Folder 'Data_and_Output' already exists. No action taken.
Pretest Descriptive Results
table(is.na(fullchoice$pref1)) ### should be all FALSE
FALSE
480
table(fullchoice$block) ### should always be a multiple of 10 and ideally equal
1 2 3 4 5 6 7 8 9 10
40 40 50 50 50 50 50 50 60 40
table(fullchoice$arm)
1 2 3 4
130 120 110 120
<- fullchoice %>% group_by(RID) %>% summarize(n= n())
t
<- fullchoice_raw %>% group_by(RID) %>% summarize(n= n())
t_raw
table(t$n) ### should all be 10, how many choice sets per respondent
10
48
table(fullchoice$pref1) ## How many opt out choices
1 2
282 198
table(data$exit_code) # must be zero
0
48
table(data$status_comp)
finished
48
table(data$status_comp2)
< table of extent 0 >
# Where do we "loose" respondents?
table(raw_data$q1) # Do you want to participate in the survey?
1 2
77 5
table(raw_data$status) # did api call started?
success
75
sum(!is.na(raw_data$q10)) # How many are still there when we ask first attention question?
[1] 68
sum(!is.na(raw_data$q14)) # How many are still there when we ask third attention question?
[1] 64
table(raw_data$status_comp) # Is R studio server calculation done?
finished
64
sum(!is.na(raw_data$q16)) # HNV map question
[1] 64
sum(!is.na(raw_data$q18)) # PA map question
[1] 63
table(t_raw$n) # We loose some respondents after the first choice card
1 2 3 4 8 9 10
5 1 2 1 1 2 51
<- t_raw %>% filter(n==1)
loose_first_cc <- unique(loose_first_cc$RID)
ids_first_cc
<- fullchoice_raw %>% filter(RID %in% ids_first_cc)
loose_first_cc
summary(loose_first_cc$pref1) # DCE display problem? Or do people just drop out?
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
NA NA NA NaN NA NA 5
table(as.factor(loose_first_cc$is_mobile))
true
5
sum(!is.na(raw_data$q27_1_1)) # First question after DCE
[1] 50
Meta data
Mobile device
Quality checks
Randomizations
Socio-demografics
# A tibble: 4 × 3
educ n percentage
<fct> <int> <dbl>
1 Mittlere Reife (Realschulabschluss) 18 37.5
2 Hochschulabschluss (Universität, FH) 14 29.2
3 Abitur 10 20.8
4 Hauptschulabschluss 6 12.5
Attention questions
Access of Additional Information
< table of extent 0 >
1
1
NSG and HNV Distribution
Spatial Distribution
Choice Experiment
Conditional Logit Models
Estimate | s.e. | t.rat.(0) | Rob.s.e. | Rob.t.rat.(0) | |
beta_pa | 0.071 | 0.022 | 3.261 | 0.034 | 2.103 |
beta_hnv | 0.060 | 0.022 | 2.702 | 0.031 | 1.952 |
beta_pa_sq | -0.0001 | 0.0001 | -1.778 | 0.0002 | -0.923 |
beta_hnv_sq | -0.00004 | 0.0001 | -0.593 | 0.0001 | -0.319 |
pa_half_access | 0.002 | 0.109 | 0.020 | 0.103 | 0.021 |
pa_full_access | -0.046 | 0.103 | -0.444 | 0.103 | -0.444 |
hnv_visible | 0.035 | 0.090 | 0.392 | 0.080 | 0.439 |
beta_cost | -0.008 | 0.001 | -10.024 | 0.001 | -7.492 |
Estimate | s.e. | t.rat.(0) | Rob.s.e. | Rob.t.rat.(0) | |
beta_pa | 8.813 | 2.705 | 3.258 | 4.173 | 2.112 |
