Censorship Study

Load Data

## 
## ********************* PROCESS for R Version 4.0.1 ********************* 
##  
##            Written by Andrew F. Hayes, Ph.D.  www.afhayes.com              
##    Documentation available in Hayes (2022). www.guilford.com/p/hayes3   
##  
## *********************************************************************** 
##  
## PROCESS is now ready for use.
## Copyright 2021 by Andrew F. Hayes ALL RIGHTS RESERVED
## 

Alphas

## 
##  Pearson's product-moment correlation
## 
## data:  vq_1 and vq_2
## t = 34, df = 612, p-value <0.0000000000000002
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.78 0.83
## sample estimates:
##  cor 
## 0.81

Graphs

Main effects

Likert measures

Binary solicitation

## 
## Call:
## glm(formula = solicit1 ~ condgraph, family = "binomial", data = censorship_v2_clean)
## 
## Coefficients:
##                          Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)                 2.362      0.290    8.14 0.00000000000000039 ***
## condgraph0. Half           -0.347      0.384   -0.91                0.37    
## condgraph1. Control         0.689      0.483    1.43                0.15    
## condgraph2. Very similar   -0.333      0.383   -0.87                0.39    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 374.93  on 613  degrees of freedom
## Residual deviance: 367.82  on 610  degrees of freedom
## AIC: 375.8
## 
## Number of Fisher Scoring iterations: 5

Limiting discussions

## 
## Call:
## glm(formula = limitdiscussions ~ condgraph, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                          Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)                -1.055      0.186   -5.67 0.000000014 ***
## condgraph0. Half           -0.198      0.269   -0.74       0.462    
## condgraph1. Control        -0.594      0.287   -2.07       0.038 *  
## condgraph2. Very similar   -0.414      0.277   -1.49       0.136    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 625.96  on 613  degrees of freedom
## Residual deviance: 620.98  on 610  degrees of freedom
## AIC: 629
## 
## Number of Fisher Scoring iterations: 4

Discouraging suggestions

## 
## Call:
## glm(formula = discouragesuggestion ~ condgraph, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                          Estimate Std. Error z value          Pr(>|z|)    
## (Intercept)                -2.759      0.344   -8.03 0.000000000000001 ***
## condgraph0. Half           -0.139      0.500   -0.28              0.78    
## condgraph1. Control        -0.152      0.500   -0.30              0.76    
## condgraph2. Very similar    0.449      0.443    1.01              0.31    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 290.47  on 613  degrees of freedom
## Residual deviance: 288.03  on 610  degrees of freedom
## AIC: 296
## 
## Number of Fisher Scoring iterations: 5

Main effect results

This is a table of posthoc p-values, with the columns as the comparisons between conditions.

Comparing the “very diverse” condition to the “similar” and “no information” conditions.

Prohibitive vs. Promotive voice

If your shift leaders offered suggestions, how would you characterize them?

suggestions that help the unit.

## 
## Call:
## glm(formula = prom1 ~ condgraph, family = "poisson", data = censorship_v2_clean)
## 
## Coefficients:
##                          Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)               -0.7132     0.1162   -6.14 0.00000000085 ***
## condgraph0. Half           0.2154     0.1558    1.38          0.17    
## condgraph1. Control        0.0886     0.1599    0.55          0.58    
## condgraph2. Very similar   0.0765     0.1603    0.48          0.63    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 408.27  on 613  degrees of freedom
## Residual deviance: 406.25  on 610  degrees of freedom
## AIC: 1078
## 
## Number of Fisher Scoring iterations: 5

suggesting new projects that help the unit.

## 
## Call:
## glm(formula = prom2 ~ condgraph, family = "poisson", data = censorship_v2_clean)
## 
## Coefficients:
##                          Estimate Std. Error z value        Pr(>|z|)    
## (Intercept)              -0.90641    0.12804   -7.08 0.0000000000014 ***
## condgraph0. Half          0.18003    0.17294    1.04            0.30    
## condgraph1. Control       0.00612    0.17963    0.03            0.97    
## condgraph2. Very similar -0.00988    0.18034   -0.05            0.96    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 446.84  on 613  degrees of freedom
## Residual deviance: 445.14  on 610  degrees of freedom
## AIC: 973.1
## 
## Number of Fisher Scoring iterations: 5

improving working procedure.

## 
## Call:
## glm(formula = prom3 ~ condgraph, family = "poisson", data = censorship_v2_clean)
## 
## Coefficients:
##                          Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)               -0.6106     0.1104   -5.53 0.000000032 ***
## condgraph0. Half           0.1548     0.1500    1.03        0.30    
## condgraph1. Control        0.1104     0.1511    0.73        0.46    
## condgraph2. Very similar   0.0445     0.1535    0.29        0.77    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 383.47  on 613  degrees of freedom
## Residual deviance: 382.20  on 610  degrees of freedom
## AIC: 1112
## 
## Number of Fisher Scoring iterations: 5

constructive suggestions that help the unit reach its goals.

## 
## Call:
## glm(formula = prom4 ~ condgraph, family = "poisson", data = censorship_v2_clean)
## 
## Coefficients:
##                          Estimate Std. Error z value    Pr(>|z|)    
## (Intercept)              -0.61056    0.11043   -5.53 0.000000032 ***
## condgraph0. Half          0.12342    0.15111    0.82        0.41    
## condgraph1. Control       0.08892    0.15187    0.59        0.56    
## condgraph2. Very similar -0.00205    0.15524   -0.01        0.99    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 391.68  on 613  degrees of freedom
## Residual deviance: 390.61  on 610  degrees of freedom
## AIC: 1103
## 
## Number of Fisher Scoring iterations: 5

constructive suggestions to improve the unit’s operation.

## 
## Call:
## glm(formula = prom5 ~ condgraph, family = "poisson", data = censorship_v2_clean)
## 
## Coefficients:
##                          Estimate Std. Error z value      Pr(>|z|)    
## (Intercept)               -0.7688     0.1195   -6.43 0.00000000013 ***
## condgraph0. Half           0.2043     0.1606    1.27          0.20    
## condgraph1. Control        0.0692     0.1651    0.42          0.68    
## condgraph2. Very similar   0.0561     0.1657    0.34          0.73    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 423.72  on 613  degrees of freedom
## Residual deviance: 421.93  on 610  degrees of freedom
## AIC: 1050
## 
## Number of Fisher Scoring iterations: 5

advice against undesirable behaviors that would hamper job performance.

## 
## Call:
## glm(formula = proh1 ~ condgraph, family = "poisson", data = censorship_v2_clean)
## 
## Coefficients:
##                          Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)               -1.5515     0.1768   -8.78 <0.0000000000000002 ***
## condgraph0. Half          -0.0449     0.2520   -0.18                0.86    
## condgraph1. Control       -0.4008     0.2770   -1.45                0.15    
## condgraph2. Very similar  -0.0579     0.2520   -0.23                0.82    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 386.61  on 613  degrees of freedom
## Residual deviance: 383.97  on 610  degrees of freedom
## AIC: 624
## 
## Number of Fisher Scoring iterations: 6

honest opinions about problems that might cause serious loss to the work unit, even when/though dissenting opinions exist.

