#Load LEA Libraries
## Warning in system("timedatectl", intern = TRUE): running command 'timedatectl'
## had status 1
Import data for all 1252 individuals in the microsat dataset
Convert format (just matrix)
## Input file in the STRUCTURE format. The genotypic matrix has 1252 individuals and 11 markers.
## The number of extra rows is 0 and the number of extra columns is 0 .
## Missing alleles are encoded as -9 , converted as 9.
## Output files: output/europe/lea/microsats/all_pops_microsat_matrix.str.geno .lfmm.
Convert format (with header and pop info)
struct2geno("output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str", ploidy=2, FORMAT=1, extra.row=1, extra.column=3)
## Input file in the STRUCTURE format. The genotypic matrix has 1252 individuals and 11 markers.
## The number of extra rows is 1 and the number of extra columns is 3 .
## Missing alleles are encoded as -9 , converted as 9.
## Output files: output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.geno .lfmm.
Check
a<-read.lfmm("output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.lfmm")
b<-read.geno("output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.geno")
PCA with LEA
#Create pca
pc=pca("output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.lfmm", K=78, scale=TRUE) #set K to # of pops, with scaling
## [1] "******************************"
## [1] " Principal Component Analysis "
## [1] "******************************"
## summary of the options:
##
## -n (number of individuals) 1252
## -L (number of loci) 189
## -K (number of principal components) 78
## -x (genotype file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.lfmm
## -a (eigenvalue file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.eigenvalues
## -e (eigenvector file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.eigenvectors
## -d (standard deviation file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.sdev
## -p (projection file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.projections
## -s data centered and scaled
The geno & lmff formats count the total # of different alleles (189 over the all 11 loci) and make a separate column for each one.
Test
## [1] "*******************"
## [1] " Tracy-Widom tests "
## [1] "*******************"
## summary of the options:
##
## -n (number of eigenvalues) 1252
## -i (input file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.eigenvalues
## -o (output file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.tracywidom
# plot the percentage of variance explained by each component
plot(tw$percentage, pch = 19, col = "blue", cex = .8)
Test
#increase K to see if its really leveling off
pc5=pca("output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.lfmm", K=100, scale=TRUE)
## [1] "******************************"
## [1] " Principal Component Analysis "
## [1] "******************************"
## summary of the options:
##
## -n (number of individuals) 1252
## -L (number of loci) 189
## -K (number of principal components) 100
## -x (genotype file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.lfmm
## -a (eigenvalue file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.eigenvalues
## -e (eigenvector file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.eigenvectors
## -d (standard deviation file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.sdev
## -p (projection file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.projections
## -s data centered and scaled
## [1] "*******************"
## [1] " Tracy-Widom tests "
## [1] "*******************"
## summary of the options:
##
## -n (number of eigenvalues) 1252
## -i (input file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.eigenvalues
## -o (output file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.tracywidom
# plot the percentage of variance explained by each component
plot(tw2$percentage, pch = 19, col = "blue", cex = .8)
pops_inds<-read.delim("output/europe/lea/microsats/pops_inds.txt")
pops <- as.factor(pops_inds$pops)
inds <- as.factor(pops_inds$inds)
Get values
# plot preparation
pc.coord <- as.data.frame(pc$projections)
colnames(pc.coord) <- paste0("PC", 1:78)
pc.coord$Individual <- inds
pc.coord$Population <- pops
# perc1 <- paste0(round(tw$percentage, digits = 3) * 100, "%")
perc <- paste0(round(pc$eigenvalues/sum(pc$eigenvalues), digits = 3) * 100, "%")
nb.cols <- 40
mycolors <- colorRampPalette(brewer.pal(8, "Set2"))(nb.cols)
Check R symbols for plot
#to see all shapes -> plot shapes - para escolher os simbolos
N = 100; M = 1000
good.shapes = c(1:25,33:127)
foo = data.frame( x = rnorm(M), y = rnorm(M), s = factor( sample(1:N, M, replace = TRUE) ) )
ggplot(aes(x,y,shape=s ), data=foo ) +
scale_shape_manual(values=good.shapes[1:N]) +
geom_point()