beta_hnv | 7.489 | 2.712 | 2.761 | 3.803 | 1.969 |
beta_pa_sq | -0.018 | 0.010 | -1.751 | 0.020 | -0.916 |
beta_hnv_sq | -0.005 | 0.008 | -0.588 | 0.016 | -0.317 |
pa_half_access | 0.310 | 13.570 | 0.023 | 12.879 | 0.024 |
pa_full_access | -5.579 | 13.006 | -0.429 | 13.035 | -0.428 |
hnv_visible | 4.501 | 11.215 | 0.401 | 10.044 | 0.448 |
beta_cost | -0.008 | 0.001 | -10.036 | 0.001 | -7.502 |
Estimate | s.e. | t.rat.(0) | Rob.s.e. | Rob.t.rat.(0) | |
beta_pa | 5.418 | 2.775 | 1.952 | 3.981 | 1.361 |
beta_hnv | 4.447 | 2.755 | 1.614 | 3.401 | 1.308 |
beta_pa_sq | -0.016 | 0.009 | -1.741 | 0.018 | -0.906 |
beta_hnv_sq | -0.005 | 0.008 | -0.659 | 0.014 | -0.353 |
pa_half_access | -8.918 | 12.983 | -0.687 | 11.930 | -0.748 |
pa_full_access | -18.082 | 13.079 | -1.383 | 12.678 | -1.426 |
hnv_visible | -2.218 | 10.616 | -0.209 | 9.305 | -0.238 |
beta_cost | -0.009 | 0.001 | -10.152 | 0.001 | -7.720 |
ASC_sq | -39.594 | 15.756 | -2.513 | 17.058 | -2.321 |
Estimate | s.e. | t.rat.(0) | Rob.s.e. | Rob.t.rat.(0) | |
beta_pa200 | 0.379 | 0.138 | 2.753 | 0.138 | 2.738 |
beta_pa300 | 0.355 | 0.145 | 2.444 | 0.122 | 2.911 |
beta_pa500 | 0.272 | 0.139 | 1.960 | 0.149 | 1.819 |
beta_pa800 | 0.425 | 0.129 | 3.299 | 0.119 | 3.577 |
beta_hnv200 | 0.063 | 0.137 | 0.461 | 0.147 | 0.430 |
beta_hnv300 | -0.0005 | 0.137 | -0.003 | 0.146 | -0.003 |
beta_hnv500 | -0.061 | 0.153 | -0.397 | 0.152 | -0.402 |
beta_hnv800 | 0.335 | 0.146 | 2.300 | 0.137 | 2.450 |
pa_half_access | 0.032 | 0.118 | 0.271 | 0.106 | 0.301 |
pa_full_access | -0.002 | 0.122 | -0.016 | 0.118 | -0.017 |
hnv_visible | 0.002 | 0.094 | 0.024 | 0.079 | 0.028 |
beta_cost | -0.008 | 0.001 | -9.836 | 0.001 | -7.361 |
Check Choice Patterns
# Relationship between Attribute Levels and Choices
table((database$pa_att - database$sq_pa_area), database$pref1)
1 2
200 61 36
400 59 35
600 51 41
1000 57 37
1600 54 49
prop.table(table((database$pa_att - database$sq_pa_area), database$pref1), margin = 1)
1 2
200 0.6288660 0.3711340
400 0.6276596 0.3723404
600 0.5543478 0.4456522
1000 0.6063830 0.3936170
1600 0.5242718 0.4757282
table(database$Dummy_pa_half, database$pref1)
1 2
0 189 134
1 93 64
prop.table(table(database$Dummy_pa_half, database$pref1), margin = 1)
1 2
0 0.5851393 0.4148607
1 0.5923567 0.4076433
table(database$Dummy_pa_full, database$pref1)
1 2
0 176 141
1 106 57
prop.table(table(database$Dummy_pa_full, database$pref1), margin = 1)
1 2
0 0.5552050 0.4447950
1 0.6503067 0.3496933
table((database$hnv_att - database$sq_hnv_area), database$pref1)
1 2
200 59 40
400 55 47
600 56 32
1000 58 28
1600 54 51
prop.table(table((database$hnv_att - database$sq_hnv_area), database$pref1), margin = 1)
1 2
200 0.5959596 0.4040404
400 0.5392157 0.4607843
600 0.6363636 0.3636364
1000 0.6744186 0.3255814
1600 0.5142857 0.4857143
table(database$Dummy_hnv_visible, database$pref1)
1 2
