3. Data PREPERATION
DefaultAssay(All_samples_Merged) <- 'ADT'
VariableFeatures(All_samples_Merged) <- rownames(All_samples_Merged[["ADT"]])
# we will use all ADT features for dimensional reduction
# we set a dimensional reduction name to avoid overwriting the
All_samples_Merged <- NormalizeData(All_samples_Merged, normalization.method = 'CLR', margin = 2) %>%
ScaleData() %>% RunPCA(reduction.name = 'apca', npcs =28, maxit = 5000)
Normalizing across cells
| | 0 % ~calculating
|+ | 1 % ~00s
|+ | 2 % ~00s
|++ | 3 % ~00s
|++ | 4 % ~00s
|+++ | 5 % ~00s
|+++ | 6 % ~00s
|++++ | 7 % ~00s
|++++ | 8 % ~00s
|+++++ | 9 % ~00s
|+++++ | 10% ~00s
|++++++ | 11% ~00s
|++++++ | 12% ~00s
|+++++++ | 13% ~00s
|+++++++ | 14% ~00s
|++++++++ | 15% ~00s
|++++++++ | 16% ~00s
|+++++++++ | 17% ~00s
|+++++++++ | 18% ~00s
|++++++++++ | 19% ~00s
|++++++++++ | 20% ~00s
|+++++++++++ | 21% ~00s
|+++++++++++ | 22% ~00s
|++++++++++++ | 23% ~00s
|++++++++++++ | 24% ~00s
|+++++++++++++ | 25% ~00s
|+++++++++++++ | 26% ~00s
|++++++++++++++ | 27% ~00s
|++++++++++++++ | 28% ~00s
|+++++++++++++++ | 29% ~00s
|+++++++++++++++ | 30% ~00s
|++++++++++++++++ | 31% ~00s
|++++++++++++++++ | 32% ~00s
|+++++++++++++++++ | 33% ~00s
|+++++++++++++++++ | 34% ~00s
|++++++++++++++++++ | 35% ~00s
|++++++++++++++++++ | 36% ~00s
|+++++++++++++++++++ | 37% ~00s
|+++++++++++++++++++ | 38% ~00s
|++++++++++++++++++++ | 39% ~00s
|++++++++++++++++++++ | 40% ~00s
|+++++++++++++++++++++ | 41% ~00s
|+++++++++++++++++++++ | 42% ~00s
|++++++++++++++++++++++ | 43% ~00s
|++++++++++++++++++++++ | 44% ~00s
|+++++++++++++++++++++++ | 45% ~00s
|+++++++++++++++++++++++ | 46% ~00s
|++++++++++++++++++++++++ | 47% ~00s
|++++++++++++++++++++++++ | 48% ~00s
|+++++++++++++++++++++++++ | 49% ~00s
|+++++++++++++++++++++++++ | 50% ~00s
|++++++++++++++++++++++++++ | 51% ~00s
|++++++++++++++++++++++++++ | 52% ~00s
|+++++++++++++++++++++++++++ | 53% ~00s
|+++++++++++++++++++++++++++ | 54% ~00s
|++++++++++++++++++++++++++++ | 55% ~00s
|++++++++++++++++++++++++++++ | 56% ~00s
|+++++++++++++++++++++++++++++ | 57% ~00s
|+++++++++++++++++++++++++++++ | 58% ~00s
|++++++++++++++++++++++++++++++ | 59% ~00s
|++++++++++++++++++++++++++++++ | 60% ~00s
|+++++++++++++++++++++++++++++++ | 61% ~00s
|+++++++++++++++++++++++++++++++ | 62% ~00s
|++++++++++++++++++++++++++++++++ | 63% ~00s
|++++++++++++++++++++++++++++++++ | 64% ~00s
|+++++++++++++++++++++++++++++++++ | 65% ~00s
|+++++++++++++++++++++++++++++++++ | 66% ~00s
|++++++++++++++++++++++++++++++++++ | 67% ~00s
|++++++++++++++++++++++++++++++++++ | 68% ~00s
|+++++++++++++++++++++++++++++++++++ | 69% ~00s
|+++++++++++++++++++++++++++++++++++ | 70% ~00s
|++++++++++++++++++++++++++++++++++++ | 71% ~00s
|++++++++++++++++++++++++++++++++++++ | 72% ~00s
|+++++++++++++++++++++++++++++++++++++ | 73% ~00s
|+++++++++++++++++++++++++++++++++++++ | 74% ~00s
|++++++++++++++++++++++++++++++++++++++ | 75% ~00s
|++++++++++++++++++++++++++++++++++++++ | 76% ~00s
|+++++++++++++++++++++++++++++++++++++++ | 77% ~00s
|+++++++++++++++++++++++++++++++++++++++ | 78% ~00s
|++++++++++++++++++++++++++++++++++++++++ | 79% ~00s
|++++++++++++++++++++++++++++++++++++++++ | 80% ~00s
|+++++++++++++++++++++++++++++++++++++++++ | 81% ~00s
|+++++++++++++++++++++++++++++++++++++++++ | 82% ~00s
|++++++++++++++++++++++++++++++++++++++++++ | 83% ~00s