## 
## Call:
## glm(formula = proh2 ~ condgraph, family = "poisson", data = censorship_v2_clean)
## 
## Coefficients:
##                          Estimate Std. Error z value          Pr(>|z|)    
## (Intercept)              -1.04699    0.13736   -7.62 0.000000000000025 ***
## condgraph0. Half          0.00553    0.19335    0.03              0.98    
## condgraph1. Control      -0.12524    0.19925   -0.63              0.53    
## condgraph2. Very similar -0.10462    0.19818   -0.53              0.60    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 449.56  on 613  degrees of freedom
## Residual deviance: 448.85  on 610  degrees of freedom
## AIC: 864.8
## 
## Number of Fisher Scoring iterations: 5

opinions on things that might affect efficiency in the work unit, even if that would embarrass others.

## 
## Call:
## glm(formula = proh3 ~ condgraph, family = "poisson", data = censorship_v2_clean)
## 
## Coefficients:
##                          Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)               -1.6161     0.1826   -8.85 <0.0000000000000002 ***
## condgraph0. Half           0.0196     0.2561    0.08                0.94    
## condgraph1. Control       -0.2085     0.2708   -0.77                0.44    
## condgraph2. Very similar  -0.3363     0.2807   -1.20                0.23    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 375.38  on 613  degrees of freedom
## Residual deviance: 373.08  on 610  degrees of freedom
## AIC: 597.1
## 
## Number of Fisher Scoring iterations: 6

identifying problems, even if that would hamper relationships with other colleagues.

## 
## Call:
## glm(formula = proh4 ~ condgraph, family = "poisson", data = censorship_v2_clean)
## 
## Coefficients:
##                          Estimate Std. Error z value            Pr(>|z|)    
## (Intercept)               -1.8818     0.2085   -9.02 <0.0000000000000002 ***
## condgraph0. Half           0.4349     0.2669    1.63                0.10    
## condgraph1. Control        0.0164     0.2918    0.06                0.96    
## condgraph2. Very similar  -0.2713     0.3147   -0.86                0.39    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 364.58  on 613  degrees of freedom
## Residual deviance: 357.79  on 610  degrees of freedom
## AIC: 567.8
## 
## Number of Fisher Scoring iterations: 6

identifying coordination problems in the workplace.

## 
## Call:
## glm(formula = proh5 ~ condgraph, family = "poisson", data = censorship_v2_clean)
## 
## Coefficients:
##                                                      Estimate                           Std. Error z value Pr(>|z|)
## (Intercept)                -27.302585092993076898437720956281 41883.725940553456894122064113616943       0        1
## condgraph0. Half             0.000000000000162743668737362619 59038.645568360792822204530239105225       0        1
## condgraph1. Control         -0.000000000000000000000000000637 58849.147147107767523266375064849854       0        1
## condgraph2. Very similar    -0.000000000000000000000000000654 58849.147147107134514953941106796265       0        1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 0.0000000000000  on 613  degrees of freedom
## Residual deviance: 0.0000000017054  on 610  degrees of freedom
## AIC: 8
## 
## Number of Fisher Scoring iterations: 25