0 153 100
1 129 98
prop.table(table(database$Dummy_hnv_visible, database$pref1), margin = 1)
1 2
0 0.6047431 0.3952569
1 0.5682819 0.4317181
table(database$cost_att, database$pref1)
1 2
5 13 43
10 20 40
40 29 29
80 33 19
120 41 12
150 50 21
200 43 17
prop.table(table(database$cost_att, database$pref1), margin = 1)
1 2
5 0.2321429 0.7678571
10 0.3333333 0.6666667
40 0.5000000 0.5000000
80 0.6346154 0.3653846
120 0.7735849 0.2264151
150 0.7042254 0.2957746
200 0.7166667 0.2833333
table((database$hnv_att - database$sq_hnv_area + database$pa_att - database$sq_pa_area), database$pref1)
1 2
400 12 6
600 35 21
800 43 16
1000 25 11
1200 22 19
1400 18 18
1600 15 10
1800 20 21
2000 32 27
2200 18 25
2600 22 16
3200 20 8
prop.table(table((database$hnv_att - database$sq_hnv_area + database$pa_att - database$sq_pa_area), database$pref1), margin=1)
1 2
400 0.6666667 0.3333333
600 0.6250000 0.3750000
800 0.7288136 0.2711864
1000 0.6944444 0.3055556
1200 0.5365854 0.4634146
1400 0.5000000 0.5000000
1600 0.6000000 0.4000000
1800 0.4878049 0.5121951
2000 0.5423729 0.4576271
2200 0.4186047 0.5813953
2600 0.5789474 0.4210526
3200 0.7142857 0.2857143
# Has radius an impact?
table(database$radius, database$pref1)
1 2
15000 67 43
20000 60 50
25000 41 39
30000 114 66
prop.table(table(database$radius, database$pref1), margin = 1)
1 2
15000 0.6090909 0.3909091
20000 0.5454545 0.4545455
25000 0.5125000 0.4875000
30000 0.6333333 0.3666667
# Has DCE order an impact?
table(database$dce_version, database$pref1)
1 2
3 116 114
4 166 84
prop.table(table(database$dce_version, database$pref1), margin = 1)
1 2
3 0.5043478 0.4956522
4 0.6640000 0.3360000
# Check if it is a recoding issue
table(database$dce_version, database$pref1, database$cost_att)
, , = 5
1 2
3 2 21
4 11 22
, , = 10
1 2
3 12 24
4 8 16
, , = 40
1 2
3 18 13
4 11 16
, , = 80
1 2
3 12 10
4 21 9
, , = 120
1 2
3 18 6
4 23 6
, , = 150
1 2
3 17 15
4 33 6
, , = 200
1 2
3 18 13
4 25 4
# Has the order of attributes an impact?
table(database$order, database$pref1)
1 2
1,2,3,4,5 67 63
3,4,1,2,5 103 57
5,1,2,3,4 54 46
5,3,4,1,2 58 32
prop.table(table(database$order, database$pref1), margin = 1)
1 2
1,2,3,4,5 0.5153846 0.4846154
3,4,1,2,5 0.6437500 0.3562500
5,1,2,3,4 0.5400000 0.4600000
5,3,4,1,2 0.6444444 0.3555556
# Do correct responses have an impact?
table(database$corr_all, database$pref1)
1 2
0 238 162
1 44 36
prop.table(table(database$corr_all, database$pref1), margin = 1)
1 2
0 0.595 0.405
1 0.550 0.450
#Does length of payment have an impact
table(database$arm, database$pref1)
1 2
1 86 44
2 62 58
3 56 54
4 78 42
prop.table(table(database$arm, database$pref1), margin = 1)
1 2
1 0.6615385 0.3384615
2 0.5166667 0.4833333
3 0.5090909 0.4909091
4 0.6500000 0.3500000
Protester
CV
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.0 12.5 30.0 852.6 80.0 25000.0 17
Comments