celltype.l2', label = TRUE, 
              repel = TRUE, label.size = 2.5) + NoLegend()
p4 <- DimPlot(All_samples_Merged, reduction = 'adt.umap', group.by = 'predicted.celltype.l2', label = TRUE, 
              repel = TRUE, label.size = 2.5) + NoLegend()
p3 + p4


DimPlot(All_samples_Merged, reduction = 'rna.umap', group.by = "cell_line",label = TRUE, repel = TRUE, label.size = 2.5)

DimPlot(All_samples_Merged, reduction = 'rna.umap', group.by = "seurat_clusters",label = TRUE, repel = TRUE, label.size = 2.5)

DimPlot(All_samples_Merged, reduction = 'rna.umap', group.by = 'predicted.celltype.l2', label = TRUE, 
              repel = TRUE, label.size = 2.5)

DimPlot(All_samples_Merged, reduction = 'adt.umap', group.by = "cell_line",label = TRUE, repel = TRUE, label.size = 2.5)

DimPlot(All_samples_Merged, reduction = 'adt.umap', group.by = "seurat_clusters",label = TRUE, repel = TRUE, label.size = 2.5)

DimPlot(All_samples_Merged, reduction = 'adt.umap', group.by = 'predicted.celltype.l2', label = TRUE, 
              repel = TRUE, label.size = 2.5) + NoLegend()


FeaturePlot(All_samples_Merged, features = c("adt_CD45RA","adt_CD45RO","adt_CD5","adt_CD274", "adt_CD95"),
                  reduction = 'wnn.umap', max.cutoff = 2, 
                  cols = c("lightgrey","darkgreen"), ncol = 3)


FeaturePlot(All_samples_Merged, features = c("adt_TCRab", "adt_CD7", "adt_CD3", "adt_CD28"),
                  reduction = 'wnn.umap', max.cutoff = 2, 
                  cols = c("lightgrey","darkgreen"), ncol = 3)

            
 FeaturePlot(All_samples_Merged, features = c("adt_CD26", "adt_CD44", "adt_CD62L","adt_CXCR3", "adt_CD127", "adt_CD45"),
                  reduction = 'wnn.umap', max.cutoff = 2, 
                  cols = c("lightgrey","darkgreen"), ncol = 3)     

 
 FeaturePlot(All_samples_Merged, features = c("adt_CCR6","adt_CCR7","adt_CCR8","adt_CCR10"),
                  reduction = 'wnn.umap', max.cutoff = 2, 
                  cols = c("lightgrey","darkgreen"), ncol = 3) 

 
 FeaturePlot(All_samples_Merged, features = c("adt_CD30","adt_CD40","adt_CCR4","adt_CD4" ,"adt_CD25"),
                  reduction = 'wnn.umap', max.cutoff = 2, 
                  cols = c("lightgrey","darkgreen"), ncol = 3) 

 
 FeaturePlot(All_samples_Merged, features = c("adt_PD1","adt_CD62L","adt_CD95","adt_TCRab", "adt_CXCR4"),
                  reduction = 'wnn.umap', max.cutoff = 2, 
                  cols = c("lightgrey","darkgreen"), ncol = 3)  

 FeaturePlot(All_samples_Merged, features = c("adt_CD2","adt_CD28","adt_CD127","adt_CD19"),
                  reduction = 'wnn.umap', max.cutoff = 2, 
                  cols = c("lightgrey","darkgreen"), ncol = 3)  

 
 
 FeaturePlot(All_samples_Merged, features = c("rna_TP53","rna_CARD11","rna_ARID1A","rna_FAS","rna_CCR4"), 
                  reduction = 'wnn.umap', max.cutoff = 3, ncol = 3)

 
 FeaturePlot(All_samples_Merged, features = c("rna_RHOA","rna_TNFRSF1B"),
                  reduction = 'wnn.umap', max.cutoff = 2, 
                  cols = c("lightgrey","darkgreen"), ncol = 3)  

 
 FeaturePlot(All_samples_Merged, features = c("rna_PLS3","rna_STAT4","rna_GATA3","rna_TRAIL","rna_CD1D"),
                  reduction = 'wnn.umap', max.cutoff = 2, 
                  cols = c("lightgrey","darkgreen"), ncol = 3)  
Warning: The following features could not be found rna_TRAILWarning: The following requested variables were not found: rna_TRAIL