|++++++++++++++++++++++++++++++++++++++++++ | 84% ~00s
|+++++++++++++++++++++++++++++++++++++++++++ | 85% ~00s
|+++++++++++++++++++++++++++++++++++++++++++ | 86% ~00s
|++++++++++++++++++++++++++++++++++++++++++++ | 87% ~00s
|++++++++++++++++++++++++++++++++++++++++++++ | 88% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++ | 89% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++ | 90% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++ | 91% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++ | 92% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++++ | 93% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++++ | 94% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++++ | 95% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++++ | 96% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++++++ | 97% ~00s
|+++++++++++++++++++++++++++++++++++++++++++++++++ | 98% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++++++| 99% ~00s
|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=00s
Centering and scaling data matrix
|
| | 0%
|
|===========================================================================================================================| 100%
Warning: You're computing too large a percentage of total singular values, use a standard svd instead.Warning: Requested number is larger than the number of available items (28). Setting to 28.Warning: Requested number is larger than the number of available items (28). Setting to 28.Warning: Requested number is larger than the number of available items (28). Setting to 28.Warning: Requested number is larger than the number of available items (28). Setting to 28.Warning: Requested number is larger than the number of available items (28). Setting to 28.PC_ 1
Positive: CD5, CD274, TCRab, CD7, CD3, CD28, CD45RO, CD26, CD44, CD62L
CXCR3, CD127, CD45, CCR8
Negative: CD25, CD30, CD2, CD95, CD45RA, CD4, CCR6, CCR4, CXCR4, CD40
CD19, CCR7, PD1, CCR10
PC_ 2
Positive: CD45, CD44, CD45RO, CD4, CD3, CD40, CCR4, CD45RA, CD26, CD95
CD2, CD5, CD62L, CD28
Negative: CD127, CD19, PD1, CCR7, CCR10, CXCR3, CCR8, CCR6, CD7, CD274
CD30, CXCR4, CD25, TCRab
PC_ 3
Positive: CD62L, TCRab, CD28, CD3, CD4, CXCR4, CCR7, CD45RA, CD127, CD5
PD1, CCR4, CD95, CD2
Negative: CD26, CXCR3, CD45RO, CD274, CD40, CD44, CCR10, CCR6, CD7, CD30
CD19, CD25, CD45, CCR8
PC_ 4
Positive: CCR4, CD5, CD274, CD4, CD30, CCR6, CD44, CD28, CD25, CD45RA
CD19, CCR10, CXCR3, PD1
Negative: CD40, CD45, CD2, CD62L, CD7, CD26, CXCR4, CCR7, CD127, CD95
CD45RO, CCR8, CD3, TCRab
PC_ 5
Positive: CD45RO, CD28, CCR8, CD26, CCR4, PD1, CD4, CCR10, CD40, CD127
CD19, TCRab, CD2, CCR7
Negative: CD7, CD45RA, CD5, CD44, CCR6, CXCR3, CXCR4, CD274, CD62L, CD30
CD3, CD95, CD45, CD25
Warning: Key 'PC_' taken, using 'apca_' instead
# Identify multimodal neighbors. These will be stored in the neighbors slot,
# and can be accessed using bm[['weighted.nn']]
# The WNN graph can be accessed at bm[["wknn"]],
# and the SNN graph used for clustering at bm[["wsnn"]]
# Cell-specific modality weights can be accessed at bm$RNA.weight
All_samples_Merged <- FindMultiModalNeighbors(
All_samples_Merged, reduction.list = list("pca", "apca"),
dims.list = list(1:30, 1:18), modality.weight.name = "RNA.weight"
)
Calculating cell-specific modality weights
Finding 20 nearest neighbors for each modality.