Moderation

DV: Limit Discussions

## 
## Call:
## glm(formula = limitdiscussions ~ condgraph * comp, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)                    -0.0761     0.8961   -0.08     0.93
## condgraph0. Half                0.4438     1.3810    0.32     0.75
## condgraph1. Control             0.4653     1.6079    0.29     0.77
## condgraph2. Very similar        0.7809     1.6651    0.47     0.64
## comp                           -0.1827     0.1651   -1.11     0.27
## condgraph0. Half:comp          -0.1061     0.2492   -0.43     0.67
## condgraph1. Control:comp       -0.1799     0.2900   -0.62     0.53
## condgraph2. Very similar:comp  -0.1957     0.2954   -0.66     0.51
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 625.96  on 613  degrees of freedom
## Residual deviance: 612.74  on 606  degrees of freedom
## AIC: 628.7
## 
## Number of Fisher Scoring iterations: 4
## 
## Call:
## glm(formula = limitdiscussions ~ condgraph * auto, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)                   -0.72895    0.82363   -0.89     0.38
## condgraph0. Half              -0.85363    1.27415   -0.67     0.50
## condgraph1. Control           -1.48662    1.37963   -1.08     0.28
## condgraph2. Very similar      -0.40530    1.24646   -0.33     0.75
## auto                          -0.06564    0.16223   -0.40     0.69
## condgraph0. Half:auto          0.12803    0.24192    0.53     0.60
## condgraph1. Control:auto       0.17213    0.25920    0.66     0.51
## condgraph2. Very similar:auto  0.00147    0.23926    0.01     1.00
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 625.96  on 613  degrees of freedom
## Residual deviance: 620.28  on 606  degrees of freedom
## AIC: 636.3
## 
## Number of Fisher Scoring iterations: 4
## 
## Call:
## glm(formula = limitdiscussions ~ condgraph * emp, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)
## (Intercept)                  -0.19694    0.80506   -0.24     0.81
## condgraph0. Half              0.69766    1.34955    0.52     0.61
## condgraph1. Control          -0.26179    1.48117   -0.18     0.86
## condgraph2. Very similar     -0.00532    1.36636    0.00     1.00
## emp                          -0.16693    0.15400   -1.08     0.28
## condgraph0. Half:emp         -0.15171    0.24950   -0.61     0.54
## condgraph1. Control:emp      -0.04366    0.26789   -0.16     0.87
## condgraph2. Very similar:emp -0.06382    0.25252   -0.25     0.80
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 625.96  on 613  degrees of freedom
## Residual deviance: 614.96  on 606  degrees of freedom
## AIC: 631
## 
## Number of Fisher Scoring iterations: 4
## 
## Call:
## glm(formula = limitdiscussions ~ condgraph * personalcontrol, 
##     family = "binomial", data = censorship_v2_clean)
## 
## Coefficients:
##                                          Estimate Std. Error z value Pr(>|z|)
## (Intercept)                              -0.37425    0.86254   -0.43     0.66
## condgraph0. Half                         -0.17752    1.40258   -0.13     0.90
## condgraph1. Control                      -1.03777    1.54437   -0.67     0.50
## condgraph2. Very similar                 -0.20007    1.41340   -0.14     0.89
## personalcontrol                          -0.13471    0.16793   -0.80     0.42
## condgraph0. Half:personalcontrol          0.00472    0.26351    0.02     0.99
## condgraph1. Control:personalcontrol       0.09157    0.28530    0.32     0.75
## condgraph2. Very similar:personalcontrol -0.03245    0.26697   -0.12     0.90
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 625.96  on 613  degrees of freedom
## Residual deviance: 619.26  on 606  degrees of freedom
## AIC: 635.3
## 
## Number of Fisher Scoring iterations: 4
## 
## Call:
## glm(formula = limitdiscussions ~ condgraph * vq, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                   2.5611     1.0044    2.55  0.01077 *  
## condgraph0. Half             -0.9359     1.4580   -0.64  0.52094    
## condgraph1. Control          -0.8970     1.7531   -0.51  0.60888    
## condgraph2. Very similar     -2.1967     1.5535   -1.41  0.15734    
## vq                           -0.6390     0.1771   -3.61  0.00031 ***
## condgraph0. Half:vq           0.1432     0.2544    0.56  0.57361    
## condgraph1. Control:vq        0.0953     0.2966    0.32  0.74801    
## condgraph2. Very similar:vq   0.3331     0.2653    1.26  0.20916    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 625.96  on 613  degrees of freedom
## Residual deviance: 591.06  on 606  degrees of freedom
## AIC: 607.1
## 
## Number of Fisher Scoring iterations: 4
## 
## Call:
## glm(formula = limitdiscussions ~ condgraph * lto, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                     1.158      1.197    0.97    0.333  
## condgraph0. Half                1.346      1.786    0.75    0.451  
## condgraph1. Control             0.442      1.882    0.23    0.814  
## condgraph2. Very similar        2.690      1.873    1.44    0.151  
## lto                            -0.417      0.226   -1.85    0.065 .
## condgraph0. Half:lto           -0.301      0.342   -0.88    0.378  
## condgraph1. Control:lto        -0.196      0.358   -0.55    0.584  
## condgraph2. Very similar:lto   -0.611      0.364   -1.68    0.093 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 625.96  on 613  degrees of freedom
## Residual deviance: 588.77  on 606  degrees of freedom
## AIC: 604.8
## 
## Number of Fisher Scoring iterations: 5
## 
## Call:
## glm(formula = limitdiscussions ~ condgraph * vs, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)                    2.615      1.242    2.11   0.0353 * 
## condgraph0. Half              -1.044      1.664   -0.63   0.5303   
## condgraph1. Control           -0.778      1.833   -0.42   0.6712   
## condgraph2. Very similar      -1.107      1.738   -0.64   0.5243   
## vs                            -0.642      0.218   -2.95   0.0032 **
## condgraph0. Half:vs            0.147      0.292    0.50   0.6159   
## condgraph1. Control:vs         0.031      0.323    0.10   0.9237   
## condgraph2. Very similar:vs    0.108      0.309    0.35   0.7263   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 625.96  on 613  degrees of freedom
## Residual deviance: 591.83  on 606  degrees of freedom
## AIC: 607.8
## 
## Number of Fisher Scoring iterations: 4
## 
## Call:
## glm(formula = limitdiscussions ~ condgraph * difficulty, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                                     Estimate Std. Error z value  Pr(>|z|)    
## (Intercept)                          -2.9110     0.6271   -4.64 0.0000034 ***
## condgraph0. Half                      0.7462     0.8224    0.91    0.3642    
## condgraph1. Control                  -0.4482     0.9170   -0.49    0.6250    
## condgraph2. Very similar             -0.0563     0.8360   -0.07    0.9463    
## difficulty                            0.4451     0.1365    3.26    0.0011 ** 
## condgraph0. Half:difficulty          -0.2061     0.1847   -1.12    0.2646    
## condgraph1. Control:difficulty        0.0132     0.2069    0.06    0.9490    
## condgraph2. Very similar:difficulty   0.0051     0.1961    0.03    0.9793    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 625.96  on 613  degrees of freedom
## Residual deviance: 585.06  on 606  degrees of freedom
## AIC: 601.1
## 
## Number of Fisher Scoring iterations: 4
## 
## Call:
## glm(formula = limitdiscussions ~ condgraph * solicitfreq, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                                      Estimate Std. Error z value Pr(>|z|)
## (Intercept)                             0.159      0.802    0.20     0.84
## condgraph0. Half                       -0.673      1.190   -0.57     0.57
## condgraph1. Control                    -1.782      1.281   -1.39     0.16
## condgraph2. Very similar                0.426      1.148    0.37     0.71
## solicitfreq                            -0.336      0.219   -1.53     0.13
## condgraph0. Half:solicitfreq            0.136      0.321    0.42     0.67
## condgraph1. Control:solicitfreq         0.329      0.344    0.96     0.34
## condgraph2. Very similar:solicitfreq   -0.266      0.327   -0.81     0.42
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 625.96  on 613  degrees of freedom
## Residual deviance: 611.31  on 606  degrees of freedom
## AIC: 627.3
## 
## Number of Fisher Scoring iterations: 4

