1. load libraries
2. Load Seurat Object
load("/home/bioinfo/Cluster_to_Computer_Transfer_files_folder/All_Normal-PBMC_Abnormal-cellLines_T_cells_Merged_Annotated_UMAP_on_Clusters_to_USE.Robj")
All_samples_Merged
An object of class Seurat
62625 features across 46976 samples within 6 assays
Active assay: SCT (25901 features, 3000 variable features)
3 layers present: counts, data, scale.data
5 other assays present: RNA, ADT, prediction.score.celltype.l1, prediction.score.celltype.l2, prediction.score.celltype.l3
4 dimensional reductions calculated: pca, umap, integrated_dr, ref.umap
DimPlot(All_samples_Merged,group.by = "cell_line",
reduction = "umap",
label.size = 3,
repel = T,
label = T)

DimPlot(All_samples_Merged,
group.by = "SCT_snn_res.0.9",
reduction = "umap",
label.size = 3,
repel = T,
label = T)

cluster_table <- table(Idents(All_samples_Merged))
DimPlot(All_samples_Merged, group.by = "predicted.celltype.l2",
reduction = "umap",
label.size = 3,
repel = T,
label = T)

library(clustree)
Loading required package: ggraph
Attaching package: 'ggraph'
The following object is masked from 'package:sp':
geometry
clustree(All_samples_Merged, prefix = "SCT_snn_res.")

DimPlot(All_samples_Merged, group.by = "predicted.celltype.l1",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)

DimPlot(All_samples_Merged, group.by = "predicted.celltype.l1",
reduction = "umap",
label.size = 3,
repel = T,
label = F)

DimPlot(All_samples_Merged, group.by = "predicted.celltype.l2",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)

DimPlot(All_samples_Merged, group.by = "predicted.celltype.l2",
reduction = "umap",
label.size = 3,
repel = T,
label = F)

DimPlot(All_samples_Merged, group.by = "predicted.celltype.l2",
reduction = "umap",
label.size = 3,
repel = T,
label = T, label.box = T)