sampling_loc <- readRDS(here("output/europe/lea/microsats/sampling_loc_euro_microsats.rds"))
head(sampling_loc)
## Pop_City Country Latitude Longitude Continent Abbreviation Year
## 1 Limbe Cameroon 4.023252 9.194771 Africa LIB 2018
## 2 Morondava Madagascar -20.284200 44.279400 Africa MAD 2016
## 3 Trois-Bassins Reunion -21.109008 55.319206 Africa TRO 2017
## 4 Dauguet Mauritius -20.185300 57.521540 Africa DAU 2022
## 5 Franceville Gabon -1.592070 13.532420 Africa GAB 2015
## 6 Antananarivo Madagascar -18.879200 47.507900 Africa ANT 2022
## Region Subregion order order2 orderold order_microsat microsats
## 1 West Africa Africa 79 73 71 NA
## 2 East Africa East Africa 80 78 72 NA
## 3 Indian Ocean Indian Ocean 81 81 73 NA
## 4 Indian Ocean Indian Ocean 82 80 74 NA
## 5 Central Africa Africa NA 72 NA NA
## 6 East Africa East Africa NA 76 NA NA
## microsat_code alt_code X Country.1
## 1 NA Cameroon
## 2 NA Madagascar
## 3 NA Reunion
## 4 NA Mauritius
## 5 NA Gabon
## 6 NA Madagascar
Check pops
## [1] POP POP POP POP POP POP
## 78 Levels: ABAL ABSU ALD BUL CRO ESAB ESAC ESAG ESAL ESAY ESAZ ESBA ... TUH
## [1] 78
Check the regions
## [1] "West Africa" "East Africa" "Indian Ocean" "Central Africa"
## [5] "North Africa" "North America" "South America" "Caribbean"
## [9] "East Asia" "South Asia" "Southeast Asia" "Western Europe"
## [13] "Southern Europe" "Eastern Europe"
Merge
## Warning in merge.data.frame(pc.coord, sampling_loc, by.x = "Population", :
## column names 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA',
## 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA' are duplicated in the
## result
## Population PC1 PC2 PC3 PC4 PC5 PC6
## 1 ABAL 0.00877431 1.369000 -0.1963400 0.250702 1.62377 0.449157
## 2 ABAL 2.58326000 -0.534200 -0.8467370 -3.134550 3.80737 1.725370
## 3 ABAL 0.85719000 0.643177 -0.1917340 -0.892656 2.64961 1.186340
## 4 ABAL -0.79535300 -0.251846 -0.0382649 -0.568964 1.62680 2.183020
## 5 ABAL -1.32405000 0.937741 0.6562720 -1.492850 1.23191 0.487348
## 6 ABAL -0.64127300 0.669102 0.4226620 -1.033730 1.49660 2.753390
## PC7 PC8 PC9 PC10 PC11 PC12 PC13
## 1 -1.4439800 3.18513 0.639383 -1.144890 -1.429850 0.268293 0.8540540
## 2 -0.0215363 1.48119 9.450510 -2.007680 -4.867440 -0.446848 2.1329700
## 3 -2.5275200 5.27012 1.058880 -1.758050 -0.115702 -0.424934 0.3468560
## 4 -1.0005700 3.91958 1.293410 -0.574913 -0.317308 0.665134 -0.0179021
## 5 -0.1707220 1.26975 0.566264 -0.101184 0.138659 -0.182283 0.1573160
## 6 -1.6295400 3.71448 1.135530 -0.123937 -1.120620 0.790370 0.0802469
## PC14 PC15 PC16 PC17 PC18 PC19 PC20
## 1 -0.293709 -1.230810 1.010810 -0.157491 -0.726088 0.0639361 0.251697
## 2 -3.091870 -3.060240 -7.472890 -1.119550 3.256520 -3.6018700 3.196100
## 3 0.165261 -0.476984 -0.613023 -1.115810 -0.803804 1.0436700 0.415681
## 4 0.547252 -1.656470 0.447462 -0.834954 -0.114963 1.8961400 -0.745853
## 5 0.734877 -0.869944 0.568171 1.053670 -0.473343 0.3189150 -0.254249
## 6 0.539670 -1.433180 1.082920 -0.654920 -0.657009 1.6471100 -2.056800
## PC21 PC22 PC23 PC24 PC25 PC26 PC27
## 1 -0.127457 -1.5787900 -1.633910 0.1135310 0.501012 -0.677803 -0.0826617
## 2 3.416100 5.8827700 -1.993150 -3.4772100 3.386940 -1.253700 1.7784900
## 3 -0.244480 -1.7157400 -0.115025 0.6313840 -0.390972 -0.756339 -0.6411740
## 4 -0.613082 1.7817800 0.585116 0.0635944 -0.270778 -0.684693 -0.5296060
## 5 0.329502 2.0224000 0.812384 -0.0823769 -0.232288 0.225702 -0.0131700
## 6 0.254216 -0.0726163 -0.548757 -0.4733940 -1.384820 -0.397474 0.3885180
## PC28 PC29 PC30 PC31 PC32 PC33 PC34
## 1 0.1000000 0.872799 0.1465980 0.649881 0.676590 -0.2071850 1.2283200
## 2 16.8056000 -3.959400 3.5369200 -3.076640 -3.982950 6.4364700 -4.0308800
## 3 0.0325239 0.878260 -0.0279853 0.272108 0.323691 -0.8692700 -0.0186884
## 4 -1.4680800 0.144564 -0.4091330 1.149630 1.136310 -0.9468010 0.4008170
## 5 0.2701460 -0.210177 -0.4702910 -0.225658 0.632686 -0.0434382 0.3331060
## 6 -0.2836400 1.226500 -0.2648440 1.015860 1.890200 -0.0613228 1.4776800
## PC35 PC36 PC37 PC38 PC39 PC40 PC41
## 1 -2.113270 -0.390546 0.842062 1.0071400 1.178250 1.740850 -1.801970
## 2 5.561160 7.245600 -0.955977 1.8762000 -1.572310 1.642960 3.464600
## 3 -1.640670 0.587437 1.109410 1.5649500 1.033160 1.791890 -1.718900
## 4 0.463482 1.195330 2.246880 0.3656200 -0.506198 0.390102 -1.514620
## 5 0.878389 0.579588 -0.854790 -1.1016600 -1.079150 -1.062300 0.012638
## 6 -0.365265 -0.474052 0.756435 -0.0521233 0.959838 1.523970 -2.377970
## PC42 PC43 PC44 PC45 PC46 PC47 PC48
## 1 0.0931708 0.7808960 -0.764832 0.324547 -0.4491130 0.7332000 1.233840
## 2 3.3276700 -2.5114600 6.607870 -5.463590 2.8344700 -1.4699700 -4.495540
## 3 -0.1611600 -0.3299160 0.100039 -0.100326 -0.0453126 1.0274700 0.901167
## 4 -1.2648200 -0.6656900 -0.480363 -0.399876 -0.7688140 