Filter Rows
stocks %>% filter(adjusted > 100)
## # A tibble: 439 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 GE 2023-12-19 98.7 101. 98.7 101. 5957138 100.
## 2 GE 2023-12-21 99.1 101. 99.1 101. 5185165 101.
## 3 GE 2023-12-22 102. 102. 101. 101. 4030650 101.
## 4 GE 2023-12-26 101. 102. 101. 102. 2480063 101.
## 5 GE 2023-12-27 101. 102. 101. 102. 3314310 102.
## 6 GE 2023-12-28 102. 103. 102. 102. 3965494 102.
## 7 GE 2023-12-29 102. 103. 101. 102. 4441133 102.
## 8 GE 2024-01-02 101. 102. 100. 101. 5189425 100.
## 9 GE 2024-01-05 99.7 101. 99.5 101. 4190157 100.
## 10 GE 2024-01-08 101. 102. 99.1 102. 6920068 102.
## # ℹ 429 more rows
Arrange Rows
arrange(stocks, desc(close))
## # A tibble: 9,335 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 GE 2024-05-08 168. 170. 168. 169. 4878200 169.
## 2 GE 2024-05-07 168. 171. 167. 169. 4781800 168.
## 3 GE 2024-05-28 167 169. 165. 169. 5749700 168.
## 4 GE 2024-05-06 165. 168. 165. 168. 4831600 168.
## 5 GE 2024-05-09 169. 169. 167. 168. 4968800 167.
## 6 GE 2024-05-24 166. 169. 164. 167. 5498700 167.
## 7 GE 2024-05-23 162. 166. 162. 165. 7411500 165.
## 8 GE 2024-05-31 164. 165. 160. 165. 11704800 165.
## 9 GE 2024-04-29 163 166. 163 164. 5371700 164.
## 10 GE 2024-05-30 163. 165. 163. 164. 4385400 164.
## # ℹ 9,325 more rows
Select Columns
select(stocks, date, open, high, close)
## # A tibble: 9,335 × 4
## date open high close
## <date> <dbl> <dbl> <dbl>
## 1 2019-03-29 29 30.0 30.0
## 2 2019-04-01 31 31.1 31.0
## 3 2019-04-02 31 31.5 31
## 4 2019-04-03 31 31 31
## 5 2019-04-04 31.1 31.2 31
## 6 2019-04-05 31.2 31.5 31.5
## 7 2019-04-08 31.1 31.8 31.7
## 8 2019-04-09 32 32 31.7
## 9 2019-04-10 32.0 33.4 32.2
## 10 2019-04-11 32.7 33.2 33
## # ℹ 9,325 more rows
select(stocks, date, volume, low)
## # A tibble: 9,335 × 3
## date volume low
## <date> <dbl> <dbl>
## 1 2019-03-29 61200 29
## 2 2019-04-01 222600 30.5
## 3 2019-04-02 40900 30.6
## 4 2019-04-03 28400 29.9
## 5 2019-04-04 369400 31.0
## 6 2019-04-05 179900 30.9
## 7 2019-04-08 535500 31.1
## 8 2019-04-09 310100 31.0
## 9 2019-04-10 324300 31.5
## 10 2019-04-11 474200 32.7
## # ℹ 9,325 more rows
select(stocks, adjusted, symbol, high, open)
## # A tibble: 9,335 × 4
## adjusted symbol high open
## <dbl> <chr> <dbl> <dbl>
## 1 29.6 BALY 30.0 29
## 2 30.6 BALY 31.1 31
## 3 30.6 BALY 31.5 31
## 4 30.6 BALY 31 31
## 5 30.6 BALY 31.2 31.1
## 6 31.1 BALY 31.5 31.2
## 7 31.3 BALY 31.8 31.1
## 8 31.3 BALY 32 32
## 9 31.8 BALY 33.4 32.0
## 10 32.6 BALY 33.2 32.7
## # ℹ 9,325 more rows
Summarize by Groups
stocks %>%
#Group by Volume
group_by(symbol) %>%
summarise( min_volume = min(volume),
max_volume = max(volume)
)
## # A tibble: 6 × 3
## symbol min_volume max_volume
## <chr> <dbl> <dbl>
## 1 BALY 28400 5640000
## 2 CRON 482100 129502100
## 3 GE 1981995 80465058
## 4 NVDA 97884000 2511528000
## 5 SNAP 5271200 330993900
## 6 XOM 3979400 84439400
Add New Columns
mutate(stocks,
gain = high - low) %>%
select(gain)
## # A tibble: 9,335 × 1
## gain
## <dbl>
## 1 0.950
## 2 0.586
## 3 0.890
## 4 1.10
## 5 0.260
## 6 0.640
## 7 0.730
## 8 0.980
## 9 1.89
## 10 0.525
## # ℹ 9,325 more rows