DV: Discourage Suggestions

## 
## Call:
## glm(formula = discouragesuggestion ~ condgraph * comp, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)                     -0.610      1.375   -0.44     0.66
## condgraph0. Half                 3.466      2.194    1.58     0.11
## condgraph1. Control             -1.938      2.710   -0.72     0.47
## condgraph2. Very similar        -3.248      2.569   -1.26     0.21
## comp                            -0.416      0.271   -1.54     0.12
## condgraph0. Half:comp           -0.703      0.448   -1.57     0.12
## condgraph1. Control:comp         0.352      0.489    0.72     0.47
## condgraph2. Very similar:comp    0.678      0.451    1.50     0.13
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 290.47  on 613  degrees of freedom
## Residual deviance: 273.81  on 606  degrees of freedom
## AIC: 289.8
## 
## Number of Fisher Scoring iterations: 6
## 
## Call:
## glm(formula = discouragesuggestion ~ condgraph * auto, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)                     -1.542      1.406   -1.10     0.27
## condgraph0. Half                 1.559      2.006    0.78     0.44
## condgraph1. Control             -3.942      2.627   -1.50     0.13
## condgraph2. Very similar        -1.993      2.030   -0.98     0.33
## auto                            -0.251      0.291   -0.87     0.39
## condgraph0. Half:auto           -0.340      0.419   -0.81     0.42
## condgraph1. Control:auto         0.718      0.480    1.50     0.13
## condgraph2. Very similar:auto    0.480      0.392    1.23     0.22
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 290.47  on 613  degrees of freedom
## Residual deviance: 281.09  on 606  degrees of freedom
## AIC: 297.1
## 
## Number of Fisher Scoring iterations: 6
## 
## Call:
## glm(formula = discouragesuggestion ~ condgraph * emp, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                    -1.181      1.336   -0.88    0.377  
## condgraph0. Half                4.143      2.198    1.89    0.059 .
## condgraph1. Control            -3.096      2.725   -1.14    0.256  
## condgraph2. Very similar       -1.647      2.124   -0.78    0.438  
## emp                            -0.316      0.270   -1.17    0.242  
## condgraph0. Half:emp           -0.839      0.456   -1.84    0.066 .
## condgraph1. Control:emp         0.551      0.480    1.15    0.251  
## condgraph2. Very similar:emp    0.409      0.395    1.03    0.301  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 290.47  on 613  degrees of freedom
## Residual deviance: 274.93  on 606  degrees of freedom
## AIC: 290.9
## 
## Number of Fisher Scoring iterations: 6
## 
## Call:
## glm(formula = discouragesuggestion ~ condgraph * personalcontrol, 
##     family = "binomial", data = censorship_v2_clean)
## 
## Coefficients:
##                                          Estimate Std. Error z value Pr(>|z|)
## (Intercept)                                -1.185      1.435   -0.83     0.41
## condgraph0. Half                            3.326      2.233    1.49     0.14
## condgraph1. Control                        -4.201      2.893   -1.45     0.15
## condgraph2. Very similar                   -2.238      2.215   -1.01     0.31
## personalcontrol                            -0.320      0.294   -1.09     0.28
## condgraph0. Half:personalcontrol           -0.687      0.466   -1.47     0.14
## condgraph1. Control:personalcontrol         0.757      0.519    1.46     0.14
## condgraph2. Very similar:personalcontrol    0.523      0.420    1.25     0.21
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 290.47  on 613  degrees of freedom
## Residual deviance: 277.13  on 606  degrees of freedom
## AIC: 293.1
## 
## Number of Fisher Scoring iterations: 6
## 
## Call:
## glm(formula = discouragesuggestion ~ condgraph * vq, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                   0.0442     1.2997    0.03    0.973  
## condgraph0. Half              2.4498     2.1152    1.16    0.247  
## condgraph1. Control           0.5300     2.5159    0.21    0.833  
## condgraph2. Very similar     -5.1073     2.6446   -1.93    0.053 .
## vq                           -0.5114     0.2438   -2.10    0.036 *
## condgraph0. Half:vq          -0.4858     0.4111   -1.18    0.237  
## condgraph1. Control:vq       -0.0677     0.4401   -0.15    0.878  
## condgraph2. Very similar:vq   0.9529     0.4338    2.20    0.028 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 290.47  on 613  degrees of freedom
## Residual deviance: 269.71  on 606  degrees of freedom
## AIC: 285.7
## 
## Number of Fisher Scoring iterations: 6
## 
## Call:
## glm(formula = discouragesuggestion ~ condgraph * lto, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)
## (Intercept)                    -0.312      2.136   -0.15     0.88
## condgraph0. Half                0.684      3.163    0.22     0.83
## condgraph1. Control             4.868      3.344    1.46     0.15
## condgraph2. Very similar        1.895      2.790    0.68     0.50
## lto                            -0.468      0.415   -1.13     0.26
## condgraph0. Half:lto           -0.165      0.621   -0.27     0.79
## condgraph1. Control:lto        -1.022      0.686   -1.49     0.14
## condgraph2. Very similar:lto   -0.285      0.547   -0.52     0.60
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 290.47  on 613  degrees of freedom
## Residual deviance: 270.59  on 606  degrees of freedom
## AIC: 286.6
## 
## Number of Fisher Scoring iterations: 6
## 
## Call:
## glm(formula = discouragesuggestion ~ condgraph * vs, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                   0.1357     1.6429    0.08    0.934  
## condgraph0. Half             -0.7267     2.4925   -0.29    0.771  
## condgraph1. Control           0.0156     2.5420    0.01    0.995  
## condgraph2. Very similar     -0.9818     2.3154   -0.42    0.672  
## vs                           -0.5169     0.2985   -1.73    0.083 .
## condgraph0. Half:vs           0.1075     0.4510    0.24    0.812  
## condgraph1. Control:vs       -0.0253     0.4607   -0.05    0.956  
## condgraph2. Very similar:vs   0.2564     0.4168    0.62    0.539  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 290.47  on 613  degrees of freedom
## Residual deviance: 280.95  on 606  degrees of freedom
## AIC: 297
## 
## Number of Fisher Scoring iterations: 6
## 
## Call:
## glm(formula = discouragesuggestion ~ condgraph * difficulty, 
##     family = "binomial", data = censorship_v2_clean)
## 
## Coefficients:
##                                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                          -6.0311     1.4167   -4.26 0.000021 ***
## condgraph0. Half                      0.0421     1.9748    0.02    0.983    
## condgraph1. Control                  -4.3016     2.8698   -1.50    0.134    
## condgraph2. Very similar              2.2852     1.6077    1.42    0.155    
## difficulty                            0.7095     0.2633    2.69    0.007 ** 
## condgraph0. Half:difficulty          -0.0103     0.3690   -0.03    0.978    
## condgraph1. Control:difficulty        0.8788     0.5245    1.68    0.094 .  
## condgraph2. Very similar:difficulty  -0.2892     0.3216   -0.90    0.368    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 290.47  on 613  degrees of freedom
## Residual deviance: 241.94  on 606  degrees of freedom
## AIC: 257.9
## 
## Number of Fisher Scoring iterations: 7
## 
## Call:
## glm(formula = discouragesuggestion ~ condgraph * solicitfreq, 
##     family = "binomial", data = censorship_v2_clean)
## 
## Coefficients:
##                                      Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                            -1.626      1.395   -1.17    0.244  
## condgraph0. Half                       -0.709      2.142   -0.33    0.741  
## condgraph1. Control                    -3.219      2.325   -1.38    0.166  
## condgraph2. Very similar               -2.690      1.924   -1.40    0.162  
## solicitfreq                            -0.318      0.390   -0.81    0.416  
## condgraph0. Half:solicitfreq            0.165      0.586    0.28    0.778  
## condgraph1. Control:solicitfreq         0.822      0.602    1.37    0.172  
## condgraph2. Very similar:solicitfreq    0.856      0.513    1.67    0.095 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 290.47  on 613  degrees of freedom
## Residual deviance: 283.24  on 606  degrees of freedom
## AIC: 299.2
## 
## Number of Fisher Scoring iterations: 6

DV: Solicitation (Binary)