table(All_samples_Merged$predicted.celltype.l2, All_samples_Merged$SCT_snn_res.0.9)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
CD4 CTL 0 0 0 0 0 0 2 0 4 0 0 0 0 0 0 0 0 0 0
CD4 Naive 0 0 0 0 0 0 595 0 100 0 0 1 0 0 0 0 6 0 4
CD4 Proliferating 5124 5231 3823 2401 1748 2535 0 2547 0 1263 1329 20 1327 598 41 237 0 154 1
CD4 TCM 978 158 501 1366 21 24 2170 22 1892 266 585 1859 41 111 406 57 235 35 61
CD4 TEM 0 0 0 8 0 0 19 0 27 0 0 15 0 0 0 0 0 0 0
CD8 Naive 6 0 2 0 0 0 304 0 61 0 19 0 1 3 2 0 12 0 3
CD8 TCM 0 0 0 76 0 0 115 0 137 10 0 72 0 0 0 0 2 0 1
CD8 TEM 0 0 0 0 0 0 27 0 182 8 0 0 0 0 0 0 0 0 0
cDC2 9 0 155 0 0 23 0 5 1 0 67 0 9 43 0 22 0 2 0
dnT 1 0 0 2 2 0 4 0 33 0 0 0 0 0 0 7 11 0 1
gdT 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0
HSPC 167 8 285 1 0 744 1 652 1 1 12 8 401 43 1 26 0 6 0
ILC 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
MAIT 0 0 0 0 0 0 4 0 50 0 0 0 0 0 0 0 2 0 0
NK 0 0 0 0 0 0 0 0 91 0 0 0 0 0 0 0 0 0 1
NK Proliferating 7 11 162 20 1971 4 0 4 0 644 10 0 0 0 0 31 0 0 0
Treg 11 0 2 1 0 0 50 0 103 0 0 0 0 1 0 20 12 0 5
3. Data PREPERATION
DefaultAssay(All_samples_Merged) <- 'ADT'
VariableFeatures(All_samples_Merged) <- rownames(All_samples_Merged[["ADT"]])
# we will use all ADT features for dimensional reduction
# we set a dimensional reduction name to avoid overwriting the
All_samples_Merged <- NormalizeData(All_samples_Merged, normalization.method = 'CLR', margin = 2) %>%
ScaleData() %>% RunPCA(reduction.name = 'apca', npcs =28, maxit = 5000)
Normalizing across cells
| | 0 % ~calculating
|+ | 1 % ~00s
|+ | 2 % ~00s
|++ | 3 % ~00s
|++ | 4 % ~00s
|+++ | 5 % ~00s
|+++ | 6 % ~00s
|++++ | 7 % ~00s
|++++ | 8 % ~00s
|+++++ | 9 % ~00s
|+++++ | 10% ~00s
|++++++ | 11% ~00s
|++++++ | 12% ~00s
|+++++++ | 13% ~00s
|+++++++ | 14% ~00s
|++++++++ | 15% ~00s
|++++++++ | 16% ~00s
|+++++++++ | 17% ~00s
|+++++++++ | 18% ~00s
|++++++++++ | 19% ~00s
|++++++++++ | 20% ~00s
|+++++++++++ | 21% ~00s
|+++++++++++ | 22% ~00s
|++++++++++++ | 23% ~00s
|++++++++++++ | 24% ~00s
|+++++++++++++ | 25% ~00s
|+++++++++++++ | 26% ~00s
|++++++++++++++ | 27% ~00s
|++++++++++++++ | 28% ~00s
|+++++++++++++++ | 29% ~00s
|+++++++++++++++ | 30% ~00s
|++++++++++++++++ | 31% ~00s
|++++++++++++++++ | 32% ~00s
|+++++++++++++++++ | 33% ~00s
|+++++++++++++++++ | 34% ~00s
|++++++++++++++++++ | 35% ~00s
|++++++++++++++++++ | 36% ~00s
|+++++++++++++++++++ | 37% ~00s
|+++++++++++++++++++ | 38% ~00s
|++++++++++++++++++++ | 39% ~00s
|++++++++++++++++++++ | 40% ~00s
|+++++++++++++++++++++ | 41% ~00s
|+++++++++++++++++++++ | 42% ~00s
|++++++++++++++++++++++ | 43% ~00s
|++++++++++++++++++++++ | 44% ~00s
|+++++++++++++++++++++++ | 45% ~00s
|+++++++++++++++++++++++ | 46% ~00s
|++++++++++++++++++++++++ | 47% ~00s
|++++++++++++++++++++++++ | 48% ~00s
|+++++++++++++++++++++++++ | 49% ~00s
|+++++++++++++++++++++++++ | 50% ~00s
|++++++++++++++++++++++++++ | 51% ~00s
|++++++++++++++++++++++++++ | 52% ~00s
|+++++++++++++++++++++++++++ | 53% ~00s
|+++++++++++++++++++++++++++ | 54% ~00s
|++++++++++++++++++++++++++++ | 55% ~00s
|++++++++++++++++++++++++++++ | 56% ~00s
|+++++++++++++++++++++++++++++ | 57% ~00s
|+++++++++++++++++++++++++++++ | 58% ~00s
|++++++++++++++++++++++++++++++ | 59% ~00s
|++++++++++++++++++++++++++++++ | 60% ~00s
|+++++++++++++++++++++++++++++++ | 61% ~00s
|+++++++++++++++++++++++++++++++ | 62% ~00s
|++++++++++++++++++++++++++++++++ | 63% ~00s
|++++++++++++++++++++++++++++++++ | 64% ~00s
|+++++++++++++++++++++++++++++++++ | 65% ~00s
|+++++++++++++++++++++++++++++++++ | 66% ~00s
|++++++++++++++++++++++++++++++++++ | 67% ~00s
|++++++++++++++++++++++++++++++++++ | 68% ~00s
|+++++++++++++++++++++++++++++++++++ | 69% ~00s
|+++++++++++++++++++++++++++++++++++ | 70% ~00s
|++++++++++++++++++++++++++++++++++++ | 71% ~00s
|++++++++++++++++++++++++++++++++++++ | 72% ~00s
|+++++++++++++++++++++++++++++++++++++ | 73% ~00s
|+++++++++++++++++++++++++++++++++++++ | 74% ~00s
|++++++++++++++++++++++++++++++++++++++ | 75% ~00s
|++++++++++++++++++++++++++++++++++++++ | 76% ~00s
|+++++++++++++++++++++++++++++++++++++++ | 77% ~00s
|+++++++++++++++++++++++++++++++++++++++ | 78% ~00s
|++++++++++++++++++++++++++++++++++++++++ | 79% ~00s
|++++++++++++++++++++++++++++++++++++++++ | 80% ~00s
|+++++++++++++++++++++++++++++++++++++++++ | 81% ~00s
|+++++++++++++++++++++++++++++++++++++++++ | 82% ~00s
|++++++++++++++++++++++++++++++++++++++++++ | 83% ~00s
|++++++++++++++++++++++++++++++++++++++++++ | 84% ~00s
|+++++++++++++++++++++++++++++++++++++++++++ | 85% ~00s
|+++++++++++++++++++++++++++++++++++++++++++ | 86% ~00s
|++++++++++++++++++++++++++++++++++++++++++++ | 87% ~00s