0.0470733 -0.588436
## 5 -0.4214150 0.0238734 0.417468 -0.112449 -0.7981270 -1.2345200 0.196669
## 6 -0.6192670 0.3287100 1.389990 -0.542025 -1.7835900 -0.5393400 1.001920
## PC49 PC50 PC51 PC52 PC53 PC54 PC55
## 1 0.3578760 0.6283360 -0.987798 0.484021 -1.620680 -0.194371 0.727974
## 2 0.0928247 1.2025600 -1.045430 5.164070 2.905660 0.938694 -0.628388
## 3 -0.6008610 0.3584080 -1.421970 0.135223 -2.438100 -0.126534 0.410990
## 4 0.6643640 -1.4847900 -0.476990 -0.377353 -0.803324 -0.237162 -0.821483
## 5 0.1295300 0.0501132 -0.181209 -0.162336 1.049550 -0.233240 0.981160
## 6 0.6847880 -1.9384000 -2.003610 1.859110 -2.175790 -1.124730 0.100910
## PC56 PC57 PC58 PC59 PC60 PC61 PC62 PC63
## 1 0.293104 0.789918 1.0209200 -0.152347 1.249040 1.653820 0.169561 1.003450
## 2 1.916570 1.907160 -5.5803200 -2.381090 -1.487140 -1.637800 2.270710 4.315540
## 3 1.515370 0.958955 1.1191200 -0.294594 2.624660 0.229858 0.699524 0.521780
## 4 0.199009 0.646122 0.4735240 -1.575360 1.064110 0.987734 0.697924 0.364850
## 5 0.160839 0.136296 0.0178381 -0.700309 -0.116476 -0.377859 0.319015 0.581316
## 6 1.832880 0.993754 0.8343680 -1.676290 2.985440 0.280545 2.344050 1.551440
## PC64 PC65 PC66 PC67 PC68 PC69 PC70
## 1 -0.827881 -0.2910710 0.615686 1.266050 -0.9911900 -1.303600 -1.5468200
## 2 -0.576342 -4.0132200 1.834790 -1.014590 -2.9709200 -2.466260 -2.0624900
## 3 -1.851480 -0.7058170 0.842489 0.507936 0.5103700 -0.950021 -0.5329190
## 4 -0.208167 -0.0273355 -0.224265 1.293310 0.3442410 -0.359308 -0.4339610
## 5 0.954906 -0.3521100 -0.466012 0.244793 0.0583201 0.754122 0.8448450
## 6 -0.365973 -0.4350440 -0.271286 1.298230 1.0547100 -1.299040 -0.0500293
## PC71 PC72 PC73 PC74 PC75 PC76 PC77
## 1 -0.0896604 0.0877798 0.359638 0.3253770 -1.3434100 -0.744320 0.934413
## 2 -2.9071400 5.0530200 3.162850 4.1457000 -4.6777200 0.958086 2.051830
## 3 -0.0409303 -1.1691400 0.511829 -0.0768091 0.0098582 -1.468020 0.298208
## 4 1.2723400 -1.2489500 1.331020 0.0567503 0.2278340 -0.904971 0.138080
## 5 -0.6915800 -0.7444430 0.467130 0.1302500 -0.2079010 -0.469693 -0.859121
## 6 -0.1292010 -0.5881650 0.587161 1.2311200 0.5537720 -2.117880 0.667677
## PC78 NA NA NA NA NA NA
## 1 0.158237 0.6094890 1.639640 -0.3230100 -0.1071940 0.4531520 -0.506315
## 2 2.809170 -3.7451100 2.367100 2.1744600 -1.9577100 -0.5474710 1.706620
## 3 0.278865 0.3059890 1.318650 0.0100375 -0.2367660 -0.1950700 -0.640249
## 4 0.918591 -0.0071644 0.325599 -0.1797980 -0.0384726 0.7400370 0.391723
## 5 0.410215 1.0875600 -0.253908 -0.5796910 -0.9856400 0.3133510 0.500686
## 6 0.816792 0.0202096 0.556907 -0.1332520 0.8276600 0.0428036 -0.970149
## NA NA NA NA NA NA NA
## 1 -0.651822 0.1734340 0.2338320 0.0825088 0.891726 -2.7632600 -0.1845890
## 2 -3.312840 -0.1765680 3.4487400 3.4500400 1.678550 0.4952220 -0.3307410
## 3 0.285000 -0.3012880 -0.9725250 0.8508640 0.553726 -0.9051990 0.5487200
## 4 -0.487853 0.5659820 0.3375970 1.0073100 0.783500 0.0873463 -1.2243800
## 5 0.610826 0.0130786 0.7010930 -0.3221770 0.126408 -0.8882510 0.0507999
## 6 0.134844 -0.3524970 -0.0550495 1.2426300 0.106922 -1.3703300 -0.2328170
## NA NA NA NA NA NA NA
## 1 1.030990 -0.371989 0.0360283 0.139100 1.189670 -0.3677630 0.372016
## 2 1.860700 1.200380 -0.7093400 -4.509810 -2.182100 4.1388600 1.824170
## 3 -0.802689 -0.673432 -0.0995038 -0.146875 1.765680 -0.5243150 -0.211918
## 4 -0.811018 -0.994080 -0.4811040 0.934041 -1.720850 -0.5456870 -0.892199
## 5 0.163414 -1.118780 0.1503110 -0.381400 -0.790367 0.0745188 -0.435167
## 6 -0.945040 -0.678831 -0.1374350 0.569430 1.717280 -0.8053680 0.167912
## NA NA Individual Pop_City Country Latitude Longitude Continent
## 1 -1.187940 0.668069 ABAL-ABAL01 Gagra Georgia NA NA Europe
## 2 1.661660 -0.131579 ABAL-ABAL02 Gagra Georgia NA NA Europe
## 3 -1.288060 0.562719 ABAL-ABGL05 Gagra Georgia NA NA Europe
## 4 -0.973319 -0.144043 ABAL-ABIN01 Gagra Georgia NA NA Europe
## 5 -0.230312 -0.372178 ABAL-ABIN02 Gagra Georgia NA NA Europe
## 6 -1.654420 0.358537 ABAL-ABIN06 Gagra Georgia NA NA Europe
## Abbreviation Year Region Subregion order order2 orderold
## 1 <NA> Eastern Europe East Europe NA NA NA
## 2 <NA> Eastern Europe East Europe NA NA NA
## 3 <NA> Eastern Europe East Europe NA NA NA
## 4 <NA> Eastern Europe East Europe NA NA NA
## 5 <NA> Eastern Europe East Europe NA NA NA
## 6 <NA> Eastern Europe East Europe NA NA NA
## order_microsat microsats alt_code X Country.1
## 1 93 yes ABAL NA Georgia
## 2 93 yes ABAL NA Georgia
## 3 93 yes ABAL NA Georgia
## 4 93 yes ABAL NA Georgia
## 5 93 yes ABAL NA Georgia
## 6 93 yes ABAL NA Georgia
Import data for all 637 individuals in the microsat dataset that overlap
Convert format (just matrix)
struct2geno("output/europe/lea/microsats/overlap/overlap_pops_microsat_matrix.str", ploidy=2, FORMAT=1)
