#Load Packages
library(tidyverse)
library(tidyquant)
1 get stock prices and convert to returns
Ra <- c("PLUG", "GOOG", "NVDA") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 99 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 PLUG 2022-01-31 -0.240
## 2 PLUG 2022-02-28 0.156
## 3 PLUG 2022-03-31 0.131
## 4 PLUG 2022-04-29 -0.265
## 5 PLUG 2022-05-31 -0.121
## 6 PLUG 2022-06-30 -0.103
## 7 PLUG 2022-07-29 0.288
## 8 PLUG 2022-08-31 0.314
## 9 PLUG 2022-09-30 -0.251
## 10 PLUG 2022-10-31 -0.239
## # ℹ 89 more rows
2 Get baseline and convert to returns
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 33 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## # ℹ 23 more rows
3 Join the two tables
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 99 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 PLUG 2022-01-31 -0.240 -0.101
## 2 PLUG 2022-02-28 0.156 -0.0343
## 3 PLUG 2022-03-31 0.131 0.0341
## 4 PLUG 2022-04-29 -0.265 -0.133
## 5 PLUG 2022-05-31 -0.121 -0.0205
## 6 PLUG 2022-06-30 -0.103 -0.0871
## 7 PLUG 2022-07-29 0.288 0.123
## 8 PLUG 2022-08-31 0.314 -0.0464
## 9 PLUG 2022-09-30 -0.251 -0.105
## 10 PLUG 2022-10-31 -0.239 0.0390
## # ℹ 89 more rows
4 Calculate CAPM
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 PLUG -0.665 -0.0603 -0.526 1.43 1.50 2.14 0.409
## 2 GOOG -0.0036 0.0012 0.0146 0.914 0.982 0.681 0.754
## 3 NVDA 0.609 0.0431 0.660 2.27 2.77 1.54 0.869
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
Which stock has a positively skewed distrubution of returns?
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 PLUG -0.665 -0.0603 -0.526 1.43 1.50 2.14 0.409
## 2 GOOG -0.0036 0.0012 0.0146 0.914 0.982 0.681 0.754
## 3 NVDA 0.609 0.0431 0.660 2.27 2.77 1.54 0.869
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>