|++++++++++++++++++++++++++++++++++++++++++++ | 88% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++ | 89% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++ | 90% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++ | 91% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++ | 92% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++++ | 93% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++++ | 94% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++++ | 95% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++++ | 96% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++++++ | 97% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++++++ | 98% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++++++| 99% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=00s
Centering and scaling data matrix
|
| | 0%
|
|==========================================================================================================================| 100%
Warning: You're computing too large a percentage of total singular values, use a standard svd instead.Warning: Requested number is larger than the number of available items (28). Setting to 28.Warning: Requested number is larger than the number of available items (28). Setting to 28.Warning: Requested number is larger than the number of available items (28). Setting to 28.Warning: Requested number is larger than the number of available items (28). Setting to 28.Warning: Requested number is larger than the number of available items (28). Setting to 28.PC_ 1
Positive: CD5, CD274, TCRab, CD7, CD3, CD28, CD45RO, CD26, CD44, CD62L
CXCR3, CD127, CD45, CCR8
Negative: CD25, CD30, CD2, CD95, CD45RA, CD4, CCR6, CCR4, CXCR4, CD40
CD19, CCR7, PD1, CCR10
PC_ 2
Positive: CD45, CD44, CD45RO, CD4, CD3, CD40, CCR4, CD45RA, CD26, CD95
CD2, CD5, CD62L, CD28
Negative: CD127, CD19, PD1, CCR7, CCR10, CXCR3, CCR8, CCR6, CD7, CD274
CD30, CXCR4, CD25, TCRab
PC_ 3
Positive: CD62L, TCRab, CD28, CD3, CD4, CXCR4, CCR7, CD45RA, CD127, CD5
PD1, CCR4, CD95, CD2
Negative: CD26, CXCR3, CD45RO, CD274, CD40, CD44, CCR10, CCR6, CD7, CD30
CD19, CD25, CD45, CCR8
PC_ 4
Positive: CCR4, CD5, CD274, CD4, CD30, CCR6, CD44, CD28, CD25, CD45RA
CD19, CCR10, CXCR3, PD1
Negative: CD40, CD45, CD2, CD62L, CD7, CD26, CXCR4, CCR7, CD127, CD95
CD45RO, CCR8, CD3, TCRab
PC_ 5
Positive: CD45RO, CD28, CCR8, CD26, CCR4, PD1, CD4, CCR10, CD40, CD127
CD19, TCRab, CD2, CCR7
Negative: CD7, CD45RA, CD5, CD44, CCR6, CXCR3, CXCR4, CD274, CD62L, CD30
CD3, CD95, CD45, CD25
Warning: Key 'PC_' taken, using 'apca_' instead
# Identify multimodal neighbors. These will be stored in the neighbors slot,
# and can be accessed using bm[['weighted.nn']]
# The WNN graph can be accessed at bm[["wknn"]],
# and the SNN graph used for clustering at bm[["wsnn"]]
# Cell-specific modality weights can be accessed at bm$RNA.weight
All_samples_Merged <- FindMultiModalNeighbors(
All_samples_Merged, reduction.list = list("pca", "apca"),
dims.list = list(1:20, 1:18), modality.weight.name = "RNA.weight"
)
Calculating cell-specific modality weights
Finding 20 nearest neighbors for each modality.
| | 0 % ~calculating
|+++++++++++++++++++++++++ | 50% ~08s
|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=17s
Calculating kernel bandwidths
| | 0 % ~calculating
|+++++++++++++++++++++++++ | 50% ~01s
|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=02s
Warning: The number of provided modality.weight.name is not equal to the number of modalities. SCT.weight ADT.weight are used to store the modality weightsFinding multimodal neighbors
| | 0 % ~calculating
|+++++++++++++++++++++++++ | 50% ~29s
|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=01m 01s
| | 0 % ~calculating
|+++++++++++++++++++++++++ | 50% ~01s
|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=02s
Constructing multimodal KNN graph
Constructing multimodal SNN graph
4. Visualization RNA+ADT
All_samples_Merged <- RunUMAP(All_samples_Merged, nn.name = "weighted.nn", reduction.name = "wnn.umap", reduction.key = "wnnUMAP_")
Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session17:46:04 UMAP embedding parameters a = 0.9922 b = 1.112
17:46:04 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 20
17:46:06 Initializing from normalized Laplacian + noise (using RSpectra)
17:46:09 Commencing optimization for 200 epochs, with 1470228 positive edges
Using method 'umap'
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
17:46:26 Optimization finished
All_samples_Merged <- FindClusters(All_samples_Merged, graph.name = "wsnn", algorithm = 3, resolution = 0.9, verbose = FALSE)
p1 <- DimPlot(All_samples_Merged, reduction = 'wnn.umap', label = TRUE, repel = TRUE, label.size = 2.5) + NoLegend()
p2 <- DimPlot(All_samples_Merged, reduction = 'wnn.umap', group.by = 'predicted.celltype.l2', label = TRUE, repel = TRUE, label.size = 2.5) + NoLegend()
p1 + p2