## 
## Call:
## glm(formula = solicit1 ~ condgraph * comp, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                     0.0842     1.1976    0.07    0.944  
## condgraph0. Half                0.4017     1.7701    0.23    0.820  
## condgraph1. Control             3.3476     2.8744    1.16    0.244  
## condgraph2. Very similar        0.8167     2.0933    0.39    0.696  
## comp                            0.4401     0.2348    1.87    0.061 .
## condgraph0. Half:comp          -0.1661     0.3314   -0.50    0.616  
## condgraph1. Control:comp       -0.5064     0.5064   -1.00    0.317  
## condgraph2. Very similar:comp  -0.2446     0.3785   -0.65    0.518  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 374.93  on 613  degrees of freedom
## Residual deviance: 362.70  on 606  degrees of freedom
## AIC: 378.7
## 
## Number of Fisher Scoring iterations: 5
## 
## Call:
## glm(formula = solicit1 ~ condgraph * auto, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)                      0.915      1.184    0.77     0.44
## condgraph0. Half                 1.539      1.739    0.89     0.38
## condgraph1. Control              3.875      2.500    1.55     0.12
## condgraph2. Very similar         2.274      1.756    1.30     0.20
## auto                             0.300      0.246    1.22     0.22
## condgraph0. Half:auto           -0.383      0.340   -1.13     0.26
## condgraph1. Control:auto        -0.619      0.459   -1.35     0.18
## condgraph2. Very similar:auto   -0.517      0.339   -1.52     0.13
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 374.93  on 613  degrees of freedom
## Residual deviance: 364.59  on 606  degrees of freedom
## AIC: 380.6
## 
## Number of Fisher Scoring iterations: 6
## 
## Call:
## glm(formula = solicit1 ~ condgraph * emp, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)
## (Intercept)                    1.9007     1.2451    1.53     0.13
## condgraph0. Half              -1.5552     1.8276   -0.85     0.39
## condgraph1. Control            2.0781     2.7540    0.75     0.45
## condgraph2. Very similar       0.3296     1.9046    0.17     0.86
## emp                            0.0898     0.2379    0.38     0.71
## condgraph0. Half:emp           0.2153     0.3416    0.63     0.53
## condgraph1. Control:emp       -0.2501     0.4780   -0.52     0.60
## condgraph2. Very similar:emp  -0.1258     0.3480   -0.36     0.72
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 374.93  on 613  degrees of freedom
## Residual deviance: 366.00  on 606  degrees of freedom
## AIC: 382
## 
## Number of Fisher Scoring iterations: 5
## 
## Call:
## glm(formula = solicit1 ~ condgraph * personalcontrol, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                                          Estimate Std. Error z value Pr(>|z|)
## (Intercept)                                 1.296      1.272    1.02     0.31
## condgraph0. Half                            0.106      1.902    0.06     0.96
## condgraph1. Control                         3.445      2.846    1.21     0.23
## condgraph2. Very similar                    1.635      1.956    0.84     0.40
## personalcontrol                             0.214      0.254    0.84     0.40
## condgraph0. Half:personalcontrol           -0.100      0.364   -0.28     0.78
## condgraph1. Control:personalcontrol        -0.515      0.507   -1.01     0.31
## condgraph2. Very similar:personalcontrol   -0.379      0.367   -1.03     0.30
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 374.93  on 613  degrees of freedom
## Residual deviance: 366.05  on 606  degrees of freedom
## AIC: 382.1
## 
## Number of Fisher Scoring iterations: 6
## 
## Call:
## glm(formula = solicit1 ~ condgraph * vq, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                    0.232      1.206    0.19     0.85  
## condgraph0. Half              -1.151      1.735   -0.66     0.51  
## condgraph1. Control            2.105      2.968    0.71     0.48  
## condgraph2. Very similar       0.684      1.885    0.36     0.72  
## vq                             0.381      0.218    1.75     0.08 .
## condgraph0. Half:vq            0.131      0.311    0.42     0.67  
## condgraph1. Control:vq        -0.266      0.488   -0.54     0.59  
## condgraph2. Very similar:vq   -0.196      0.324   -0.60     0.55  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 374.93  on 613  degrees of freedom
## Residual deviance: 359.10  on 606  degrees of freedom
## AIC: 375.1
## 
## Number of Fisher Scoring iterations: 5
## 
## Call:
## glm(formula = solicit1 ~ condgraph * lto, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                   -1.8134     1.8506   -0.98    0.327  
## condgraph0. Half               0.0720     2.4848    0.03    0.977  
## condgraph1. Control            2.7909     3.1137    0.90    0.370  
## condgraph2. Very similar      -1.9138     2.5279   -0.76    0.449  
## lto                            0.8122     0.3711    2.19    0.029 *
## condgraph0. Half:lto          -0.0864     0.4949   -0.17    0.861  
## condgraph1. Control:lto       -0.4218     0.6036   -0.70    0.485  
## condgraph2. Very similar:lto   0.3174     0.5109    0.62    0.534  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 374.93  on 613  degrees of freedom
## Residual deviance: 344.41  on 606  degrees of freedom
## AIC: 360.4
## 
## Number of Fisher Scoring iterations: 6
## 
## Call:
## glm(formula = solicit1 ~ condgraph * vs, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                   -1.089      1.494   -0.73    0.466  
## condgraph0. Half               1.347      2.030    0.66    0.507  
## condgraph1. Control            5.016      3.134    1.60    0.110  
## condgraph2. Very similar       1.139      2.077    0.55    0.583  
## vs                             0.618      0.272    2.27    0.023 *
## condgraph0. Half:vs           -0.310      0.364   -0.85    0.395  
## condgraph1. Control:vs        -0.766      0.533   -1.44    0.150  
## condgraph2. Very similar:vs   -0.264      0.376   -0.70    0.483  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 374.93  on 613  degrees of freedom
## Residual deviance: 359.22  on 606  degrees of freedom
## AIC: 375.2
## 
## Number of Fisher Scoring iterations: 5
## 
## Call:
## glm(formula = solicit1 ~ condgraph * difficulty, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                                     Estimate Std. Error z value  Pr(>|z|)    
## (Intercept)                            5.974      1.250    4.78 0.0000017 ***
## condgraph0. Half                      -2.535      1.454   -1.74   0.08125 .  
## condgraph1. Control                   -0.726      1.803   -0.40   0.68720    
## condgraph2. Very similar              -2.094      1.445   -1.45   0.14734    
## difficulty                            -0.782      0.233   -3.35   0.00081 ***
## condgraph0. Half:difficulty            0.425      0.284    1.50   0.13415    
## condgraph1. Control:difficulty         0.227      0.361    0.63   0.52869    
## condgraph2. Very similar:difficulty    0.251      0.291    0.86   0.38784    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 374.93  on 613  degrees of freedom
## Residual deviance: 334.20  on 606  degrees of freedom
## AIC: 350.2
## 
## Number of Fisher Scoring iterations: 6
## 
## Call:
## glm(formula = solicit1 ~ condgraph * solicitfreq, family = "binomial", 
##     data = censorship_v2_clean)
## 
## Coefficients:
##                                      Estimate Std. Error z value Pr(>|z|)  
## (Intercept)                            2.4930     1.2959    1.92    0.054 .
## condgraph0. Half                      -1.1655     1.7163   -0.68    0.497  
## condgraph1. Control                    0.7315     2.2056    0.33    0.740  
## condgraph2. Very similar              -3.1445     1.6175   -1.94    0.052 .
## solicitfreq                           -0.0355     0.3423   -0.10    0.917  
## condgraph0. Half:solicitfreq           0.2225     0.4568    0.49    0.626  
## condgraph1. Control:solicitfreq       -0.0113     0.5808   -0.02    0.984  
## condgraph2. Very similar:solicitfreq   0.8440     0.4557    1.85    0.064 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 374.93  on 613  degrees of freedom
## Residual deviance: 359.53  on 606  degrees of freedom
## AIC: 375.5
## 
## Number of Fisher Scoring iterations: 5

DV: Solicitation (Likert)