| | 0 % ~calculating
|+++++++++++++++++++++++++ | 50% ~08s
|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=17s
Calculating kernel bandwidths
| | 0 % ~calculating
|+++++++++++++++++++++++++ | 50% ~01s
|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=02s
Warning: The number of provided modality.weight.name is not equal to the number of modalities. SCT.weight ADT.weight are used to store the modality weightsFinding multimodal neighbors
| | 0 % ~calculating
|+++++++++++++++++++++++++ | 50% ~28s
|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=59s
| | 0 % ~calculating
|+++++++++++++++++++++++++ | 50% ~01s
|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=02s
Constructing multimodal KNN graph
Constructing multimodal SNN graph
4. Visualization RNA+ADT


p5 <- FeaturePlot(All_samples_Merged, features = c("adt_CD45RA","adt_CD45RO","adt_CD90"),
reduction = 'wnn.umap', max.cutoff = 2,
cols = c("lightgrey","darkgreen"), ncol = 3)
Warning: The following features could not be found adt_CD90Warning: The following requested variables were not found: adt_CD90
p6 <- FeaturePlot(All_samples_Merged, features = c("rna_TRDC","rna_MPO","rna_AVP"),
reduction = 'wnn.umap', max.cutoff = 3, ncol = 3)
p5 / p6

VlnPlot(All_samples_Merged, features = "SCT.weight", group.by = 'predicted.celltype.l2', sort = TRUE, pt.size = 0.1) +
NoLegend()

VlnPlot(All_samples_Merged, features = "ADT.weight", group.by = 'predicted.celltype.l2', sort = TRUE, pt.size = 0.1) +
NoLegend()

LS0tCnRpdGxlOiAiV05OIGFuYWx5c2lzIG9mIENJVEUtc2VxLCBSTkEgKyBBRFQiCmF1dGhvcjogTmFzaXIgTWFobW9vZCBBYmJhc2kKZGF0ZTogImByIFN5cy5EYXRlKClgIgpvdXRwdXQ6CiAgI3JtZGZvcm1hdHM6OnJlYWR0aGVkb3duCiAgaHRtbF9ub3RlYm9vazoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICB0b2NfY29sbGFwc2VkOiB0cnVlCi0tLQoKIyAxLiBsb2FkIGxpYnJhcmllcwpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0KbGlicmFyeShTZXVyYXQpCmxpYnJhcnkoU2V1cmF0T2JqZWN0KQpsaWJyYXJ5KFNldXJhdERhdGEpCmxpYnJhcnkocGF0Y2h3b3JrKQpsaWJyYXJ5KGhhcm1vbnkpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShjb3dwbG90KQpsaWJyYXJ5KHJldGljdWxhdGUpCmxpYnJhcnkoQXppbXV0aCkKbGlicmFyeShkcGx5cikKbGlicmFyeShSdHNuZSkKbGlicmFyeShoYXJtb255KQpsaWJyYXJ5KGdyaWRFeHRyYSkKYGBgCgojIDIuIExvYWQgU2V1cmF0IE9iamVjdCAKYGBge3IgbG9hZF9zZXVyYXR9CgogbG9hZCgiL2hvbWUvYmlvaW5mby9DbHVzdGVyX3RvX0NvbXB1dGVyX1RyYW5zZmVyX2