DimPlot(All_samples_Merged, reduction = 'wnn.umap', group.by = "cell_line",label = TRUE, repel = TRUE, label.size = 2.5)

DimPlot(All_samples_Merged, reduction = 'wnn.umap', label = TRUE, repel = TRUE, label.size = 2.5)

DimPlot(All_samples_Merged, reduction = 'wnn.umap', group.by = 'predicted.celltype.l2', label = TRUE, repel = TRUE, label.size = 2.5)

All_samples_Merged <- RunUMAP(All_samples_Merged, reduction = 'pca', dims = 1:30, assay = 'RNA',
reduction.name = 'rna.umap', reduction.key = 'rnaUMAP_')
17:46:59 UMAP embedding parameters a = 0.9922 b = 1.112
17:46:59 Read 46976 rows and found 30 numeric columns
17:46:59 Using Annoy for neighbor search, n_neighbors = 30
17:46:59 Building Annoy index with metric = cosine, n_trees = 50
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
17:47:03 Writing NN index file to temp file /tmp/Rtmp5U7myn/filecd834167b5c1
17:47:03 Searching Annoy index using 1 thread, search_k = 3000
17:47:13 Annoy recall = 100%
17:47:14 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
17:47:16 Initializing from normalized Laplacian + noise (using RSpectra)
17:47:23 Commencing optimization for 200 epochs, with 2014172 positive edges
Using method 'umap'
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
17:47:39 Optimization finished
All_samples_Merged <- RunUMAP(All_samples_Merged, reduction = 'apca', dims = 1:18, assay = 'ADT',
reduction.name = 'adt.umap', reduction.key = 'adtUMAP_')
17:47:40 UMAP embedding parameters a = 0.9922 b = 1.112
17:47:40 Read 46976 rows and found 18 numeric columns
17:47:40 Using Annoy for neighbor search, n_neighbors = 30
17:47:40 Building Annoy index with metric = cosine, n_trees = 50
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
17:47:43 Writing NN index file to temp file /tmp/Rtmp5U7myn/filecd831fbd05d3
17:47:43 Searching Annoy index using 1 thread, search_k = 3000
17:47:55 Annoy recall = 100%
17:47:56 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30
17:47:58 Initializing from normalized Laplacian + noise (using RSpectra)
17:47:59 Commencing optimization for 200 epochs, with 2051920 positive edges
Using method 'umap'
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
17:48:15 Optimization finished
p3 <- DimPlot(All_samples_Merged, reduction = 'rna.umap', group.by = 'predicted.celltype.l2', label = TRUE,
repel = TRUE, label.size = 2.5) + NoLegend()
p4 <- DimPlot(All_samples_Merged, reduction = 'adt.umap', group.by = 'predicted.celltype.l2', label = TRUE,
repel = TRUE, label.size = 2.5) + NoLegend()
p3 + p4

DimPlot(All_samples_Merged, reduction = 'rna.umap', group.by = "cell_line",label = TRUE, repel = TRUE, label.size = 2.5)