 
 FeaturePlot(All_samples_Merged, features = c("rna_KIR3DL2","rna_NKp46","rna_IL2RA","rna_TOX","rna_STAT5A"),
                  reduction = 'wnn.umap', max.cutoff = 2, 
                  cols = c("lightgrey","darkgreen"), ncol = 3)  
Warning: The following features could not be found rna_NKp46Warning: The following requested variables were not found: rna_NKp46

 
 FeaturePlot(All_samples_Merged, features = c("rna_MYC","rna_MNT","rna_EPHA4","rna_DNM3","rna_TWIST1"),
                  reduction = 'wnn.umap', max.cutoff = 2, 
                  cols = c("lightgrey","darkgreen"), ncol = 3)  

 
 FeaturePlot(All_samples_Merged, features = c("rna_TRAF2","rna_SELL","rna_miR21"),
                  reduction = 'wnn.umap', max.cutoff = 2, 
                  cols = c("lightgrey","darkgreen"), ncol = 3)  
Warning: The following features could not be found rna_miR21Warning: The following requested variables were not found: rna_miR21

 
 FeaturePlot(All_samples_Merged, features = c("rna_TRAF2","rna_SELL","rna_miR21"),
                  reduction = 'wnn.umap', max.cutoff = 2, 
                  cols = c("lightgrey","darkgreen"), ncol = 3)
Warning: The following features could not be found rna_miR21Warning: The following requested variables were not found: rna_miR21

 
 FeaturePlot(All_samples_Merged, features = c("rna_FCL3","rna_PDCD1","rna_CXCL13"),
                  reduction = 'wnn.umap', max.cutoff = 2, 
                  cols = c("lightgrey","darkgreen"), ncol = 3)  
Warning: The following features could not be found rna_FCL3Warning: The following requested variables were not found: rna_FCL3


 VlnPlot(All_samples_Merged, features = "SCT.weight", group.by = 'predicted.celltype.l2', sort = TRUE, pt.size = 0.1) +
  NoLegend()

 VlnPlot(All_samples_Merged, features = "ADT.weight", group.by = 'predicted.celltype.l2', sort = TRUE, pt.size = 0.1) +
  NoLegend()

 
 table(All_samples_Merged$predicted.celltype.l2, All_samples_Merged$wsnn_res.0.4)
                   
                       0    1   10   11   12   13   14   15   16   17    2    3    4    5    6    7    8    9
  CD4 CTL              0    0    0    0    0    1    0    0    0    0    0    0    0    0    0    5    0    0
  CD4 Naive            0    0    0    0    0   21    0    0    0    4    0    0    1    0    0    1  679    0
  CD4 Proliferating 5113 3002 1293 1302  578    0  280   31  144    0 5242 3797 1491 2579 2607    0    0  920
  CD4 TCM            976  286  602   46  114  550   82  428   40   61  132  477 2172   29   25 2093 1656 1019
  CD4 TEM              0    0    0    0    0    1    0    0    0    0    0    0   23    0    0   45    0    0
  CD8 Naive            6    0   19    1    3   41    0    2    0    3    0    2    0    0    0   20  316    0
  CD8 TCM              0   10    0    0    0    9    0    0    0    1    0    0   94    1    0  232   13   53
  CD8 TEM              0    8    0    0    0    0    0    0    0    0    0    0    0    0    0  209    0    0
  cDC2                 9    0   68    9   43    0   25    0    2    0    0  148    0   27    5    0    0    0
  dnT                  0    0    0    0    0   33    7    0    0    1    0    1    3    0    0   14    2    0
  gdT                  0    0    0    0    0    0    0    0    0    0    0    0    0    0    0   13    0    0
  HSPC               161    1   10  399   36    2   35    3    5    0    9  285    0  757  653    0    1    0
  ILC                  0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0
  MAIT                 0    0    0    0    0    2    0    0    0    0    0    0    0    0    0   54    0    0
  NK                   0    0    0    0    0    0    0    0    0    1    0    0    0    0    0   91    0    0
  NK Proliferating     7 2611    8    0    0    0   32    0    0    0   11  166   11    5    5    0    0    8
  Treg                 3    0    0    0    1   29   30    0    0    4    0    1    1    0    0   97   39    0
 
 clustree(All_samples_Merged, prefix = "wsnn_res.")

