# Load packages
library(tidyverse)
library(tidyquant)
Get stock prices and convert to returns
Ra <- c ("NKE", "AMZN", "MSFT") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 99 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 NKE 2022-01-31 -0.101
## 2 NKE 2022-02-28 -0.0778
## 3 NKE 2022-03-31 -0.0123
## 4 NKE 2022-04-29 -0.0733
## 5 NKE 2022-05-31 -0.0469
## 6 NKE 2022-06-30 -0.138
## 7 NKE 2022-07-29 0.124
## 8 NKE 2022-08-31 -0.0737
## 9 NKE 2022-09-30 -0.217
## 10 NKE 2022-10-31 0.115
## # ℹ 89 more rows
Get baseline and convert to returns
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 33 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## # ℹ 23 more rows
Join the two tables
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 99 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 NKE 2022-01-31 -0.101 -0.101
## 2 NKE 2022-02-28 -0.0778 -0.0343
## 3 NKE 2022-03-31 -0.0123 0.0341
## 4 NKE 2022-04-29 -0.0733 -0.133
## 5 NKE 2022-05-31 -0.0469 -0.0205
## 6 NKE 2022-06-30 -0.138 -0.0871
## 7 NKE 2022-07-29 0.124 0.123
## 8 NKE 2022-08-31 -0.0737 -0.0464
## 9 NKE 2022-09-30 -0.217 -0.105
## 10 NKE 2022-10-31 0.115 0.0390
## # ℹ 89 more rows
Calculate CAPM
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 NKE -0.245 -0.0177 -0.193 0.687 0.718 0.542 0.467
## 2 AMZN -0.0031 0.0009 0.0109 1.37 1.57 1.85 0.841
## 3 MSFT 0.063 0.006 0.0742 0.825 0.750 0.543 0.806
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
Which stock has a positive skewed distribution of returns?
RaRb_skewness <- RaRb %>%
tq_performance(Ra = Ra,
Rb = NULL,
performance_fun = skewness)
RaRb_skewness
## # A tibble: 3 × 2
## # Groups: symbol [3]
## symbol skewness.1
## <chr> <dbl>
## 1 NKE -0.189
## 2 AMZN 0.232
## 3 MSFT 0.104
Amazon and Microsoft are the stocks that have a positively skewed
distribution of returns while Nike has a negatively skewed distribution
of returns.