## Input file in the STRUCTURE format. The genotypic matrix has 637 individuals and 11 markers.
## The number of extra rows is 0 and the number of extra columns is 0 .
## Missing alleles are encoded as -9 , converted as 9.
## Output files: output/europe/lea/microsats/overlap/overlap_pops_microsat_matrix.str.geno .lfmm.
Convert format (with header and pop info)
struct2geno("output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str", ploidy=2, FORMAT=1, extra.row=1, extra.column=3)
## Input file in the STRUCTURE format. The genotypic matrix has 637 individuals and 11 markers.
## The number of extra rows is 1 and the number of extra columns is 3 .
## Missing alleles are encoded as -9 , converted as 9.
## Output files: output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.geno .lfmm.
Check
a<-read.lfmm("output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.lfmm")
b<-read.geno("output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.geno")
PCA with LEA
#Create pca
pc=pca("output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.lfmm", K=24, scale=TRUE) #set K to # of pops, with scaling
## [1] "******************************"
## [1] " Principal Component Analysis "
## [1] "******************************"
## summary of the options:
##
## -n (number of individuals) 637
## -L (number of loci) 163
## -K (number of principal components) 24
## -x (genotype file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.lfmm
## -a (eigenvalue file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.eigenvalues
## -e (eigenvector file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.eigenvectors
## -d (standard deviation file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.sdev
## -p (projection file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.projections
## -s data centered and scaled
The geno & lmff formats count the total # of different alleles (189 over the all 11 loci) and make a separate column for each one.
Test
## [1] "*******************"
## [1] " Tracy-Widom tests "
## [1] "*******************"
## summary of the options:
##
## -n (number of eigenvalues) 637
## -i (input file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.eigenvalues
## -o (output file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.tracywidom
# plot the percentage of variance explained by each component
plot(tw$percentage, pch = 19, col = "blue", cex = .8)
Test
#increase K to see if its really leveling off
pc5=pca("output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.lfmm", K=100, scale=TRUE)
## [1] "******************************"
## [1] " Principal Component Analysis "
## [1] "******************************"
## summary of the options:
##
## -n (number of individuals) 637
## -L (number of loci) 163
## -K (number of principal components) 100
## -x (genotype file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.lfmm
## -a (eigenvalue file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.eigenvalues
## -e (eigenvector file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.eigenvectors
## -d (standard deviation file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.sdev
## -p (projection file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.projections
## -s data centered and scaled
## [1] "*******************"
## [1] " Tracy-Widom tests "
## [1] "*******************"
## summary of the options:
##
## -n (number of eigenvalues) 637
## -i (input file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.eigenvalues
## -o (output file) /gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/lea/microsats/overlap/albo_microsat_structure_format_no_pops.str.pca/albo_microsat_structure_format_no_pops.str.tracywidom
# plot the percentage of variance explained by each component
plot(tw2$percentage, pch = 19, col = "blue", cex = .8)
pops_inds<-read.delim("output/europe/lea/microsats/overlap/pops_inds_overlap.txt")
pops <- as.factor(pops_inds$pops)
inds <- as.factor(pops_inds$inds)
Get values
# plot preparation
pc.coord <- as.data.frame(pc$projections)
colnames(pc.coord) <- paste0("PC", 1:25)
pc.coord$Individual <- inds
pc.coord$Population <- pops
# perc1 <- paste0(round(tw$percentage, digits = 3) * 100, "%")
perc <- paste0(round(pc$eigenvalues/sum(pc$eigenvalues), digits = 3) * 100, "%")
nb.cols <- 40
mycolors <- colorRampPalette(brewer.pal(8, "Set2"))(nb.cols)
Check R symbols for plot
#to see all shapes -> plot shapes - para escolher os simbolos
N = 100; M = 1000
good.shapes = c(1:25,33:127)
foo = data.frame( x = rnorm(M), y = rnorm(M), s = factor( sample(1:N, M, replace = TRUE) ) )
ggplot(aes(x,y,shape=s ), data=foo ) +
scale_shape_manual(values=good.shapes[1:N]) +
geom_point()
sampling_loc <- readRDS(here("output/europe/lea/microsats/overlap/sampling_loc_euro_microsats_overlap.rds"))
head(sampling_loc)
Check pops
## [1] FRS FRS FRS FRS FRS FRS
## 24 Levels: ALD BAR BUL CRO FRS GES GRA GRC ITB ITP ITR MAL POP ROS SER ... TUH
## [1] 24
Check the regions