DimPlot(All_samples_Merged, reduction = 'rna.umap', group.by = 'predicted.celltype.l2', label = TRUE,
repel = TRUE, label.size = 2.5)

DimPlot(All_samples_Merged, reduction = 'adt.umap', group.by = "cell_line",label = TRUE, repel = TRUE, label.size = 2.5)

DimPlot(All_samples_Merged, reduction = 'adt.umap', group.by = 'predicted.celltype.l2', label = TRUE,
repel = TRUE, label.size = 2.5) + NoLegend()

p5 <- FeaturePlot(All_samples_Merged, features = c("adt_CD45RA","adt_CD45RO","adt_CD90"),
reduction = 'wnn.umap', max.cutoff = 2,
cols = c("lightgrey","darkgreen"), ncol = 3)
Warning: The following features could not be found adt_CD90Warning: The following requested variables were not found: adt_CD90
p6 <- FeaturePlot(All_samples_Merged, features = c("rna_TRDC","rna_MPO","rna_AVP"),
reduction = 'wnn.umap', max.cutoff = 3, ncol = 3)
p5 / p6

VlnPlot(All_samples_Merged, features = "SCT.weight", group.by = 'predicted.celltype.l2', sort = TRUE, pt.size = 0.1) +
NoLegend()

VlnPlot(All_samples_Merged, features = "ADT.weight", group.by = 'predicted.celltype.l2', sort = TRUE, pt.size = 0.1) +
NoLegend()

