districtinfo<-district %>% select(DISTNAME,DPETSPEP,DPFPASPEP)
summary(districtinfo$DPETSPEP)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 9.90 12.10 12.27 14.20 51.70
summary(districtinfo$DPFPASPEP)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 5.800 8.900 9.711 12.500 49.000 5
districtinfo %>% filter(DPFPASPEP>0)
## # A tibble: 1,201 × 3
## DISTNAME DPETSPEP DPFPASPEP
## <chr> <dbl> <dbl>
## 1 CAYUGA ISD 14.6 28.9
## 2 ELKHART ISD 12.1 8.8
## 3 FRANKSTON ISD 13.1 8.4
## 4 NECHES ISD 10.5 10.1
## 5 PALESTINE ISD 13.5 6.1
## 6 WESTWOOD ISD 14.5 9.4
## 7 SLOCUM ISD 14.7 9.9
## 8 ANDREWS ISD 10.4 10.9
## 9 PINEYWOODS COMMUNITY ACADEMY 11.6 9.2
## 10 HUDSON ISD 11.9 10.3
## # ℹ 1,191 more rows
districtinfov2<-districtinfo %>% filter(DPFPASPEP>0)
ggplot(districtinfov2, aes(x=DPFPASPEP, y=DPETSPEP))+ geom_point()
cor(districtinfov2$DPFPASPEP,districtinfov2$DPETSPEP)
## [1] 0.371033
variables are missing from DPFPASEP “money spent on special education” observations reduced from 1207 to 1201 once na’s were removed no real correlation No real correlation between percent special education and money spent on special education. analysis would have to be expanded to how special education funing is allocated