## [1] "West Africa" "East Africa" "Indian Ocean" "Central Africa"
## [5] "North Africa" "North America" "South America" "Caribbean"
## [9] "East Asia" "South Asia" "Southeast Asia" "Western Europe"
## [13] "Southern Europe" "Eastern Europe"
Merge
## Warning in merge.data.frame(pc.coord, sampling_loc, by.x = "Population", :
## column names 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA',
## 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA',
## 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA',
## 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA',
## 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA',
## 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA', 'NA' are duplicated
## in the result
## Population PC1 PC2 PC3 PC4 PC5 PC6
## 1 ALD 0.698471 3.57132 -1.9624800 -2.326840 -2.187760 4.368360
## 2 ALD -1.282020 1.50613 1.0982600 -0.280080 0.401259 -0.560525
## 3 ALD -1.725390 7.03502 -5.2634600 -12.714900 -0.221334 5.738240
## 4 ALD -0.407496 1.65721 0.2099280 -0.704761 -2.277190 0.469798
## 5 ALD -1.826950 2.50270 0.0548872 -0.991471 -0.166945 1.309480
## 6 ALD -1.105960 1.12714 0.4043540 -1.654250 -0.104622 0.381118
## PC7 PC8 PC9 PC10 PC11 PC12 PC13
## 1 -1.39272000 -0.623150 -0.428381 0.977395 -1.435360 0.113058 -0.7688780
## 2 -0.00519542 0.176090 0.142589 0.614280 0.398314 -0.725768 0.0193667
## 3 -0.48600600 -9.820110 2.117210 -10.835300 -9.411410 -11.938600 -18.4070000
## 4 -1.11728000 -0.437404 -0.151463 0.802418 -1.059460 -1.198420 -0.7277870
## 5 0.48191900 -0.496835 -0.339839 0.822011 -1.215380 1.722310 -0.9356270
## 6 0.36948100 -1.617500 0.346523 0.150369 -0.440423 -0.533261 -0.2814980
## PC14 PC15 PC16 PC17 PC18 PC19 PC20
## 1 0.523284 -0.0846775 0.6187920 -1.2227300 1.3997400 2.544390 1.154420
## 2 -1.011710 0.6321620 -0.1435840 0.2418510 -0.0241966 -0.458097 -0.280941
## 3 5.024880 -2.8998400 6.0352800 8.0233800 1.9536800 1.551090 2.649140
## 4 0.379008 -1.3290700 -0.0757638 0.1182260 -0.2679400 0.600152 -0.576345
## 5 -0.811757 0.2853090 -1.4765400 -0.6539260 -0.7468110 0.743164 0.719815
## 6 1.157490 0.1479980 1.3034700 0.0644328 1.5430200 -1.385400 0.159654
## PC21 PC22 PC23 PC24 PC25 NA NA
## 1 2.798800 -0.8668530 -0.893769 -0.518312 0.954192 -0.0318777 -0.680019
## 2 -0.575512 0.1007430 0.820903 0.354643 -0.194333 0.6924590 -0.469862
## 3 -4.627220 2.2264300 1.686030 -1.132490 0.442185 2.1978300 -0.722641
## 4 0.891981 0.4824820 0.842317 0.659477 -1.435800 0.4299440 -1.437520
## 5 -0.072382 0.2714280 -1.722170 -0.639923 -1.804780 -0.7598550 0.636633
## 6 1.512730 -0.0298175 2.326510 0.618038 1.126820 0.6224380 -0.566179
## NA NA NA NA NA NA NA
## 1 0.1510160 -0.312330 0.0264672 0.798141 -0.238629 1.806570 -1.0534600
## 2 -0.1837100 0.257606 -0.3573480 -1.582280 -0.139481 -0.497385 0.2175460
## 3 0.8023310 0.755818 2.4919200 -2.009470 -0.280948 2.741590 -0.3009660
## 4 -0.0579024 -0.611098 -0.0217611 -0.391084 -1.278700 -1.206850 -0.0439436
## 5 -0.9795680 0.988997 0.9152320 0.140619 -0.927399 -0.412198 -0.7593510
## 6 -1.9184100 0.931455 -2.1932900 -0.374895 0.546309 -2.243620 0.1528920
## NA NA NA NA NA NA NA
## 1 -1.930270 -0.0670539 -1.0926300 1.6738700 1.6929300 -1.371650 -0.447140
## 2 0.379590 -0.1775830 -0.4643830 -0.0838132 -0.0198599 -0.403583 -0.179195
## 3 1.051060 0.3068260 0.3280540 -0.0819166 -1.7824100 0.925345 -1.426750
## 4 0.187538 1.3208900 0.0402874 0.2380560 1.5556000 -0.996612 0.821319
## 5 -0.752639 0.1507500 0.4697400 -0.7462870 -0.9211040 -0.662627 0.488643
## 6 1.342290 0.8543080 1.1728500 -0.0499146 0.7886100 0.428899 -0.354037
## NA NA NA NA NA NA NA
## 1 0.2101360 1.400080 0.663587 -0.983880 -1.3834800 0.607370 1.9973300
## 2 0.0444056 -1.012380 0.405831 -0.167073 -0.3394280 0.249337 -0.1811830
## 3 -0.1700320 1.291990 -3.357070 0.675858 -0.0715562 -0.738702 -1.6622900
## 4 0.4287450 0.478359 0.510094 -0.511880 -1.1691100 -1.763110 -0.4953880
## 5 0.4687750 -1.160500 1.324900 -1.099170 -0.2363720 0.893497 -0.0382572
## 6 0.1683970 -0.612109 1.790430 -0.995328 0.6376180 -0.519765 0.8174510
## NA NA NA NA NA NA NA
## 1 -0.7389720 1.43413000 -0.700617 -0.116900 2.5129100 -1.480250 2.287230
## 2 0.5318840 0.00617738 -0.158840 0.757342 -0.0385116 -0.456860 -0.276871
## 3 0.9893160 0.32990300 1.301320 -0.858437 -1.3811000 1.409480 -1.605880
## 4 -0.5964540 0.10058800 -0.567534 -0.119752 0.4999330 -0.518738 1.958420
## 5 0.0380366 0.37830500 -1.875080 0.593708 0.1098250 0.627317 1.523820
## 6 0.5046100 1.15298000 -0.645987 -0.638111 -0.3546860 0.485700 -0.147141
## NA NA NA NA NA NA NA
## 1 -0.0873631 1.324420 1.030560 -0.0928464 -0.9161940 0.3585160 -1.903700
## 2 0.4590490 0.253185 0.142081 0.3126680 -0.8262450 -0.4281430 0.120144
## 3 0.4813870 -0.132648 -1.100590 0.4878170 2.0190200 -1.0761400 0.993266
## 4 0.1345250 1.858470 0.869570 0.2970590 -1.4701200 -0.7974180 0.183197
## 5 1.7707200 0.560674 -0.126030 1.0078200 -0.0615558 -0.3118510 -0.732798
## 6 -0.2068020 0.752193 1.663710 -0.5991100 -0.4392770 0.0908075 -0.675817
## NA NA NA NA NA NA NA
## 1 -0.7626520 -0.3978460 -0.173804 0.2913160 -1.763220 0.4776450 0.5653930
## 2 0.1890350 0.0161558 -0.312300 0.2796600 0.136673 -0.0454728 -0.0664771
## 3 0.0388421 1.2004800 -0.226208 -0.1664260 0.742102 0.9309480 -0.7576780
## 4 0.8707380 -0.0782472 0.104718 -0.6799830 -0.829604 -0.4490080 -0.5283610
## 5 -0.1663930 -0.1370370 0.960454 0.2681270 -1.078570 0.1363060 0.3240740
## 6 0.1475610 0.0399107 -1.112540 -0.0175588 -1.564690 -0.6035330 0.9426480
## NA NA NA NA NA NA NA
## 1 -0.5803020 -0.714653 -1.095730 2.975520 1.124200 0.174368 -1.213940
## 2 -0.3962720 0.722120 0.647739 -0.133890 -0.243601 0.391365 0.539170
## 3 -0.0579069 -0.170478 0.668946 -0.661380 -0.474271 -0.332283 0.836012
## 4 -0.2544110 -0.327040 -0.938008 0.267276 1.041450 1.168440 0.754096
## 5 1.1968100 0.316377 0.277828 0.681194 -0.197814 -0.520826 -0.201468
## 6 -1.4287500 0.663574 0.461189 -1.425820 0.975066 0.374083 -0.919549
## NA NA NA NA NA NA NA
## 1 -1.353470 -0.310123 -0.7408270 -0.3621710 -0.245125 0.3098190 -0.541746
## 2 0.981182 -0.752702 0.2954600 -0.2367250 0.421407 -0.1030330 0.286959
## 3 0.799905 -0.394641 0.0815951 -0.0446451 -0.157017 0.0640644 -0.230498
## 4 -1.070380 -0.338628 0.4366010 0.2055020 -0.499523 0.7012410 0.569468
## 5 0.080759 -1.032380 0.2184040 -0.0464710 -0.323673 -0.3806580 -1.136770
## 6 -1.598090 1.138800 0.7361020 0.7495980 0.862790 -0.5897430 0.448477
## NA NA NA NA NA NA NA
## 1 0.624851 -0.479968 1.552000 0.00685162 -1.2182900 0.0689886 -0.87565700
## 2 0.502318 -0.138598 -0.881338 -0.26289100 1.0125300 -0.5580920 0.00824656
## 3 -0.181947 0.273156 -0.290570 0.38732400 -0.2916290 0.3645220 0.69619800
## 4 -1.317700 -1.611050 1.227520 0.03983320 1.4005000 -0.8560040 -1.35840000
## 5 -0.491547 -1.158500 -1.154240 1.06984000 0.0822953 1.5502300 0.47828800
## 6 0.526832 0.622868 -0.163840 -1.50887000 0.7219100 -0.4196710 0.30387200
## NA NA NA NA NA NA NA
## 1 1.2701100 1.379420 -1.1603400 0.4629720 -0.0801278 -1.522340 0.4337860
## 2 -0.1387570 -0.281442 -0.0415016 0.5093030 0.5899420 0.653486 0.2111890
## 3 0.1449100 -0.227795 0.2013120 0.3456560 -0.4122290 0.374329 -0.6210730
## 4 0.4470770 -0.260693 -0.6624260 -0.0457854 0.2651160 -0.726507 0.0599057
## 5 0.1345910 1.263300 0.8107960 -0.0688320 -0.2883060 -0.211662 0.7277630
## 6 -0.0330995 -0.238729 -0.9153360 0.7228670 -0.6094860 -0.214246 0.0833169
## NA NA NA Individual Pop_City Country Latitude
## 1 0.0521699 -1.564840 0.3100130 ALDU01 Durres Albania 41.29704
## 2 0.7497710 -0.371592 0.0128836 ALDU02 Durres Albania 41.29704
## 3 0.3198370 0.519285 -0.3084790 ALDU03 Durres Albania 41.29704
## 4 -0.3832370 0.417437 1.1807000 ALDU04 Durres Albania 41.29704
## 5 0.2920350 -0.930505 -0.5807450 ALDU05 Durres Albania 41.29704
## 6 -0.0285530 -0.073519 1.2085300 ALDU06 Durres Albania 41.29704
## Longitude Continent Year Region Subregion order order2 orderold
## 1 19.50373 Europe 2018 Southern Europe East Europe 33 25 25
## 2 19.50373 Europe 2018 Southern Europe East Europe 33 25 25
## 3 19.50373 Europe 2018 Southern Europe East Europe 33 25 25
## 4 19.50373 Europe 2018 Southern Europe East Europe 33 25 25
## 5 19.50373 Europe 2018 Southern Europe East Europe 33 25 25
## 6 19.50373 Europe 2018 Southern Europe East Europe 33 25 25
## order_microsat microsats microsat_code alt_code X Country.1
## 1 61 yes ALD ALDU NA Albania
## 2 61 yes ALD ALDU NA Albania
## 3 61 yes ALD ALDU NA Albania
## 4 61 yes ALD ALDU NA Albania
## 5 61 yes ALD ALDU NA Albania
## 6 61 yes ALD ALDU NA Albania
ggsave(
here("output/europe/lea/microsats/overlap/PCA_lea_microsats_overlap_pc1_pc2.pdf"
),
width = 8,
height = 6,
units = "in"
)
PC1 and PC3
ggsave(
here("output/europe/lea/microsats/overlap/PCA_lea_microsats_overlap_pc1_pc3.pdf"
),
width = 8,
height = 6,
units = "in"
)
PC2 and PC3
Load libraries & data files
library(ade4)
library(adegenet)
library(here)
#Install SNPRelate (required for dartR)
# if (!require("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
# BiocManager::install("SNPRelate")
library(dartR)
## Loading required package: dartR.data
## **** Welcome to dartR.data [Version 1.0.8 ] ****
## Registered S3 method overwritten by 'pegas':
## method from
## print.amova ade4
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
## Registered S3 method overwritten by 'genetics':
## method from
## [.haplotype pegas
## **** Welcome to dartR [Version 2.9.7 ] ****
## Be aware that owing to CRAN requirements and compatibility reasons not all functions of the package may run after the basic installation, as some packages could still be missing. Hence for a most enjoyable experience we recommend to run the function
## gl.install.vanilla.dartR()
## This installs all missing and required packages for your version of dartR. In case something fails during installation please refer to this tutorial: https://github.com/green-striped-gecko/dartR/wiki/Installation-tutorial.