5. Save the Seurat object as an Robj file
save(All_samples_Merged, file = "../0-imp_OBJ_SS/All_samples_Merged_WNN_correct.Robj")
LS0tCnRpdGxlOiAiV05OIGFuYWx5c2lzIG9mIENJVEUtc2VxLCBSTkEgKyBBRFQiCmF1dGhvcjogTmFzaXIgTWFobW9vZCBBYmJhc2kKZGF0ZTogImByIFN5cy5EYXRlKClgIgpvdXRwdXQ6CiAgI3JtZGZvcm1hdHM6OnJlYWR0aGVkb3duCiAgaHRtbF9ub3RlYm9vazoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICB0b2NfY29sbGFwc2VkOiB0cnVlCi0tLQoKIyAxLiBsb2FkIGxpYnJhcmllcwpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0KbGlicmFyeShTZXVyYXQpCmxpYnJhcnkoU2V1cmF0T2JqZWN0KQpsaWJyYXJ5KFNldXJhdERhdGEpCmxpYnJhcnkocGF0Y2h3b3JrKQpsaWJyYXJ5KGhhcm1vbnkpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShjb3dwbG90KQpsaWJyYXJ5KHJldGljdWxhdGUpCmxpYnJhcnkoQXppbXV0aCkKbGlicmFyeShkcGx5cikKbGlicmFyeShSdHNuZSkKbGlicmFyeShoYXJtb255KQpsaWJyYXJ5KGdyaWRFeHRyYSkKYGBgCgojIDIuIExvYWQgU2V1cmF0IE9iamVjdCAKYGBge3IgbG9hZF9zZXVyYXR9CgogbG9hZCgiL2hvbWUvYmlvaW5mby9DbHVzdGVyX3RvX0NvbXB1dGVyX1RyYW5zZmVyX2ZpbGVzX2ZvbGRlci9BbGxfTm9ybWFsLVBCTUNfQWJub3JtYWwtY2VsbExpbmVzX1RfY2VsbHNfTWVyZ2VkX0Fubm90YXRlZF9VTUFQX29uX0NsdXN0ZXJzX3RvX1VTRS5Sb2JqIikKIAogIEFsbF9zYW1wbGVzX01lcmdlZAoKICAKICBEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCxncm91cC5ieSA9ICJjZWxsX2xpbmUiLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gVCkKCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLAogICAgICAgIGdyb3VwLmJ5ID0gIlNDVF9zbm5fcmVzLjAuOSIsIAogICAgICAgIHJlZHVjdGlvbiA9ICJ1bWFwIiwKICAgICAgICBsYWJlbC5zaXplID0gMywKICAgICAgICByZXBlbCA9IFQsCiAgICAgICAgbGFiZWwgPSBUKQoKY2x1c3Rlcl90YWJsZSA8LSB0YWJsZShJZGVudHMoQWxsX3NhbXBsZXNfTWVyZ2VkKSkKCgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgZ3JvdXAuYnkgPSAicHJlZGljdGVkLmNlbGx0eXBlLmwyIiwgCiAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLAogICAgICAgIGxhYmVsLnNpemUgPSAzLAogICAgICAgIHJlcGVsID0gVCwKICAgICAgICBsYWJlbCA9IFQpCgpsaWJyYXJ5KGNsdXN0cmVlKQpjbHVzdHJlZShBbGxfc2FtcGxlc19NZXJnZWQsIHByZWZpeCA9ICJTQ1Rfc25uX3Jlcy4iKQoKCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDEiLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gVCwgbGFiZWwuYm94ID0gVCkKCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDEiLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gRikKCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gVCwgbGFiZWwuYm94ID0gVCkKCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiLCAKICAgICAgICByZWR1Y3Rpb24gPSAidW1hcCIsCiAgICAgICAgbGFiZWwuc2l6ZSA9IDMsCiAgICAgICAgcmVwZWwgPSBULAogICAgICAgIGxhYmVsID0gRikKCgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgZ3JvdXAuYnkgPSAicHJlZGljdGVkLmNlbGx0eXBlLmwyIiwgCiAgICAgICAgcmVkdWN0aW9uID0gInVtYXAiLAogICAgICAgIGxhYmVsLnNpemUgPSAzLAogICAgICAgIHJlcGVsID0gVCwKICAgICAgICBsYWJlbCA9IFQsIGxhYmVsLmJveCA9IFQpCgoKCnRhYmxlKEFsbF9zYW1wbGVzX01lcmdlZCRwcmVkaWN0ZWQuY2VsbHR5cGUubDIsIEFsbF9zYW1wbGVzX01lcmdlZCRTQ1Rfc25uX3Jlcy4wLjkpCgoKYGBgCgoKIyAzLiBEYXRhIFBSRVBFUkFUSU9OCmBgYHtyIGRhdGEsIGