# Load packages
library(tidyverse)
library(tidyquant)
Ra <- c("MCD", "ISRG", "KHC", "FIS", "GOOG") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 170 × 3
## # Groups: symbol [5]
## symbol date Ra
## <chr> <date> <dbl>
## 1 MCD 2022-01-31 -0.0340
## 2 MCD 2022-02-28 -0.0513
## 3 MCD 2022-03-31 0.0103
## 4 MCD 2022-04-29 0.00760
## 5 MCD 2022-05-31 0.0122
## 6 MCD 2022-06-30 -0.0157
## 7 MCD 2022-07-29 0.0668
## 8 MCD 2022-08-31 -0.0369
## 9 MCD 2022-09-30 -0.0854
## 10 MCD 2022-10-31 0.182
## # ℹ 160 more rows
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 34 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## # ℹ 24 more rows
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 170 × 4
## # Groups: symbol [5]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 MCD 2022-01-31 -0.0340 -0.101
## 2 MCD 2022-02-28 -0.0513 -0.0343
## 3 MCD 2022-03-31 0.0103 0.0341
## 4 MCD 2022-04-29 0.00760 -0.133
## 5 MCD 2022-05-31 0.0122 -0.0205
## 6 MCD 2022-06-30 -0.0157 -0.0871
## 7 MCD 2022-07-29 0.0668 0.123
## 8 MCD 2022-08-31 -0.0369 -0.0464
## 9 MCD 2022-09-30 -0.0854 -0.105
## 10 MCD 2022-10-31 0.182 0.0390
## # ℹ 160 more rows
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 5 × 13
## # Groups: symbol [5]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 MCD 0.0092 0.0038 0.0466 0.402 0.278 0.159
## 2 ISRG 0.0809 0.009 0.114 1.22 1.16 -0.0466
## 3 KHC -0.0153 0.0051 0.0624 -0.0197 -0.214 -0.230
## 4 FIS -0.108 -0.0048 -0.0559 0.799 -0.192 0.408
## 5 GOOG -0.0058 0.001 0.0123 0.916 0.982 0.721
## # ℹ 6 more variables: Correlation <dbl>, `Correlationp-value` <dbl>,
## # InformationRatio <dbl>, `R-squared` <dbl>, TrackingError <dbl>,
## # TreynorRatio <dbl>
In my Portfolio, ISRG, KHC and MCD have a postively skewed distribution of returns
# Calculate skewness for each asset
RaRb_skewness <- RaRb %>%
group_by(symbol) %>%
summarise(skewness = skewness(Ra))
RaRb_skewness
## # A tibble: 5 × 2
## symbol skewness
## <chr> <dbl>
## 1 FIS -0.313
## 2 GOOG -0.202
## 3 ISRG 0.209
## 4 KHC 0.240
## 5 MCD 1.04