##
## For information how to cite dartR, please use:
## citation('dartR')
## Global verbosity is set to: 2
##
## **** Have fun using dartR! ****
##
## Attaching package: 'dartR'
## The following objects are masked from 'package:dartR.data':
##
## bandicoot.gl, possums.gl, testset.gl, testset.gs
Load .gen file with microsat data from all individuals
all_pops <- read.genepop("output/europe/dapc/microsats/for_dapc_albo_microsat_europe.gen", ncode=3L)
##
## Converting data from a Genepop .gen file to a genind object...
##
##
## File description: ARBOMONITOR_Aedes_albopictus
##
## ...done.
## /// GENIND OBJECT /////////
##
## // 1,252 individuals; 11 loci; 189 alleles; size: 1 Mb
##
## // Basic content
## @tab: 1252 x 189 matrix of allele counts
## @loc.n.all: number of alleles per locus (range: 7-28)
## @loc.fac: locus factor for the 189 columns of @tab
## @all.names: list of allele names for each locus
## @ploidy: ploidy of each individual (range: 2-2)
## @type: codom
## @call: read.genepop(file = "output/europe/dapc/microsats/for_dapc_albo_microsat_europe.gen",
## ncode = 3L)
##
## // Optional content
## @pop: population of each individual (group size range: 1-60)
## [1] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [7] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [13] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [19] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [25] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [31] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [37] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [43] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [49] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [55] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [61] POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15
## [67] POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15
## [73] POL-PTQT15 POL-PTQT15 POL-PTQT15 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11
## [79] SPB-ESBD11 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11
## [85] SPB-ESBD11 SPB-ESBD11 ESAC-ESAC07 ESAC-ESAC07 ESAC-ESAC07 ESAC-ESAC07
## [91] ESAC-ESAC07 ESAC-ESAC07 ESAC-ESAC07 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18
## [97] ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18
## [103] ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18
## [109] ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15
## [115] ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15
## [121] ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15 ESAL-ESAL06 ESAL-ESAL06
## [127] ESAL-ESAL06 ESAL-ESAL06 ESAL-ESAL06 ESAL-ESAL06 SPS-ESUP10 SPS-ESUP10
## [133] SPS-ESUP10 SPS-ESUP10 SPS-ESUP10 SPS-ESUP10 SPS-ESUP10 SPS-ESUP10
## [139] SPS-ESUP10 SPS-ESUP10 ESMN-ESMN04 ESMN-ESMN04 ESMN-ESMN04 ESLS-ESLS03
## [145] ESLS-ESLS03 ESLS-ESLS03 ESMV-ESMV03 ESMV-ESMV03 ESMV-ESMV03 ESFU-ESFU03
## [151] ESFU-ESFU03 ESFU-ESFU03 ESBM-ESBT03 ESBM-ESBT03 ESBM-ESBT03 ESBM-ESBT03
## [157] ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10
## [163] ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10
## [169] ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESGD-ESGD02 ESGD-ESGD02 ESBN-ESBN06
## [175] ESBN-ESBN06 ESBN-ESBN06 ESBN-ESBN06 ESBN-ESBN06 ESBN-ESBN06 ESSL-ESSL03
## [181] ESSL-ESSL03 ESSL-ESSL03 ESMC-ESMT03 ESMC-ESMT03 ESMC-ESMT03 ESMC-ESMT03
## [187] ESVN-ESVN04 ESPT-ESPT03 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15
## [193] ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15
## [199] ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESBY-ESBY06 ESBY-ESBY06
## [205] ESBY-ESBY06 ESBY-ESBY06 ESBY-ESBY06 ESBY-ESBY06 ESNI-ESNI10 ESNI-ESNI10
## [211] ESNI-ESNI10 ESNI-ESNI10 ESNI-ESNI10 ESNI-ESNI10 ESNI-ESNI10 ESNI-ESNI10
## [217] ESNI-ESNI10 ESNU-ESNU06 ESNU-ESNU06 ESNU-ESNU06 ESNU-ESNU06 ESNU-ESNU06
## [223] ESNU-ESNU06 ESIR-ESIR03 ESIR-ESIR03 ESIR-ESIR03 ESAG-ESAG10 ESAG-ESAG10
## [229] ESAG-ESAG10 ESAG-ESAG10 ESAG-ESAG10 ESAG-ESAG10 ESAG-ESAG10 ESAG-ESAG10
## [235] ESAG-ESAG10 ESAG-ESAG10 ESAZ-ESAZ04 ESAZ-ESAZ04 ESAZ-ESAZ04 ESAZ-ESAZ04
## [241] ESCN-ESCN04 ESCN-ESCN04 ESCN-ESCN04 ESCN-ESCN04 ESCT-ESTT01 ESCT-ESTT01
## [247] ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01
## [253] ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01
## [259] ESCT-ESTT01 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10
## [265] ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10
## [271] ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10
## [277] ESPP-ESPP06 ESPP-ESPP06 ESPP-ESPP06 ESPP-ESPP06 ESPP-ESPP06 ESPP-ESPP06
## [283] ESCH-ESCH02 ESCH-ESCH02 ESLM-ESLM04 ESLM-ESLM04 ESLM-ESLM04 ESLM-ESLM04
## [289] ESCA-ESCA05 ESCA-ESCA05 ESCA-ESCA05 ESCA-ESCA05 ESCA-ESCA05 ESAY-ESAY10
## [295] ESAY-ESAY10 ESAY-ESAY10 ESAY-ESAY10 ESAY-ESAY10 ESAY-ESAY10 ESAY-ESAY10
## [301] ESAY-ESAY10 ESAY-ESAY10 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20
## [307] SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20
## [313] SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20
## [319] SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 ESBS-ESBC07 ESBS-ESBC07
## [325] ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07
## [331] ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07
## [337] ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15
## [343] ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15
## [349] ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESTS-ESTS10 ESTS-ESTS10 ESTS-ESTS10
## [355] ESTS-ESTS10 ESTS-ESTS10 ESTS-ESTS10 ESTS-ESTS10 ESTS-ESTS10 ESTS-ESTS10
## [361] ESTS-ESTS10 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28
## [367] ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28
## [373] ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28
## [379] ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28
## [385] ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESCP-ESCP19
## [391] ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19
## [397] ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19
## [403] ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19
## [409] SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19
## [415] SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19
## [421] SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19
## [427] SPM-ESMG19 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45
## [433] FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45
## [439] FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45
## [445] FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45
## [451] FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45
## [457] FRS-FRMH45 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30
## [463] STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30
## [469] STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30
## [475] STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30
## [481] STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30
## [487] STS-FRST30 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15
## [493] ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15
## [499] ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15
## [505] ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15
## [511] ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15
## [517] ITB-ITBO15 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17
## [523] ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17
## [529] ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17
## [535] ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17
## [541] ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17
## [547] ITRO-ITRO17 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39