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTEwfQpEZWZhdWx0QXNzYXkoQWxsX3NhbXBsZXNfTWVyZ2VkKSA8LSAnQURUJwoKVmFyaWFibGVGZWF0dXJlcyhBbGxfc2FtcGxlc19NZXJnZWQpIDwtIHJvd25hbWVzKEFsbF9zYW1wbGVzX01lcmdlZFtbIkFEVCJdXSkKCiMgd2Ugd2lsbCB1c2UgYWxsIEFEVCBmZWF0dXJlcyBmb3IgZGltZW5zaW9uYWwgcmVkdWN0aW9uCiMgd2Ugc2V0IGEgZGltZW5zaW9uYWwgcmVkdWN0aW9uIG5hbWUgdG8gYXZvaWQgb3ZlcndyaXRpbmcgdGhlIApBbGxfc2FtcGxlc19NZXJnZWQgPC0gTm9ybWFsaXplRGF0YShBbGxfc2FtcGxlc19NZXJnZWQsIG5vcm1hbGl6YXRpb24ubWV0aG9kID0gJ0NMUicsIG1hcmdpbiA9IDIpICU+JSAKICBTY2FsZURhdGEoKSAlPiUgUnVuUENBKHJlZHVjdGlvbi5uYW1lID0gJ2FwY2EnLCBucGNzID0yOCwgbWF4aXQgPSA1MDAwKQoKCiMgSWRlbnRpZnkgbXVsdGltb2RhbCBuZWlnaGJvcnMuIFRoZXNlIHdpbGwgYmUgc3RvcmVkIGluIHRoZSBuZWlnaGJvcnMgc2xvdCwgCiMgYW5kIGNhbiBiZSBhY2Nlc3NlZCB1c2luZyBibVtbJ3dlaWdodGVkLm5uJ11dCiMgVGhlIFdOTiBncmFwaCBjYW4gYmUgYWNjZXNzZWQgYXQgYm1bWyJ3a25uIl1dLCAKIyBhbmQgdGhlIFNOTiBncmFwaCB1c2VkIGZvciBjbHVzdGVyaW5nIGF0IGJtW1sid3NubiJdXQojIENlbGwtc3BlY2lmaWMgbW9kYWxpdHkgd2VpZ2h0cyBjYW4gYmUgYWNjZXNzZWQgYXQgYm0kUk5BLndlaWdodAoKQWxsX3NhbXBsZXNfTWVyZ2VkIDwtIEZpbmRNdWx0aU1vZGFsTmVpZ2hib3JzKAogIEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uLmxpc3QgPSBsaXN0KCJwY2EiLCAiYXBjYSIpLCAKICBkaW1zLmxpc3QgPSBsaXN0KDE6MjAsIDE6MTgpLCBtb2RhbGl0eS53ZWlnaHQubmFtZSA9ICJSTkEud2VpZ2h0IgopCgoKCgpgYGAKCgojIDQuIFZpc3VhbGl6YXRpb24gUk5BK0FEVApgYGB7ciBWaXN1YWxpemUsIGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTEwfQoKQWxsX3NhbXBsZXNfTWVyZ2VkIDwtIFJ1blVNQVAoQWxsX3NhbXBsZXNfTWVyZ2VkLCBubi5uYW1lID0gIndlaWdodGVkLm5uIiwgcmVkdWN0aW9uLm5hbWUgPSAid25uLnVtYXAiLCByZWR1Y3Rpb24ua2V5ID0gIndublVNQVBfIikKQWxsX3NhbXBsZXNfTWVyZ2VkIDwtIEZpbmRDbHVzdGVycyhBbGxfc2FtcGxlc19NZXJnZWQsIGdyYXBoLm5hbWUgPSAid3NubiIsIGFsZ29yaXRobSA9IDMsIHJlc29sdXRpb24gPSAwLjksIHZlcmJvc2UgPSBGQUxTRSkKCnAxIDwtIERpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCByZWR1Y3Rpb24gPSAnd25uLnVtYXAnLCBsYWJlbCA9IFRSVUUsIHJlcGVsID0gVFJVRSwgbGFiZWwuc2l6ZSA9IDIuNSkgKyBOb0xlZ2VuZCgpCnAyIDwtIERpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCByZWR1Y3Rpb24gPSAnd25uLnVtYXAnLCBncm91cC5ieSA9ICdwcmVkaWN0ZWQuY2VsbHR5cGUubDInLCBsYWJlbCA9IFRSVUUsIHJlcGVsID0gVFJVRSwgbGFiZWwuc2l6ZSA9IDIuNSkgKyBOb0xlZ2VuZCgpCnAxICsgcDIKCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCByZWR1Y3Rpb24gPSAnd25uLnVtYXAnLCBncm91cC5ieSA9ICJjZWxsX2xpbmUiLGxhYmVsID0gVFJVRSwgcmVwZWwgPSBUUlVFLCBsYWJlbC5zaXplID0gMi41KQpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gJ3dubi51bWFwJywgbGFiZWwgPSBUUlVFLCByZXBlbCA9IFRSVUUsIGxhYmVsLnNpemUgPSAyLjUpCkRpbVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCByZWR1Y3Rpb24gPSAnd25uLnVtYXAnLCBncm91cC5ieSA9ICdwcmVkaWN0ZWQuY2VsbHR5cGUubDInLCBsYWJlbCA9IFRSVUUsIHJlcGVsID0gVFJVRSwgbGFiZWwuc2l6ZSA9IDIuNSkKYGBgCgpgYGB7ciBWaXN1YWxpemUyLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KCkFsbF9zYW1wbGVzX01lcmdlZCA8LSBSdW5VTUFQKEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gJ3BjYScsIGRpbXMgPSAxOjMwLCBhc3NheSA9ICdSTkEnLCAKICAgICAgICAgICAgICByZWR1Y3Rpb24ubmFtZSA9ICdybmEudW1hcCcsIHJlZHVjdGlvbi5rZXkgPSAncm5hVU1BUF8nKQpBbGxfc2FtcGxlc19NZXJnZWQgPC0gUnVuVU1BUChBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbiA9ICdhcGNhJywgZGltcyA9IDE6MTgsIGFzc2F5ID0gJ0FEVCcsIAogICAgICAgICAgICAgIHJlZHVjdGlvbi5uYW1lID0gJ2FkdC51bWFwJywgcmVkdWN0aW9uLmtleSA9ICdhZHRVTUFQXycpCgpwMyA8LSBEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gJ3JuYS51bWFwJywgZ3JvdXAuYnkgPSAncHJlZGljdGVkLmNlbGx0eXBlLmwyJywgbGFiZWwgPSBUUlVFLCAKICAgICAgICAgICAgICByZXBlbCA9IFRSVUUsIGxhYmVsLnNpemUgPSAyLjUpICsgTm9MZWdlbmQoKQpwNCA8LSBEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gJ2FkdC51bWFwJywgZ3JvdXAuYnkgPSAncHJlZGljdGVkLmNlbGx0eXBlLmwyJywgbGFiZWwgPSBUUlVFLCAKICAgICAgICAgICAgICByZXBlbCA9IFRSVUUsIGxhYmVsLnNpemUgPSAyLjUpICsgTm9MZWdlbmQoKQpwMyArIHA0CgpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gJ3JuYS51bWFwJywgZ3JvdXAuYnkgPSAiY2VsbF9saW5lIixsYWJlbCA9IFRSVUUsIHJlcGVsID0gVFJVRSwgbGFiZWwuc2l6ZSA9IDIuNSkKRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbiA9ICdybmEudW1hcCcsIGdyb3VwLmJ5ID0gJ3ByZWRpY3RlZC5jZWxsdHlwZS5sMicsIGxhYmVsID0gVFJVRSwgCiAgICAgICAgICAgICAgcmVwZWwgPSBUUlVFLCBsYWJlbC5zaXplID0gMi41KQpEaW1QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgcmVkdWN0aW9uID0gJ2FkdC51bWFwJywgZ3JvdXAuYnkgPSAiY2VsbF9saW5lIixsYWJlbCA9IFRSVUUsIHJlcGVsID0gVFJVRSwgbGFiZWwuc2l6ZSA9IDIuNSkKRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbiA9ICdhZHQudW1hcCcsIGdyb3VwLmJ5ID0gJ3ByZWRpY3RlZC5jZWxsdHlwZS5sMicsIGxhYmVsID0gVFJVRSwgCiAgICAgICAgICAgICAgcmVwZWwgPSBUUlVFLCBsYWJlbC5zaXplID0gMi41KSArIE5vTGVnZW5kKCkKCmBgYAoKCmBgYHtyIFZpc3VhbGl6ZTMsIGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTEwfQoKcDUgPC0gRmVhdHVyZVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlcyA9IGMoImFkdF9DRDQ1UkEiLCJhZHRfQ0Q0NVJPIiwiYWR0X0NEOTAiKSwKICAgICAgICAgICAgICAgICAgcmVkdWN0aW9uID0gJ3dubi51bWFwJywgbWF4LmN1dG9mZiA9IDIsIAogICAgICAgICAgICAgICAgICBjb2xzID0gYygibGlnaHRncmV5IiwiZGFya2dyZWVuIiksIG5jb2wgPSAzKQpwNiA8LSBGZWF0dXJlUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmVzID0gYygicm5hX1RSREMiLCJybmFfTVBPIiwicm5hX0FWUCIpLCAKICAgICAgICAgICAgICAgICAgcmVkdWN0aW9uID0gJ3dubi51bWFwJywgbWF4LmN1dG9mZiA9IDMsIG5jb2wgPSAzKQpwNSAvIHA2CmBgYApgYGB7ciBWaXN1YWxpemU0LCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KCiBWbG5QbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgZmVhdHVyZXMgPSAiU0NULndlaWdodCIsIGdyb3VwLmJ5ID0gJ3ByZWRpY3RlZC5jZWxsdHlwZS5sMicsIHNvcnQgPSBUUlVFLCBwdC5zaXplID0gMC4xKSArCiAgTm9MZWdlbmQoKQogVmxuUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmVzID0gIkFEVC53ZWlnaHQiLCBncm91cC5ieSA9ICdwcmVkaWN0ZWQuY2VsbHR5cGUubDInLCBzb3J0ID0gVFJVRSwgcHQuc2l6ZSA9IDAuMSkgKwogIE5vTGVnZW5kKCkKCmBgYAojIDUuIFNhdmUgdGhlIFNldXJhdCBvYmplY3QgYXMgYW4gUm9iaiBmaWxlCmBgYHtyIHNhdmVST0JKfQoKc2F2ZShBbGxfc2FtcGxlc19NZXJnZWQsIGZpbGUgPSAiLi4vMC1pbXBfT0JKX1NTL0FsbF9zYW1wbGVzX01lcmdlZF9XTk5fY29ycmVjdC5Sb2JqIikKCgpgYGAKCgoKCg==