ZpbGVzX2ZvbGRlci9BbGxfTm9ybWFsLVBCTUNfQWJub3JtYWwtY2VsbExpbmVzX1RfY2VsbHNfTWVyZ2VkX0Fubm90YXRlZF9VTUFQX29uX0NsdXN0ZXJzX3RvX1VTRS5Sb2JqIikKIAogIEFsbF9zYW1wbGVzX01lcmdlZAoKCmBgYAoKCiMgMy4gRGF0YSBQUkVQRVJBVElPTgpgYGB7ciBkYXRhLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KRGVmYXVsdEFzc2F5KEFsbF9zYW1wbGVzX01lcmdlZCkgPC0gJ0FEVCcKClZhcmlhYmxlRmVhdHVyZXMoQWxsX3NhbXBsZXNfTWVyZ2VkKSA8LSByb3duYW1lcyhBbGxfc2FtcGxlc19NZXJnZWRbWyJBRFQiXV0pCgojIHdlIHdpbGwgdXNlIGFsbCBBRFQgZmVhdHVyZXMgZm9yIGRpbWVuc2lvbmFsIHJlZHVjdGlvbgojIHdlIHNldCBhIGRpbWVuc2lvbmFsIHJlZHVjdGlvbiBuYW1lIHRvIGF2b2lkIG92ZXJ3cml0aW5nIHRoZSAKQWxsX3NhbXBsZXNfTWVyZ2VkIDwtIE5vcm1hbGl6ZURhdGEoQWxsX3NhbXBsZXNfTWVyZ2VkLCBub3JtYWxpemF0aW9uLm1ldGhvZCA9ICdDTFInLCBtYXJnaW4gPSAyKSAlPiUgCiAgU2NhbGVEYXRhKCkgJT4lIFJ1blBDQShyZWR1Y3Rpb24ubmFtZSA9ICdhcGNhJywgbnBjcyA9MjgsIG1heGl0ID0gNTAwMCkKCgojIElkZW50aWZ5IG11bHRpbW9kYWwgbmVpZ2hib3JzLiBUaGVzZSB3aWxsIGJlIHN0b3JlZCBpbiB0aGUgbmVpZ2hib3JzIHNsb3QsIAojIGFuZCBjYW4gYmUgYWNjZXNzZWQgdXNpbmcgYm1bWyd3ZWlnaHRlZC5ubiddXQojIFRoZSBXTk4gZ3JhcGggY2FuIGJlIGFjY2Vzc2VkIGF0IGJtW1sid2tubiJdXSwgCiMgYW5kIHRoZSBTTk4gZ3JhcGggdXNlZCBmb3IgY2x1c3RlcmluZyBhdCBibVtbIndzbm4iXV0KIyBDZWxsLXNwZWNpZmljIG1vZGFsaXR5IHdlaWdodHMgY2FuIGJlIGFjY2Vzc2VkIGF0IGJtJFJOQS53ZWlnaHQKCkFsbF9zYW1wbGVzX01lcmdlZCA8LSBGaW5kTXVsdGlNb2RhbE5laWdoYm9ycygKICBBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbi5saXN0ID0gbGlzdCgicGNhIiwgImFwY2EiKSwgCiAgZGltcy5saXN0ID0gbGlzdCgxOjMwLCAxOjE4KSwgbW9kYWxpdHkud2VpZ2h0Lm5hbWUgPSAiUk5BLndlaWdodCIKKQoKCgoKYGBgCgoKIyA0LiBWaXN1YWxpemF0aW9uIFJOQStBRFQKYGBge3IgVmlzdWFsaXplLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KCkFsbF9zYW1wbGVzX01lcmdlZCA8LSBSdW5VTUFQKEFsbF9zYW1wbGVzX01lcmdlZCwgbm4ubmFtZSA9ICJ3ZWlnaHRlZC5ubiIsIHJlZHVjdGlvbi5uYW1lID0gIndubi51bWFwIiwgcmVkdWN0aW9uLmtleSA9ICJ3bm5VTUFQXyIpCkFsbF9zYW1wbGVzX01lcmdlZCA8LSBGaW5kQ2x1c3RlcnMoQWxsX3NhbXBsZXNfTWVyZ2VkLCBncmFwaC5uYW1lID0gIndzbm4iLCBhbGdvcml0aG0gPSAzLCByZXNvbHV0aW9uID0gMiwgdmVyYm9zZSA9IEZBTFNFKQoKcDEgPC0gRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbiA9ICd3bm4udW1hcCcsIGxhYmVsID0gVFJVRSwgcmVwZWwgPSBUUlVFLCBsYWJlbC5zaXplID0gMi41KSArIE5vTGVnZW5kKCkKcDIgPC0gRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbiA9ICd3bm4udW1hcCcsIGdyb3VwLmJ5ID0gJ3ByZWRpY3RlZC5jZWxsdHlwZS5sMicsIGxhYmVsID0gVFJVRSwgcmVwZWwgPSBUUlVFLCBsYWJlbC5zaXplID0gMi41KSArIE5vTGVnZW5kKCkKcDEgKyBwMgoKCmBgYAoKYGBge3IgVmlzdWFsaXplMiwgZmlnLmhlaWdodD02LCBmaWcud2lkdGg9MTB9CgpBbGxfc2FtcGxlc19NZXJnZWQgPC0gUnVuVU1BUChBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbiA9ICdwY2EnLCBkaW1zID0gMTozMCwgYXNzYXkgPSAnUk5BJywgCiAgICAgICAgICAgICAgcmVkdWN0aW9uLm5hbWUgPSAncm5hLnVtYXAnLCByZWR1Y3Rpb24ua2V5ID0gJ3JuYVVNQVBfJykKQWxsX3NhbXBsZXNfTWVyZ2VkIDwtIFJ1blVNQVAoQWxsX3NhbXBsZXNfTWVyZ2VkLCByZWR1Y3Rpb24gPSAnYXBjYScsIGRpbXMgPSAxOjE4LCBhc3NheSA9ICdBRFQnLCAKICAgICAgICAgICAgICByZWR1Y3Rpb24ubmFtZSA9ICdhZHQudW1hcCcsIHJlZHVjdGlvbi5rZXkgPSAnYWR0VU1BUF8nKQoKcDMgPC0gRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbiA9ICdybmEudW1hcCcsIGdyb3VwLmJ5ID0gJ3ByZWRpY3RlZC5jZWxsdHlwZS5sMicsIGxhYmVsID0gVFJVRSwgCiAgICAgICAgICAgICAgcmVwZWwgPSBUUlVFLCBsYWJlbC5zaXplID0gMi41KSArIE5vTGVnZW5kKCkKcDQgPC0gRGltUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIHJlZHVjdGlvbiA9ICdhZHQudW1hcCcsIGdyb3VwLmJ5ID0gJ3ByZWRpY3RlZC5jZWxsdHlwZS5sMicsIGxhYmVsID0gVFJVRSwgCiAgICAgICAgICAgICAgcmVwZWwgPSBUUlVFLCBsYWJlbC5zaXplID0gMi41KSArIE5vTGVnZW5kKCkKcDMgKyBwNApgYGAKCgpgYGB7ciBWaXN1YWxpemUzLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KCnA1IDwtIEZlYXR1cmVQbG90KEFsbF9zYW1wbGVzX01lcmdlZCwgZmVhdHVyZXMgPSBjKCJhZHRfQ0Q0NVJBIiwiYWR0X0NENDVSTyIsImFkdF9DRDkwIiksCiAgICAgICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICd3bm4udW1hcCcsIG1heC5jdXRvZmYgPSAyLCAKICAgICAgICAgICAgICAgICAgY29scyA9IGMoImxpZ2h0Z3JleSIsImRhcmtncmVlbiIpLCBuY29sID0gMykKcDYgPC0gRmVhdHVyZVBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlcyA9IGMoInJuYV9UUkRDIiwicm5hX01QTyIsInJuYV9BVlAiKSwgCiAgICAgICAgICAgICAgICAgIHJlZHVjdGlvbiA9ICd3bm4udW1hcCcsIG1heC5jdXRvZmYgPSAzLCBuY29sID0gMykKcDUgLyBwNgpgYGAKYGBge3IgVmlzdWFsaXplNCwgZmlnLmhlaWdodD02LCBmaWcud2lkdGg9MTB9CgogVmxuUGxvdChBbGxfc2FtcGxlc19NZXJnZWQsIGZlYXR1cmVzID0gIlNDVC53ZWlnaHQiLCBncm91cC5ieSA9ICdwcmVkaWN0ZWQuY2VsbHR5cGUubDInLCBzb3J0ID0gVFJVRSwgcHQuc2l6ZSA9IDAuMSkgKwogIE5vTGVnZW5kKCkKIFZsblBsb3QoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmZWF0dXJlcyA9ICJBRFQud2VpZ2h0IiwgZ3JvdXAuYnkgPSAncHJlZGljdGVkLmNlbGx0eXBlLmwyJywgc29ydCA9IFRSVUUsIHB0LnNpemUgPSAwLjEpICsKICBOb0xlZ2VuZCgpCgpgYGAKIyA1LiBTYXZlIHRoZSBTZXVyYXQgb2JqZWN0IGFzIGFuIFJvYmogZmlsZQpgYGB7ciBzYXZlUk9CSn0KCnNhdmUoQWxsX3NhbXBsZXNfTWVyZ2VkLCBmaWxlID0gIi4uLzAtaW1wX09CSl9TUy9BbGxfc2FtcGxlc19NZXJnZWRfV05OLlJvYmoiKQoKCmBgYAoKCgoK