Question 1 rename():

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)

movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
movies2  <- movies %>%
  rename(movie_title = Film, release_year = Year)
print(head(movies2))
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

Question 2 select():

movies3 <- movies2 %>%
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`)
print(head(movies3))
## # A tibble: 6 × 5
##   movie_title               release_year Genre Profitability `Rotten Tomatoes %`
##   <chr>                            <dbl> <chr>         <dbl>               <dbl>
## 1 Zack and Miri Make a Por…         2008 Roma…          1.75                  64
## 2 Youth in Revolt                   2010 Come…          1.09                  68
## 3 You Will Meet a Tall Dar…         2010 Come…          1.21                  43
## 4 When in Rome                      2010 Come…          0                     15
## 5 What Happens in Vegas             2008 Come…          6.27                  28
## 6 Water For Elephants               2011 Drama          3.08                  60

Question 3 filter():

movies4 <- movies3 %>%
  filter(release_year >= 2000 & `Rotten Tomatoes %` >= 80 )
print(head(movies4))
## # A tibble: 6 × 5
##   movie_title            release_year Genre    Profitability `Rotten Tomatoes %`
##   <chr>                         <dbl> <chr>            <dbl>               <dbl>
## 1 WALL-E                         2008 Animati…         2.90                   96
## 2 Waitress                       2007 Romance         11.1                    89
## 3 Tangled                        2010 Animati…         1.37                   89
## 4 Rachel Getting Married         2008 Drama            1.38                   85
## 5 My Week with Marilyn           2011 Drama            0.826                  83
## 6 Midnight in Paris              2011 Romence          8.74                   93

Question 4 mutate():

movies4 <- movies4 %>%
  mutate(Profitability_millions = Profitability * 1000000)
print(head(movies4))
## # A tibble: 6 × 6
##   movie_title            release_year Genre    Profitability `Rotten Tomatoes %`
##   <chr>                         <dbl> <chr>            <dbl>               <dbl>
## 1 WALL-E                         2008 Animati…         2.90                   96
## 2 Waitress                       2007 Romance         11.1                    89
## 3 Tangled                        2010 Animati…         1.37                   89
## 4 Rachel Getting Married         2008 Drama            1.38                   85
## 5 My Week with Marilyn           2011 Drama            0.826                  83
## 6 Midnight in Paris              2011 Romence          8.74                   93
## # ℹ 1 more variable: Profitability_millions <dbl>

Question 5 arrange():

movies5 <- movies4 %>% 
  arrange(desc('Rotten Tomatoes %') , desc(Profitability_millions))
print(head(movies5))
## # A tibble: 6 × 6
##   movie_title          release_year Genre   Profitability `Rotten Tomatoes %`
##   <chr>                       <dbl> <chr>           <dbl>               <dbl>
## 1 Waitress                     2007 Romance         11.1                   89
## 2 Midnight in Paris            2011 Romence          8.74                  93
## 3 (500) Days of Summer         2009 comedy           8.10                  87
## 4 Knocked Up                   2007 Comedy           6.64                  91
## 5 Beginners                    2011 Comedy           4.47                  84
## 6 A Serious Man                2009 Drama            4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

Question 6 Combining functions:

moviesfinal <- movies %>%
  rename(movie_title = Film, release_year = Year) %>%
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>%
  filter(release_year >= 2000 & `Rotten Tomatoes %` >= 80 ) %>%
  mutate(Profitability_millions = Profitability * 1000000) %>%
  arrange(desc('Rotten Tomatoes %') , desc(Profitability_millions))
print(head(moviesfinal))
## # A tibble: 6 × 6
##   movie_title          release_year Genre   Profitability `Rotten Tomatoes %`
##   <chr>                       <dbl> <chr>           <dbl>               <dbl>
## 1 Waitress                     2007 Romance         11.1                   89
## 2 Midnight in Paris            2011 Romence          8.74                  93
## 3 (500) Days of Summer         2009 comedy           8.10                  87
## 4 Knocked Up                   2007 Comedy           6.64                  91
## 5 Beginners                    2011 Comedy           4.47                  84
## 6 A Serious Man                2009 Drama            4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

Question 7 Interpret question 6

From the resulting data the best movies tend to be the most popular. The top six results consist of drama, romance, and comedy movies which all have rotten tomato scores in the high 80s or the 90s(besides one outlier). All of these movies also have very impressive profitability numbers which range from four million to eleven million.