5. Save the Seurat object as an Robj file


save(All_samples_Merged, file = "../0-imp_OBJ_SS/All_samples_Merged_WNN_correct.Robj")
LS0tCnRpdGxlOiAiV05OIGFuYWx5c2lzIG9mIENJVEUtc2VxLCBSTkEgKyBBRFQiCmF1dGhvcjogTmFzaXIgTWFobW9vZCBBYmJhc2kKZGF0ZTogImByIFN5cy5EYXRlKClgIgpvdXRwdXQ6CiAgI3JtZGZvcm1hdHM6OnJlYWR0aGVkb3duCiAgaHRtbF9ub3RlYm9vazoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICB0b2NfY29sbGFwc2VkOiB0cnVlCi0tLQoKIyAxLiBsb2FkIGxpYnJhcmllcwpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0KbGlicmFyeShTZXVyYXQpCmxpYnJhcnkoU2V1cmF0T2JqZWN0KQpsaWJyYXJ5KFNldXJhdERhdGEpCmxpYnJhcnkocGF0Y2h3b3JrKQpsaWJyYXJ5KGhhcm1vbnkpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShjb3dwbG90KQpsaWJyYXJ5KHJldGljdWxhdGUpCmxpYnJhcnkoQXppbXV0aCkKbGlicmFyeShkcGx5cikKbGlicmFyeShSdHNuZSkKbGlicmFyeShoYXJtb255KQpsaWJyYXJ5KGdyaWRFeHRyYSkKYGBgCgojIDIuIExvYWQgU2V1cmF0IE9iamVjdCAKYGBge3IgbG9hZF9zZXVyYXQsIGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTEwfQoKIGxvYWQoIi9ob21lL2Jpb2luZm8vQ2x1c3Rlcl90b19Db21wdXRlcl9UcmFuc2Zlcl9maWxlc19mb2xkZXIvQWxsX05vcm1hbC1QQk1DX0Fibm9ybWFsLWNlbGxMaW5lc19UX2NlbGxzX01lcmdlZF9Bbm5vdGF0ZWRfVU1BUF9vbl9DbHVzdGVyc190b19VU0UuUm9iaiIpCiAKICBBbGxfc2FtcGxlc19NZXJnZWQKCiAgCiAgRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsZ3JvdXAuYnkgPSAiY2VsbF9saW5lIiwgCiAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLAogICAgICAgIGxhYmVsLnNpemUgPSAzLAogICAgICAgIHJlcGVsID0gVCwKICAgICAgICBsYWJlbCA9IFQpCgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwKICAgICAgICBncm91cC5ieSA9ICJTQ1Rfc25uX3Jlcy4wLjkiLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gVCkKCmNsdXN0ZXJfdGFibGUgPC0gdGFibGUoSWRlbnRzKEFsbF9zYW1wbGVzX01lcmdlZCkpCgoKRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIGdyb3VwLmJ5ID0gInByZWRpY3RlZC5jZWxsdHlwZS5sMiIsIAogICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwKICAgICAgICBsYWJlbC5zaXplID0gMywKICAgICAgICByZXBlbCA9IFQsCiAgICAgICAgbGFiZWwgPSBUKQoKbGlicmFyeShjbHVzdHJlZSkKY2x1c3RyZWUoQWxsX3NhbXBsZXNfTWVyZ2VkLCBwcmVmaXggPSAiU0NUX3Nubl9yZXMuIikKCgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgZ3JvdXAuYnkgPSAicHJlZGljdGVkLmNlbGx0eXBlLmwxIiwgCiAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLAogICAgICAgIGxhYmVsLnNpemUgPSAzLAogICAgICAgIHJlcGVsID0gVCwKICAgICAgICBsYWJlbCA9IFQsIGxhYmVsLmJveCA9IFQpCgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgZ3JvdXAuYnkgPSAicHJlZGljdGVkLmNlbGx0eXBlLmwxIiwgCiAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLAogICAgICAgIGxhYmVsLnNpemUgPSAzLAogICAgICAgIHJlcGVsID0gVCwKICAgICAgICBsYWJlbCA9IEYpCgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgZ3JvdXAuYnkgPSAicHJlZGljdGVkLmNlbGx0eXBlLmwyIiwgCiAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLAogICAgICAgIGxhYmVsLnNpemUgPSAzLAogICAgICAgIHJlcGVsID0gVCwKICAgICAgICBsYWJlbCA9IFQsIGxhYmVsLmJveCA9IFQpCgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgZ3JvdXAuYnkgPSAicHJlZGljdGVkLmNlbGx0eXBlLmwyIiwgCiAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLAogICAgICAgIGxhYmVsLnNpemUgPSAzLAogICAgICAgIHJlcGVsID0gVCwKICAgICAgICBsYWJlbCA9IEYpCgoKRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIGdyb3VwLmJ5ID0gInByZWRpY3RlZC5jZWxsdHlwZS5sMiIsIAogICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwKICAgICAgICBsYWJlbC5zaXplID0gMywKICAgICAgICByZXBlbCA9IFQsCiAgICAgICAgbGFiZWwgPSBULCBsYWJlbC5ib3ggPSBUKQoKCgp0YWJsZShBbGxfc2FtcGxlc19NZXJnZWQkcHJlZGljdGVkLmNlbGx0eXBlLmwyLCBBbGxfc2FtcGxlc19NZXJnZWQkU0NUX3Nubl9yZXMuMC45KQoKCmBgYAoKCiMgMy4gRGF0YSBQUkVQRVJBVElPTgpgYGB7ciBkYXRhLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KRGVmYXVsdEFzc2F5KEFsbF9zYW1wbGVzX01lcmdlZCkgPC0gJ0FEVCcKClZhcmlhYmxlRmVhdHVyZXMoQWxsX3NhbXBsZXNfTWVyZ2VkKSA8LSByb3duYW1lcyhBbGxfc2FtcGxlc19NZXJnZWRbWyJBRFQiXV0pCgojIHdlIHdpbGwgdXNlIGFsbCBBRFQgZmVhdHVyZXMgZm9yIGRpbWVuc2lvbmFsIHJlZHVjdGlvbgojIHdlIHNldCBhIGRpbWVuc2lvbmFsIHJlZHVjdGlvbiBuYW1lIHRvIGF2b2lkIG92ZXJ3cml0aW5nIHRoZSAKQWxsX3NhbXBsZXNfTWVyZ2VkIDwtIE5vcm1hbGl6ZURhdGEoQWxsX3NhbXBsZXNfTWVyZ2VkLCBub3JtYWxpemF0aW9uLm1ldGhvZCA9ICdDTFInLCBtYXJnaW4gPSAyKSAlPiUgCiAgU2NhbGVEYXRhKCkgJT4lIFJ1blBDQShyZWR1Y3Rpb24ubmFtZSA9ICdhcGNhJywgbnBjcyA9MjgsIG1heGl0ID0gNTAwMCkKCgojIElkZW50aWZ5IG11bHRpbW9kYWwgbmVpZ2hib3JzLiBUaGVzZSB3aWxsIGJlIHN0b3JlZCBpbiB0aGUgbmVpZ2hib3JzIHNsb3QsIAojIGFuZCBjYW4gYmUgYWNjZXNzZWQgdXNpbmcgYm1bWyd3ZWlnaHRlZC5ubiddXQojIFRoZSBXTk4gZ3JhcGggY2FuIGJlIGFjY2Vzc2VkIGF0IGJtW1sid2tubiJdXSwgCiMgYW5kIHRoZSBTTk4gZ3JhcGggdXNlZCBmb3IgY2x1c3RlcmluZyBhdCBibVtbIndzbm4iXV0KIyBDZWxsLXNwZWNpZmljIG1vZGFsaXR5IHdlaWdodHMgY2FuIGJlIGFjY2Vzc2VkIGF0IGJtJFJOQS53ZWlnaHQKCkFsbF9zYW1wbGVzX01lcmdlZCA8LSBGaW5kTXVsdGlNb2RhbE5laWdoYm9ycygKICBBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbi5saXN0ID0gbGlzdCgicGNhIiwgImFwY2EiKSwgCiAgZGltcy5saXN0ID0gbGlzdCgxOjIwLCAxOjE4KSwgbW9kYWxpdHkud2VpZ2h0Lm5hbWUgPSAiUk5BLndlaWdodCIKKQoKCgoKYGBgCgoKIyA0LiBWaXN1YWxpemF0aW9uIFJOQStBRFQKYGBge3IgVmlzdWFsaXplLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KCkFsbF9zYW1wbGVzX01lcmdlZCA8LSBSdW5VTUFQKEFsbF9zYW1wbGVzX01lcmdlZCwgbm4ubmFtZSA9ICJ3ZWlnaHRlZC5ubiIsIHJlZHVjdGlvbi5uYW1lID0gIndubi51bWFwIiwgcmVkdWN0aW9uLmtleSA9ICJ3bm5VTUFQXyIpCkFsbF9zYW1wbGVzX01lcmdlZCA8LSBGaW5kQ2x1c3RlcnMoQWxsX3NhbXBsZXNfTWVyZ2VkLCBncmFwaC5uYW1lID0gIndzbm4iLCBhbGdvcml0aG0gPSAzLCByZXNvbHV0aW9uID0gMC41LCB2ZXJib3NlID0gRkFMU0UpCgpwMSA8LSBEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gJ3dubi51bWFwJywgbGFiZWwgPSBUUlVFLCByZXBlbCA9IFRSVUUsIGxhYmVsLnNpemUgPSAyLjUpICsgTm9MZWdlbmQoKQpwMiA8LSBEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gJ3dubi51bWFwJywgZ3JvdXAuYnkgPSAncHJlZGljdGVkLmNlbGx0eXBlLmwyJywgbGFiZWwgPSBUUlVFLCByZXBlbCA9IFRSVUUsIGxhYmVsLnNpemUgPSAyLjUpICsgTm9MZWdlbmQoKQpwMSArIHAyCgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gJ3dubi51bWFwJywgZ3JvdXAuYnkgPSAiY2VsbF9saW5lIixsYWJlbCA9IFRSVUUsIHJlcGVsID0gVFJVRSwgbGFiZWwuc2l6ZSA9IDIuNSkKRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbiA9ICd3bm4udW1hcCcsIGdyb3VwLmJ5ID0gIndzbm5fcmVzLjAuNCIsbGFiZWwgPSBUUlVFLCByZXBlbCA9IFRSVUUsIGxhYmVsLnNpemUgPSAyLjUpCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCByZWR1Y3Rpb24gPSAnd25uLnVtYXAnLCBncm91cC5ieSA9ICdwcmVkaWN0ZWQuY2VsbHR5cGUubDInLCBsYWJlbCA9IFRSVUUsIHJlcGVsID0gVFJVRSwgbGFiZWwuc2l6ZSA9IDIuNSkKYGBgCgpgYGB7ciBWaXN1YWxpemUyLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KCkFsbF9zYW1wbGVzX01lcmdlZCA8LSBSdW5VTUFQKEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gJ3BjYScsIGRpbXMgPSAxOjIwLCBhc3NheSA9ICdSTkEnLCAKICAgICAgICAgICAgICByZWR1Y3Rpb24ubmFtZSA9ICdybmEudW1hcCcsIHJlZHVjdGlvbi5rZXkgPSAncm5hVU1BUF8nKQpBbGxfc2FtcGxlc19NZXJnZWQgPC0gUnVuVU1BUChBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbiA9ICdhcGNhJywgZGltcyA9IDE6MTgsIGFzc2F5ID0gJ0FEVCcsIAogICAgICAgICAgICAgIHJlZHVjdGlvbi5uYW1lID0gJ2FkdC51bWFwJywgcmVkdWN0aW9uLmtleSA9ICdhZHRVTUFQXycpCgpwMyA8LSBEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gJ3JuYS51bWFwJywgZ3JvdXAuYnkgPSAncHJlZGljdGVkLmNlbGx0eXBlLmwyJywgbGFiZWwgPSBUUlVFLCAKICAgICAgICAgICAgICByZXBlbCA9IFRSVUUsIGxhYmVsLnNpemUgPSAyLjUpICsgTm9MZWdlbmQoKQpwNCA8LSBEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gJ2FkdC51bWFwJywgZ3JvdXAuYnkgPSAncHJlZGljdGVkLmNlbGx0eXBlLmwyJywgbGFiZWwgPSBUUlVFLCAKICAgICAgICAgICAgICByZXBlbCA9IFRSVUUsIGxhYmVsLnNpemUgPSAyLjUpICsgTm9MZWdlbmQoKQpwMyArIHA0CgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gJ3JuYS51bWFwJywgZ3JvdXAuYnkgPSAiY2VsbF9saW5lIixsYWJlbCA9IFRSVUUsIHJlcGVsID0gVFJVRSwgbGFiZWwuc2l6ZSA9IDIuNSkKRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbiA9ICdybmEudW1hcCcsIGdyb3VwLmJ5ID0gInNldXJhdF9jbHVzdGVycyIsbGFiZWwgPSBUUlVFLCByZXBlbCA9IFRSVUUsIGxhYmVsLnNpemUgPSAyLjUpCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCByZWR1Y3Rpb24gPSAncm5hLnVtYXAnLCBncm91cC5ieSA9ICdwcmVkaWN0ZWQuY2VsbHR5cGUubDInLCBsYWJlbCA9IFRSVUUsIAogICAgICAgICAgICAgIHJlcGVsID0gVFJVRSwgbGFiZWwuc2l6ZSA9IDIuNSkKRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbiA9ICdhZHQudW1hcCcsIGdyb3VwLmJ5ID0gImNlbGxfbGluZSIsbGFiZWwgPSBUUlVFLCByZXBlbCA9IFRSVUUsIGxhYmVsLnNpemUgPSAyLjUpCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCByZWR1Y3Rpb24gPSAnYWR0LnVtYXAnLCBncm91cC5ieSA9ICJzZXVyYXRfY2x1c3RlcnMiLGxhYmVsID0gVFJVRSwgcmVwZWwgPSBUUlVFLCBsYWJlbC5zaXplID0gMi41KQpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gJ2FkdC51bWFwJywgZ3JvdXAuYnkgPSAncHJlZGljdGVkLmNlbGx0eXBlLmwyJywgbGFiZWwgPSBUUlVFLCAKICAgICAgICAgICAgICByZXBlbCA9IFRSVUUsIGxhYmVsLnNpemUgPSAyLjUpICsgTm9MZWdlbmQoKQoKYGBgCgoKYGBge3IgVmlzdWFsaXplMywgZmlnLmhlaWdodD02LCBmaWcud2lkdGg9MTB9CgpGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmVzID0gYygiYWR0X0NENDVSQSIsImFkdF9DRDQ1Uk8iLCJhZHRfQ0Q1IiwiYWR0X0NEMjc0IiwgImFkdF9DRDk1IiksCiAgICAgICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICd3bm4udW1hcCcsIG1heC5jdXRvZmYgPSAyLCAKICAgICAgICAgICAgICAgICAgY29scyA9IGMoImxpZ2h0Z3JleSIsImRhcmtncmVlbiIpLCBuY29sID0gMykKCkZlYXR1cmVQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgZmVhdHVyZXMgPSBjKCJhZHRfVENSYWIiLCAiYWR0X0NENyIsICJhZHRfQ0QzIiwgImFkdF9DRDI4IiksCiAgICAgICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICd3bm4udW1hcCcsIG1heC5jdXRvZmYgPSAyLCAKICAgICAgICAgICAgICAgICAgY29scyA9IGMoImxpZ2h0Z3JleSIsImRhcmtncmVlbiIpLCBuY29sID0gMykKICAgICAgICAgICAgCiBGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmVzID0gYygiYWR0X0NEMjYiLCAiYWR0X0NENDQiLCAiYWR0X0NENjJMIiwiYWR0X0NYQ1IzIiwgImFkdF9DRDEyNyIsICJhZHRfQ0Q0NSIpLAogICAgICAgICAgICAgICAgICByZWR1Y3Rpb24gPSAnd25uLnVtYXAnLCBtYXguY3V0b