# Load Packages
library(tidyverse)
library(tidyquant)
Ra <- c("MSFT", "UBER", "NVDA") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 99 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 MSFT 2022-01-31 -0.0710
## 2 MSFT 2022-02-28 -0.0372
## 3 MSFT 2022-03-31 0.0319
## 4 MSFT 2022-04-29 -0.0999
## 5 MSFT 2022-05-31 -0.0181
## 6 MSFT 2022-06-30 -0.0553
## 7 MSFT 2022-07-29 0.0931
## 8 MSFT 2022-08-31 -0.0667
## 9 MSFT 2022-09-30 -0.109
## 10 MSFT 2022-10-31 -0.00331
## # ℹ 89 more rows
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 33 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## # ℹ 23 more rows
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 99 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 MSFT 2022-01-31 -0.0710 -0.101
## 2 MSFT 2022-02-28 -0.0372 -0.0343
## 3 MSFT 2022-03-31 0.0319 0.0341
## 4 MSFT 2022-04-29 -0.0999 -0.133
## 5 MSFT 2022-05-31 -0.0181 -0.0205
## 6 MSFT 2022-06-30 -0.0553 -0.0871
## 7 MSFT 2022-07-29 0.0931 0.123
## 8 MSFT 2022-08-31 -0.0667 -0.0464
## 9 MSFT 2022-09-30 -0.109 -0.105
## 10 MSFT 2022-10-31 -0.00331 0.0390
## # ℹ 89 more rows
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 MSFT 0.0697 0.0065 0.0802 0.821 0.855 0.567 0.802
## 2 UBER 0.162 0.0166 0.218 1.44 0.707 1.70 0.687
## 3 NVDA 0.592 0.0434 0.666 2.29 2.59 1.38 0.871
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
RaRb_skew <- RaRb %>%
tq_performance(Ra = Ra,
Rb = NULL,
performance_fun = skewness)
RaRb_skew
## # A tibble: 3 × 2
## # Groups: symbol [3]
## symbol skewness.1
## <chr> <dbl>
## 1 MSFT 0.104
## 2 UBER 0.181
## 3 NVDA -0.181
Microsoft and Uber both have a positively skewed distribution of return. While Nvidia has a negatively skewed distribution of return. Despite this information all three of the stocks I chose have a positive alpha