## 
## Call:
## lm(formula = vs ~ condgraph * comp, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.971 -0.522  0.045  0.584  2.347 
## 
## Coefficients:
##                               Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                     3.7715     0.3352   11.25 < 0.0000000000000002 ***
## condgraph0. Half               -0.8625     0.5061   -1.70                0.089 .  
## condgraph1. Control            -0.1601     0.5487   -0.29                0.771    
## condgraph2. Very similar       -1.2390     0.5797   -2.14                0.033 *  
## comp                            0.3778     0.0607    6.22        0.00000000092 ***
## condgraph0. Half:comp           0.1338     0.0894    1.50                0.135    
## condgraph1. Control:comp        0.0154     0.0966    0.16                0.873    
## condgraph2. Very similar:comp   0.1678     0.1008    1.67                0.096 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.82 on 606 degrees of freedom
## Multiple R-squared:  0.225,  Adjusted R-squared:  0.216 
## F-statistic: 25.1 on 7 and 606 DF,  p-value: <0.0000000000000002
## 
## Call:
## lm(formula = vs ~ condgraph * auto, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.063 -0.496  0.096  0.626  2.171 
## 
## Coefficients:
##                               Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                     4.8740     0.3225   15.11 <0.0000000000000002 ***
## condgraph0. Half               -0.8340     0.4760   -1.75              0.0802 .  
## condgraph1. Control            -0.4193     0.4725   -0.89              0.3752    
## condgraph2. Very similar       -0.3631     0.4614   -0.79              0.4315    
## auto                            0.1886     0.0630    2.99              0.0029 ** 
## condgraph0. Half:auto           0.1495     0.0906    1.65              0.0995 .  
## condgraph1. Control:auto        0.0772     0.0898    0.86              0.3905    
## condgraph2. Very similar:auto   0.0400     0.0880    0.45              0.6494    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.88 on 606 degrees of freedom
## Multiple R-squared:  0.103,  Adjusted R-squared:  0.0924 
## F-statistic: 9.92 on 7 and 606 DF,  p-value: 0.00000000000945
## 
## Call:
## lm(formula = vs ~ condgraph * emp, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.202 -0.489  0.050  0.573  2.067 
## 
## Coefficients:
##                              Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                    4.3047     0.3075   14.00 < 0.0000000000000002 ***
## condgraph0. Half              -1.6116     0.5049   -3.19               0.0015 ** 
## condgraph1. Control            0.0200     0.5092    0.04               0.9687    
## condgraph2. Very similar      -0.4828     0.4930   -0.98               0.3278    
## emp                            0.2906     0.0577    5.04           0.00000062 ***
## condgraph0. Half:emp           0.2695     0.0912    2.95               0.0033 ** 
## condgraph1. Control:emp       -0.0224     0.0907   -0.25               0.8049    
## condgraph2. Very similar:emp   0.0489     0.0893    0.55               0.5842    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.85 on 606 degrees of freedom
## Multiple R-squared:  0.177,  Adjusted R-squared:  0.167 
## F-statistic: 18.6 on 7 and 606 DF,  p-value: <0.0000000000000002
## 
## Call:
## lm(formula = vs ~ condgraph * personalcontrol, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.749 -0.469  0.063  0.610  2.187 
## 
## Coefficients:
##                                          Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                                4.4153     0.3307   13.35 < 0.0000000000000002 ***
## condgraph0. Half                          -1.4348     0.5216   -2.75               0.0061 ** 
## condgraph1. Control                       -0.3553     0.5244   -0.68               0.4983    
## condgraph2. Very similar                  -0.5235     0.5083   -1.03               0.3034    
## personalcontrol                            0.2748     0.0635    4.33             0.000018 ***
## condgraph0. Half:personalcontrol           0.2487     0.0969    2.56               0.0106 *  
## condgraph1. Control:personalcontrol        0.0522     0.0967    0.54               0.5898    
## condgraph2. Very similar:personalcontrol   0.0617     0.0947    0.65               0.5152    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.85 on 606 degrees of freedom
## Multiple R-squared:  0.16,   Adjusted R-squared:  0.15 
## F-statistic: 16.5 on 7 and 606 DF,  p-value: <0.0000000000000002
## 
## Call:
## lm(formula = vs ~ condgraph * vq, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.235 -0.424  0.076  0.579  2.914 
## 
## Coefficients:
##                             Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                   3.7267     0.3441   10.83 < 0.0000000000000002 ***
## condgraph0. Half             -1.2883     0.5105   -2.52                0.012 *  
## condgraph1. Control          -0.9003     0.5900   -1.53                0.128    
## condgraph2. Very similar     -0.6218     0.5349   -1.16                0.246    
## vq                            0.3595     0.0582    6.18         0.0000000012 ***
## condgraph0. Half:vq           0.2094     0.0854    2.45                0.014 *  
## condgraph1. Control:vq        0.1275     0.0959    1.33                0.184    
## condgraph2. Very similar:vq   0.0687     0.0883    0.78                0.437    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.81 on 606 degrees of freedom
## Multiple R-squared:  0.254,  Adjusted R-squared:  0.245 
## F-statistic: 29.5 on 7 and 606 DF,  p-value: <0.0000000000000002
## 
## Call:
## lm(formula = vs ~ condgraph * lto, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -5.520 -0.474  0.094  0.655  1.768 
## 
## Coefficients:
##                              Estimate Std. Error t value         Pr(>|t|)    
## (Intercept)                    3.4804     0.4600    7.57 0.00000000000014 ***
## condgraph0. Half               0.4662     0.6571    0.71             0.48    
## condgraph1. Control            0.5588     0.6656    0.84             0.40    
## condgraph2. Very similar       0.1576     0.6476    0.24             0.81    
## lto                            0.4343     0.0846    5.14 0.00000037809485 ***
## condgraph0. Half:lto          -0.0845     0.1210   -0.70             0.49    
## condgraph1. Control:lto       -0.0992     0.1218   -0.81             0.42    
## condgraph2. Very similar:lto  -0.0495     0.1189   -0.42             0.68    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.88 on 606 degrees of freedom
## Multiple R-squared:  0.118,  Adjusted R-squared:  0.108 
## F-statistic: 11.6 on 7 and 606 DF,  p-value: 0.0000000000000793
## 
## Call:
## lm(formula = vs ~ condgraph * vs, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -4.82   0.00   0.00   0.00   1.19 
## 
## Coefficients:
##                             Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                   5.8146     0.0372   156.2 <0.0000000000000002 ***
## condgraph0. Half             -5.8146     0.2262   -25.7 <0.0000000000000002 ***
## condgraph1. Control          -5.8146     0.2479   -23.5 <0.0000000000000002 ***
## condgraph2. Very similar     -5.8146     0.2354   -24.7 <0.0000000000000002 ***
## vs:condgraph0. Half           1.0000     0.0378    26.4 <0.0000000000000002 ***
## vs:condgraph1. Control        1.0000     0.0414    24.2 <0.0000000000000002 ***
## vs:condgraph2. Very similar   1.0000     0.0402    24.9 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.46 on 607 degrees of freedom
## Multiple R-squared:  0.759,  Adjusted R-squared:  0.757 
## F-statistic:  319 on 6 and 607 DF,  p-value: <0.0000000000000002
## 
## Call:
## lm(formula = vs ~ condgraph * difficulty, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.412 -0.559  0.112  0.679  1.660 
## 
## Coefficients:
##                                     Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                           6.3350     0.2127   29.78 <0.0000000000000002 ***
## condgraph0. Half                     -0.5529     0.2838   -1.95              0.0519 .  
## condgraph1. Control                  -0.2113     0.2793   -0.76              0.4497    
## condgraph2. Very similar             -0.3462     0.2688   -1.29              0.1983    
## difficulty                           -0.1319     0.0504   -2.61              0.0092 ** 
## condgraph0. Half:difficulty           0.1423     0.0691    2.06              0.0399 *  
## condgraph1. Control:difficulty        0.0534     0.0702    0.76              0.4468    
## condgraph2. Very similar:difficulty   0.0392     0.0701    0.56              0.5763    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.92 on 606 degrees of freedom
## Multiple R-squared:  0.0246, Adjusted R-squared:  0.0134 
## F-statistic: 2.19 on 7 and 606 DF,  p-value: 0.0338
## 
## Call:
## lm(formula = vs ~ condgraph * solicitfreq, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.933 -0.494  0.066  0.582  1.989 
## 
## Coefficients:
##                                      Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)                           4.49114    0.31530   14.24 < 0.0000000000000002 ***
## condgraph0. Half                     -0.41870    0.45212   -0.93                 0.35    
## condgraph1. Control                   0.49248    0.45057    1.09                 0.27    
## condgraph2. Very similar             -0.09625    0.42703   -0.23                 0.82    
## solicitfreq                           0.36072    0.08372    4.31             0.000019 ***
## condgraph0. Half:solicitfreq          0.10843    0.11921    0.91                 0.36    
## condgraph1. Control:solicitfreq      -0.12335    0.11949   -1.03                 0.30    
## condgraph2. Very similar:solicitfreq  0.00914    0.11480    0.08                 0.94    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.88 on 606 degrees of freedom
## Multiple R-squared:  0.119,  Adjusted R-squared:  0.108 
