barplot(apply(data,1,mean))#按行做均值条形图
多元数据直观表示
各省消费项目均值条形图
省份过多,各省的名称均不能全部显示
将横轴左边旋转90度,各省的名称均可显示
barplot(apply(data,1,mean),las=3)#按行做均值条形图
利用ggplot2包作图较为美观
%>%
data mutate(Average_Consumption = rowMeans(select(., -1), na.rm = TRUE)) %>%
ggplot(aes(x = reorder(row.names(data), -Average_Consumption), y = Average_Consumption)) +
geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = "steelblue") +
labs(title = "各省消费项目均值条形图", x = "", y = "均值") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
各消费项目均值条形图
按消费项目做均值图条形图
barplot(apply(data,2,mean))#按列做均值图条形图
对不同项目的条形添加不同颜色
barplot(apply(data,2,mean),col=1:8) #按列做彩色均值图条形图
去掉食品列后的数据按列做均值条形图
barplot(apply(data[,2:8],2,mean))
按消费项目做中位数条形图
barplot(apply(data,2,median))
利用ggplot作均值条形图
%>% summarise(across(everything(), mean, na.rm = TRUE)) %>%
data pivot_longer(cols = everything(), names_to = "Consumption_Type", values_to = "Average") %>%
mutate(
Consumption_Type=factor(Consumption_Type,level=c('食品','衣着','设备','医疗','交通','教育','居住','杂项')),
%>%
) ggplot(aes(x = Consumption_Type, y = Average, fill = Consumption_Type)) +
geom_bar(stat = "identity", position = position_dodge(), colour = "black") +
theme_minimal() +
labs(title = "各消费项目均值条形图", x = "类别", y = "均值",fill = "消费种类")
Warning: There was 1 warning in `summarise()`.
ℹ In argument: `across(everything(), mean, na.rm = TRUE)`.
Caused by warning:
! The `...` argument of `across()` is deprecated as of dplyr 1.1.0.
Supply arguments directly to `.fns` through an anonymous function instead.
# Previously
across(a:b, mean, na.rm = TRUE)
# Now
across(a:b, \(x) mean(x, na.rm = TRUE))
使各条形的颜色相同
%>% summarise(across(everything(), mean, na.rm = TRUE)) %>%
data pivot_longer(cols = everything(), names_to = "Consumption_Type", values_to = "Average") %>%
mutate(
Consumption_Type=factor(Consumption_Type,level=c('食品','衣着','设备','医疗','交通','教育','居住','杂项')),
%>%
) ggplot(aes(x = Consumption_Type, y = Average)) +
geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = "steelblue") +
theme_minimal() +
labs(title = "各消费项目均值条形图", x = "类别", y = "均值")
各消费项目箱线图
boxplot函数直接作箱线图,默认每个变量(列)作一个箱线,并将全部变量的箱线在同一个图中展示。
boxplot(data)#按列做箱线图
boxplot(data,horizontal=T,las=1)#箱线图中图形按水平放置
利用ggplot函数作箱线图,需要对数据转化为长结果数据
%>% pivot_longer(cols = 1:8, names_to = "Consumption_Type", values_to = "Value") %>%
data mutate(
Consumption_Type=factor(Consumption_Type,level=c('食品','衣着','设备','医疗','交通','教育','居住','杂项')),
%>%
) ggplot(aes(x = Consumption_Type, y = Value)) +
geom_boxplot() +
labs(title = "各消费项目箱线图", x = "", y = "消费水平") +
theme_minimal() # + coord_flip()
各消费项目星相图
下图图形没有图例且部分图形的比例较小,看不到其各种变量所占比例
stars(data) #具有图例的360度星相图
下图则有图例,可以清楚知道各省份的消费变量是什么
stars(data,key.loc=c(17,7)) #具有图例的360度星相图
此图为180度的星相图
stars(data,full=F,key.loc=c(17,7)) #具有图例的180度星相图
此图为加了颜色分辨的星相图,可以清楚看出各省份的消费变量占比
stars(data,draw.segments=T,key.loc=c(17,7))#具有图例的360度彩色圆形星相图
stars(data,full=F,draw.segments=T,key.loc=c(17,7))#具有图例的180度彩色圆形星相图
各消费项目脸谱图
下图为利用脸谱图显示各省份的消费分布图
::faces(data) aplpack
effect of variables:
modified item Var
"height of face " "食品"
"width of face " "衣着"
"structure of face" "设备"
"height of mouth " "医疗"
"width of mouth " "交通"
"smiling " "教育"
"height of eyes " "居住"
"width of eyes " "杂项"
"height of hair " "食品"
"width of hair " "衣着"
"style of hair " "设备"
"height of nose " "医疗"
"width of nose " "交通"
"width of ear " "教育"
"height of ear " "居住"
下图则整理了顺序
::faces(data[,2:8],ncol.plot=7)#去掉第一个变量按每行7个做脸谱图 aplpack
effect of variables:
modified item Var
"height of face " "衣着"
"width of face " "设备"
"structure of face" "医疗"
"height of mouth " "交通"
"width of mouth " "教育"
"smiling " "居住"
"height of eyes " "杂项"
"width of eyes " "衣着"
"height of hair " "设备"
"width of hair " "医疗"
"style of hair " "交通"
"height of nose " "教育"
"width of nose " "居住"
"width of ear " "杂项"
"height of ear " "衣着"
下图挑选了六省份的消费分布图
::faces(data[c(1,9,19,28,29,30),])#选择第1,9,19,28,29,30个观测的多元数据做脸谱图 aplpack
effect of variables:
modified item Var
"height of face " "食品"
"width of face " "衣着"
"structure of face" "设备"
"height of mouth " "医疗"
"width of mouth " "交通"
"smiling " "教育"
"height of eyes " "居住"
"width of eyes " "杂项"
"height of hair " "食品"
"width of hair " "衣着"
"style of hair " "设备"
"height of nose " "医疗"
"width of nose " "交通"
"width of ear " "教育"
"height of ear " "居住"
各消费项目雷达图
ggplot2的扩展包ggiraphExtra能作雷达图
c(1,9,19,28,29,30),] %>%
data[mutate(省份=rownames(.)) %>%
ggRadar(aes(group = 省份))
各消费项目调和曲线图
下图为所有省份的消费调和曲线图
source("msaR.R")#加自定义函数
msa.andrews(data)#绘制调和曲线图
下图为筛选出来的六个省份曲线图
msa.andrews(data[c(1,9,19,28,29,30),])
下图为全部省份的调和曲线图,该图的部分曲线过于密集,不便于观察
library(andrews)
Warning: package 'andrews' was built under R version 4.3.3
See the package vignette with `vignette("andrews")`
andrews(data,clr=5,ymax=6)
选择第1,9,19,28,29,30个观测的多元数据做调和曲线图,下图则更为清晰的显示出所选六个省份的曲线,其中
andrews(data[c(1,9,19,28,29,30),],clr=5,ymax=6)