# data input 
investment <- c(50, 55, 60, 65, 70, 75, 80, 85, 90, 95)
output <- c(200, 220, 230, 240, 260, 270, 280, 300, 310, 320)
investment
##  [1] 50 55 60 65 70 75 80 85 90 95
output
##  [1] 200 220 230 240 260 270 280 300 310 320
#Membuat Data Frame
data <- data.frame(investment, output)
data
##    investment output
## 1          50    200
## 2          55    220
## 3          60    230
## 4          65    240
## 5          70    260
## 6          75    270
## 7          80    280
## 8          85    300
## 9          90    310
## 10         95    320
print(data)
##    investment output
## 1          50    200
## 2          55    220
## 3          60    230
## 4          65    240
## 5          70    260
## 6          75    270
## 7          80    280
## 8          85    300
## 9          90    310
## 10         95    320
# Model Regresi Linear Berganda
model <- lm(output ~ investment, data=data)
#summary Model
#summary(model)
##
## Call:
## lm(formula = output ~ investment, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2727 -2.8636 0.2727 2.7273 3.8182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 70.54545 5.02802 14.03 6.46e-07 ***
## investment 2.65455 0.06803 39.02 2.05e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0
.1 ' ' 1
##
## Residual standard error: 3.09 on 8 degrees of freedom
## Multiple R-squared: 0.9948, Adjusted R-squared: 0.99
41
## F-statistic: 1523 on 1 and 8 DF, p-value: 2.045e-10
#Plot Data dan Garis Regresi
plot(data$investment, data$output,
xlab = "Investment (Juta Dolar)",
ylab = "Output (Juta Unit)",
main = "Regresi Linear antara Investasi dan Output I
ndustri")
abline(model, col="blue", lwd=2)