## F-statistic: 11.6 on 7 and 606 DF,  p-value: 0.0000000000000627
## 
## Call:
## lm(formula = solicitfreq ~ condgraph * comp, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.873 -0.672  0.146  0.426  1.824 
## 
## Coefficients:
##                               Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                     2.9765     0.3429    8.68 <0.0000000000000002 ***
## condgraph0. Half               -0.5344     0.5179   -1.03                0.30    
## condgraph1. Control             0.6124     0.5615    1.09                0.28    
## condgraph2. Very similar       -0.9013     0.5931   -1.52                0.13    
## comp                            0.1280     0.0621    2.06                0.04 *  
## condgraph0. Half:comp           0.0975     0.0915    1.07                0.29    
## condgraph1. Control:comp       -0.1114     0.0989   -1.13                0.26    
## condgraph2. Very similar:comp   0.1261     0.1031    1.22                0.22    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.84 on 606 degrees of freedom
## Multiple R-squared:  0.0451, Adjusted R-squared:  0.034 
## F-statistic: 4.09 on 7 and 606 DF,  p-value: 0.000214
## 
## Call:
## lm(formula = solicitfreq ~ condgraph * auto, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.734 -0.648  0.225  0.406  1.614 
## 
## Coefficients:
##                               Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                     3.5080     0.3115   11.26 <0.0000000000000002 ***
## condgraph0. Half               -0.4348     0.4598   -0.95                0.34    
## condgraph1. Control             0.5075     0.4564    1.11                0.27    
## condgraph2. Very similar       -0.2262     0.4456   -0.51                0.61    
## auto                            0.0323     0.0609    0.53                0.60    
## condgraph0. Half:auto           0.0916     0.0875    1.05                0.30    
## condgraph1. Control:auto       -0.0951     0.0868   -1.10                0.27    
## condgraph2. Very similar:auto   0.0198     0.0850    0.23                0.82    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.85 on 606 degrees of freedom
## Multiple R-squared:  0.0152, Adjusted R-squared:  0.00383 
## F-statistic: 1.34 on 7 and 606 DF,  p-value: 0.23
## 
## Call:
## lm(formula = solicitfreq ~ condgraph * emp, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.735 -0.677  0.193  0.403  1.786 
## 
## Coefficients:
##                              Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                    3.2389     0.3054   10.61 <0.0000000000000002 ***
## condgraph0. Half              -0.4683     0.5015   -0.93               0.351    
## condgraph1. Control            0.5025     0.5057    0.99               0.321    
## condgraph2. Very similar      -1.2276     0.4897   -2.51               0.012 *  
## emp                            0.0827     0.0573    1.44               0.149    
## condgraph0. Half:emp           0.0883     0.0906    0.97               0.330    
## condgraph1. Control:emp       -0.0928     0.0901   -1.03               0.303    
## condgraph2. Very similar:emp   0.1948     0.0887    2.20               0.028 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.84 on 606 degrees of freedom
## Multiple R-squared:  0.0447, Adjusted R-squared:  0.0336 
## F-statistic: 4.05 on 7 and 606 DF,  p-value: 0.00024
## 
## Call:
## lm(formula = solicitfreq ~ condgraph * personalcontrol, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.740 -0.659  0.213  0.397  1.729 
## 
## Coefficients:
##                                          Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                                3.3295     0.3280   10.15 <0.0000000000000002 ***
## condgraph0. Half                          -0.5469     0.5173   -1.06                0.29    
## condgraph1. Control                        0.6232     0.5200    1.20                0.23    
## condgraph2. Very similar                  -0.7518     0.5041   -1.49                0.14    
## personalcontrol                            0.0666     0.0630    1.06                0.29    
## condgraph0. Half:personalcontrol           0.1072     0.0961    1.11                0.27    
## condgraph1. Control:personalcontrol       -0.1155     0.0959   -1.20                0.23    
## condgraph2. Very similar:personalcontrol   0.1142     0.0940    1.22                0.22    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.85 on 606 degrees of freedom
## Multiple R-squared:  0.028,  Adjusted R-squared:  0.0168 
## F-statistic:  2.5 on 7 and 606 DF,  p-value: 0.0156
## 
## Call:
## lm(formula = solicitfreq ~ condgraph * vq, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.680 -0.679  0.256  0.405  1.709 
## 
## Coefficients:
##                             Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                   3.3391     0.3599    9.28 <0.0000000000000002 ***
## condgraph0. Half             -0.9423     0.5340   -1.76               0.078 .  
## condgraph1. Control           0.2017     0.6171    0.33               0.744    
## condgraph2. Very similar     -1.0385     0.5596   -1.86               0.064 .  
## vq                            0.0568     0.0608    0.93               0.351    
## condgraph0. Half:vq           0.1667     0.0893    1.87               0.062 .  
## condgraph1. Control:vq       -0.0338     0.1003   -0.34               0.736    
## condgraph2. Very similar:vq   0.1494     0.0924    1.62               0.106    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.84 on 606 degrees of freedom
## Multiple R-squared:  0.0395, Adjusted R-squared:  0.0284 
## F-statistic: 3.56 on 7 and 606 DF,  p-value: 0.000925
## 
## Call:
## lm(formula = solicitfreq ~ condgraph * lto, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.727 -0.684  0.275  0.343  1.652 
## 
## Coefficients:
##                              Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                    3.7538     0.4487    8.37 0.00000000000000041 ***
## condgraph0. Half              -0.0497     0.6410   -0.08               0.938    
## condgraph1. Control           -0.1243     0.6493   -0.19               0.848    
## condgraph2. Very similar      -1.0976     0.6317   -1.74               0.083 .  
## lto                           -0.0158     0.0825   -0.19               0.848    
## condgraph0. Half:lto           0.0198     0.1181    0.17               0.867    
## condgraph1. Control:lto        0.0258     0.1188    0.22               0.828    
## condgraph2. Very similar:lto   0.1827     0.1160    1.57               0.116    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.85 on 606 degrees of freedom
## Multiple R-squared:  0.0124, Adjusted R-squared:  0.00101 
## F-statistic: 1.09 on 7 and 606 DF,  p-value: 0.369
## 
## Call:
## lm(formula = solicitfreq ~ condgraph * vs, data = censorship_v2_clean)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7868 -0.6162  0.0518  0.5065  1.8744 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   1.8622     0.4216    4.42 0.000012 ***
## condgraph0. Half             -0.1221     0.5769   -0.21     0.83    
## condgraph1. Control           0.6228     0.6039    1.03     0.30    
## condgraph2. Very similar     -0.3332     0.5882   -0.57     0.57    
## vs                            0.3107     0.0716    4.34 0.000017 ***
## condgraph0. Half:vs           0.0304     0.0979    0.31     0.76    
## condgraph1. Control:vs       -0.1061     0.1023   -1.04     0.30    
## condgraph2. Very similar:vs   0.0441     0.1008    0.44     0.66    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.81 on 606 degrees of freedom
## Multiple R-squared:  0.119,  Adjusted R-squared:  0.109 
## F-statistic: 11.7 on 7 and 606 DF,  p-value: 0.0000000000000589
## 
## Call:
## lm(formula = solicitfreq ~ condgraph * difficulty, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.700 -0.669  0.259  0.355  1.721 
## 
## Coefficients:
##                                     Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                           3.6292     0.1971   18.41 <0.0000000000000002 ***
## condgraph0. Half                     -0.0808     0.2630   -0.31                0.76    
## condgraph1. Control                   0.0929     0.2589    0.36                0.72    
## condgraph2. Very similar              0.2043     0.2491    0.82                0.41    
## difficulty                            0.0100     0.0467    0.21                0.83    
## condgraph0. Half:difficulty           0.0384     0.0640    0.60                0.55    
## condgraph1. Control:difficulty       -0.0213     0.0650   -0.33                0.74    
## condgraph2. Very similar:difficulty  -0.1025     0.0650   -1.58                0.12    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.85 on 606 degrees of freedom
## Multiple R-squared:  0.0145, Adjusted R-squared:  0.00313 
## F-statistic: 1.27 on 7 and 606 DF,  p-value: 0.26
## 
## Call:
## lm(formula = solicitfreq ~ condgraph * solicitfreq, data = censorship_v2_clean)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -2.67   0.00   0.00   0.00   1.33 
## 
## Coefficients:
##                                      Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)                            3.6689     0.0346   106.2 <0.0000000000000002 ***
## condgraph0. Half                      -3.6689     0.1609   -22.8 <0.0000000000000002 ***
## condgraph1. Control                   -3.6689     0.1598   -22.9 <0.0000000000000002 ***
## condgraph2. Very similar              -3.6689     0.1438   -25.5 <0.0000000000000002 ***
## solicitfreq:condgraph0. Half           1.0000     0.0412    24.3 <0.0000000000000002 ***
## solicitfreq:condgraph1. Control        1.0000     0.0413    24.2 <0.0000000000000002 ***
## solicitfreq:condgraph2. Very similar   1.0000     0.0381    26.2 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.42 on 607 degrees of freedom
## Multiple R-squared:  0.756,  Adjusted R-squared:  0.753 
## F-statistic:  313 on 6 and 607 DF,  p-value: <0.0000000000000002