2ZmID0gMiwgCiAgICAgICAgICAgICAgICAgIGNvbHMgPSBjKCJsaWdodGdyZXkiLCJkYXJrZ3JlZW4iKSwgbmNvbCA9IDMpICAgICAKIAogRmVhdHVyZVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlcyA9IGMoImFkdF9DQ1I2IiwiYWR0X0NDUjciLCJhZHRfQ0NSOCIsImFkdF9DQ1IxMCIpLAogICAgICAgICAgICAgICAgICByZWR1Y3Rpb24gPSAnd25uLnVtYXAnLCBtYXguY3V0b2ZmID0gMiwgCiAgICAgICAgICAgICAgICAgIGNvbHMgPSBjKCJsaWdodGdyZXkiLCJkYXJrZ3JlZW4iKSwgbmNvbCA9IDMpIAogCiBGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmVzID0gYygiYWR0X0NEMzAiLCJhZHRfQ0Q0MCIsImFkdF9DQ1I0IiwiYWR0X0NENCIgLCJhZHRfQ0QyNSIpLAogICAgICAgICAgICAgICAgICByZWR1Y3Rpb24gPSAnd25uLnVtYXAnLCBtYXguY3V0b2ZmID0gMiwgCiAgICAgICAgICAgICAgICAgIGNvbHMgPSBjKCJsaWdodGdyZXkiLCJkYXJrZ3JlZW4iKSwgbmNvbCA9IDMpIAogCiBGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmVzID0gYygiYWR0X1BEMSIsImFkdF9DRDYyTCIsImFkdF9DRDk1IiwiYWR0X1RDUmFiIiwgImFkdF9DWENSNCIpLAogICAgICAgICAgICAgICAgICByZWR1Y3Rpb24gPSAnd25uLnVtYXAnLCBtYXguY3V0b2ZmID0gMiwgCiAgICAgICAgICAgICAgICAgIGNvbHMgPSBjKCJsaWdodGdyZXkiLCJkYXJrZ3JlZW4iKSwgbmNvbCA9IDMpICAKIEZlYXR1cmVQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgZmVhdHVyZXMgPSBjKCJhZHRfQ0QyIiwiYWR0X0NEMjgiLCJhZHRfQ0QxMjciLCJhZHRfQ0QxOSIpLAogICAgICAgICAgICAgICAgICByZWR1Y3Rpb24gPSAnd25uLnVtYXAnLCBtYXguY3V0b2ZmID0gMiwgCiAgICAgICAgICAgICAgICAgIGNvbHMgPSBjKCJsaWdodGdyZXkiLCJkYXJrZ3JlZW4iKSwgbmNvbCA9IDMpICAKIAogCiBGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmVzID0gYygicm5hX1RQNTMiLCJybmFfQ0FSRDExIiwicm5hX0FSSUQxQSIsInJuYV9GQVMiLCJybmFfQ0NSNCIpLCAKICAgICAgICAgICAgICAgICAgcmVkdWN0aW9uID0gJ3dubi51bWFwJywgbWF4LmN1dG9mZiA9IDMsIG5jb2wgPSAzKQogCiBGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmVzID0gYygicm5hX1JIT0EiLCJybmFfVE5GUlNGMUIiKSwKICAgICAgICAgICAgICAgICAgcmVkdWN0aW9uID0gJ3dubi51bWFwJywgbWF4LmN1dG9mZiA9IDIsIAogICAgICAgICAgICAgICAgICBjb2xzID0gYygibGlnaHRncmV5IiwiZGFya2dyZWVuIiksIG5jb2wgPSAzKSAgCiAKIEZlYXR1cmVQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgZmVhdHVyZXMgPSBjKCJybmFfUExTMyIsInJuYV9TVEFUNCIsInJuYV9HQVRBMyIsInJuYV9UUkFJTCIsInJuYV9DRDFEIiksCiAgICAgICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICd3bm4udW1hcCcsIG1heC5jdXRvZmYgPSAyLCAKICAgICAgICAgICAgICAgICAgY29scyA9IGMoImxpZ2h0Z3JleSIsImRhcmtncmVlbiIpLCBuY29sID0gMykgIAogCiBGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmVzID0gYygicm5hX0tJUjNETDIiLCJybmFfTktwNDYiLCJybmFfSUwyUkEiLCJybmFfVE9YIiwicm5hX1NUQVQ1QSIpLAogICAgICAgICAgICAgICAgICByZWR1Y3Rpb24gPSAnd25uLnVtYXAnLCBtYXguY3V0b2ZmID0gMiwgCiAgICAgICAgICAgICAgICAgIGNvbHMgPSBjKCJsaWdodGdyZXkiLCJkYXJrZ3JlZW4iKSwgbmNvbCA9IDMpICAKIAogRmVhdHVyZVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlcyA9IGMoInJuYV9NWUMiLCJybmFfTU5UIiwicm5hX0VQSEE0Iiwicm5hX0ROTTMiLCJybmFfVFdJU1QxIiksCiAgICAgICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICd3bm4udW1hcCcsIG1heC5jdXRvZmYgPSAyLCAKICAgICAgICAgICAgICAgICAgY29scyA9IGMoImxpZ2h0Z3JleSIsImRhcmtncmVlbiIpLCBuY29sID0gMykgIAogCiBGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmVzID0gYygicm5hX1RSQUYyIiwicm5hX1NFTEwiLCJybmFfbWlSMjEiKSwKICAgICAgICAgICAgICAgICAgcmVkdWN0aW9uID0gJ3dubi51bWFwJywgbWF4LmN1dG9mZiA9IDIsIAogICAgICAgICAgICAgICAgICBjb2xzID0gYygibGlnaHRncmV5IiwiZGFya2dyZWVuIiksIG5jb2wgPSAzKSAgCiAKIEZlYXR1cmVQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgZmVhdHVyZXMgPSBjKCJybmFfVFJBRjIiLCJybmFfU0VMTCIsInJuYV9taVIyMSIpLAogICAgICAgICAgICAgICAgICByZWR1Y3Rpb24gPSAnd25uLnVtYXAnLCBtYXguY3V0b2ZmID0gMiwgCiAgICAgICAgICAgICAgICAgIGNvbHMgPSBjKCJsaWdodGdyZXkiLCJkYXJrZ3JlZW4iKSwgbmNvbCA9IDMpCiAKIEZlYXR1cmVQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgZmVhdHVyZXMgPSBjKCJybmFfRkNMMyIsInJuYV9QRENEMSIsInJuYV9DWENMMTMiKSwKICAgICAgICAgICAgICAgICAgcmVkdWN0aW9uID0gJ3dubi51bWFwJywgbWF4LmN1dG9mZiA9IDIsIAogICAgICAgICAgICAgICAgICBjb2xzID0gYygibGlnaHRncmV5IiwiZGFya2dyZWVuIiksIG5jb2wgPSAzKSAgCgpgYGAKYGBge3IgVmlzdWFsaXplNCwgZmlnLmhlaWdodD02LCBmaWcud2lkdGg9MTB9CgogVmxuUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmVzID0gIlNDVC53ZWlnaHQiLCBncm91cC5ieSA9ICdwcmVkaWN0ZWQuY2VsbHR5cGUubDInLCBzb3J0ID0gVFJVRSwgcHQuc2l6ZSA9IDAuMSkgKwogIE5vTGVnZW5kKCkKIFZsblBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlcyA9ICJBRFQud2VpZ2h0IiwgZ3JvdXAuYnkgPSAncHJlZGljdGVkLmNlbGx0eXBlLmwyJywgc29ydCA9IFRSVUUsIHB0LnNpemUgPSAwLjEpICsKICBOb0xlZ2VuZCgpCiAKIHRhYmxlKEFsbF9zYW1wbGVzX01lcmdlZCRwcmVkaWN0ZWQuY2VsbHR5cGUubDIsIEFsbF9zYW1wbGVzX01lcmdlZCR3c25uX3Jlcy4wLjQpCiAKIGNsdXN0cmVlKEFsbF9zYW1wbGVzX01lcmdlZCwgcHJlZml4ID0gIndzbm5fcmVzLiIpCgpgYGAKIyA1LiBTYXZlIHRoZSBTZXVyYXQgb2JqZWN0IGFzIGFuIFJvYmogZmlsZQpgYGB7ciBzYXZlUk9CSn0KCnNhdmUoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmaWxlID0gIi4uLzAtaW1wX09CSl9TUy9BbGxfc2FtcGxlc19NZXJnZWRfV05OX2NvcnJlY3QuUm9iaiIpCgoKYGBgCgoKCgo=