Moderation

VS~condgraph*personalcontrol

## SIMPLE SLOPES ANALYSIS 
## 
## Slope of personalcontrol when condgraph = 2. Very similar: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.34   0.07     4.79   0.00
## 
## Slope of personalcontrol when condgraph = 1. Control: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.33   0.07     4.48   0.00
## 
## Slope of personalcontrol when condgraph = -1. Very diverse: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.27   0.06     4.33   0.00
## 
## Slope of personalcontrol when condgraph = 0. Half: 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.52   0.07     7.15   0.00
c2_vd_cont <- censorship_v2_clean %>%  as.data.frame() %>% filter(cond == "very_diverse" | cond == "noinformation")
c2_vd_sim <- censorship_v2_clean %>%  as.data.frame() %>% filter(cond == "very_diverse" | cond == "very_similar")
JNplots::jnt_cat(
  X = "personalcontrol",
  Y = "vs",
  m = "condgraph",
  data = c2_vd_cont,
  plot.full = TRUE
)

## $coeff
## Generalized least squares fit by REML
##   Model: Yi ~ Xi * gi 
##   Data: NULL 
##   AIC BIC logLik
##   793 812   -391
## 
## Coefficients:
##                 Value Std.Error t-value p-value
## (Intercept)       4.4      0.33    13.3    0.00
## Xi                0.3      0.06     4.3    0.00
## gi1. Control     -0.4      0.52    -0.7    0.50
## Xi:gi1. Control   0.1      0.10     0.5    0.59
## 
##  Correlation: 
##                 (Intr) Xi    g1.Cnt
## Xi              -0.98              
## gi1. Control    -0.63   0.62       
## Xi:gi1. Control  0.64  -0.66 -0.98 
## 
## Standardized residuals:
##    Min     Q1    Med     Q3    Max 
## -4.382 -0.595  0.057  0.761  2.165 
## 
## Residual standard error: 0.86 
## Degrees of freedom: 306 total; 302 residual
## 
## $`lower limit in X`
## (Intercept) 
##         1.7 
## 
## $`upper limit in X`
## (Intercept) 
##          12 
## 
## [[4]]
JNplots::jnt_cat(
  X = "personalcontrol",
  Y = "vs",
  m = "condgraph",
  data = c2_vd_sim,
  plot.full = TRUE
)

## $coeff
## Generalized least squares fit by REML
##   Model: Yi ~ Xi * gi 
##   Data: NULL 
##   AIC BIC logLik
##   800 819   -395
## 
## Coefficients:
##                      Value Std.Error t-value p-value
## (Intercept)            4.4      0.33    13.2    0.00
## Xi                     0.3      0.06     4.3    0.00
## gi2. Very similar     -0.5      0.51    -1.0    0.31
## Xi:gi2. Very similar   0.1      0.10     0.6    0.52
## 
##  Correlation: 
##                      (Intr) Xi    g2.Vrs
## Xi                   -0.98              
## gi2. Very similar    -0.65   0.64       
## Xi:gi2. Very similar  0.66  -0.67 -0.98 
## 
## Standardized residuals:
##    Min     Q1    Med     Q3    Max 
## -4.264 -0.528  0.073  0.704  2.360 
## 
## Residual standard error: 0.87 
## Degrees of freedom: 306 total; 302 residual
## 
## $`lower limit in X`
## (Intercept) 
##         4.1 
## 
## $`upper limit in X`
## (Intercept) 
##          13 
## 
## [[4]]