## [553] SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39
## [559] SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39
## [565] SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39
## [571] SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39
## [577] SLO-SLGO39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39
## [583] MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39
## [589] MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39
## [595] MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39
## [601] MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39
## [607] ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09
## [613] ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09
## [619] ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09
## [625] ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09
## [631] ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09
## [637] CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30
## [643] CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30
## [649] CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30
## [655] CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30
## [661] CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30
## [667] ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30
## [673] ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30
## [679] ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30
## [685] ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30
## [691] ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 SER-SRNO30
## [697] SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30
## [703] SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30
## [709] SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30
## [715] SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30
## [721] SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 ROTI-ROTI30 ROTI-ROTI30
## [727] ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30
## [733] ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30
## [739] ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30
## [745] ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30
## [751] ROTI-ROTI30 ROTI-ROTI30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30
## [757] RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30
## [763] RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30
## [769] RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30
## [775] RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30
## [781] RODE-RODE30 RODE-RODE30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30
## [787] ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30
## [793] ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30
## [799] ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30
## [805] ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30
## [811] ROS-ROSM30 ROS-ROSM30 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05
## [817] GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05
## [823] GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05
## [829] GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05
## [835] GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05
## [841] GRTA-GRTT05 GRTA-GRTT05 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34
## [847] BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34
## [853] BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34
## [859] BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34
## [865] BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34
## [871] BUL-BULO34 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30
## [877] ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30
## [883] ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30
## [889] ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30
## [895] ROPL-ROPL30 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04
## [901] GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04
## [907] GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04
## [913] GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04
## [919] GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04
## [925] GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08
## [931] GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08
## [937] GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08
## [943] GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08
## [949] GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08
## [955] GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25
## [961] GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25
## [967] GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25
## [973] GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25
## [979] GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRKV-GRKV15
## [985] GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15
## [991] GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15
## [997] GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15
## [1003] GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15
## [1009] GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 ROBU-ROBU29 ROBU-ROBU29
## [1015] ROBU-ROBU29 ROBU-ROBU29 ROBU-ROBU29 ROBU-ROBU29 ROBU-ROBU29 ROBU-ROBU29
## [1021] TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30
## [1027] TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30
## [1033] TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30
## [1039] TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30
## [1045] TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30
## [1051] TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28
## [1057] TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28
## [1063] TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28
## [1069] TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28
## [1075] TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 ROCO-ROCO30 ROCO-ROCO30
## [1081] ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30
## [1087] ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30
## [1093] ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30
## [1099] ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30
## [1105] ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20
## [1111] TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20
## [1117] TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20
## [1123] TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20
## [1129] TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20
## [1135] RURM-RURM07 RURM-RURM07 RURM-RURM07 SOC-RUSO10 SOC-RUSO10 SOC-RUSO10
## [1141] SOC-RUSO10 SOC-RUSO10 SOC-RUSO10 SOC-RUSO10 SOC-RUSO10 SOC-RUSO10
## [1147] SOC-RUSO10 TRTR-TRTR15 TRTR-TRTR15 TRTR-TRTR15 TRTR-TRTR15 TRTR-TRTR15
## [1153] TRTR-TRTR15 TRTR-TRTR15 TRTR-TRTR15 TRTR-TRTR15 TRTR-TRTR15 TRTR-TRTR15
## [1159] TRTR-TRTR15 TRTR-TRTR15 TRTR-TRTR15 RUPL-RUPL10 RUPL-RUPL10 RUPL-RUPL10
## [1165] RUPL-RUPL10 RUPL-RUPL10 RUPL-RUPL10 RUPL-RUPL10 RUPL-RUPL10 RUPL-RUPL10
## [1171] RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20
## [1177] RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20
## [1183] RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20 ABAL-ABKO04 ABAL-ABKO04 ABAL-ABKO04
## [1189] ABAL-ABKO04 ABAL-ABKO04 ABAL-ABKO04 ABAL-ABKO04 ABAL-ABKO04 ABAL-ABKO04
## [1195] ABAL-ABKO04 TRRI-TRRI10 TRRI-TRRI10 TRRI-TRRI10 TRRI-TRRI10 TRRI-TRRI10
## [1201] TRRI-TRRI10 ABSU-ABSU05 ABSU-ABSU05 ABSU-ABSU05 ABSU-ABSU05 ABSU-ABSU05
## [1207] TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29
## [1213] TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29
## [1219] TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29
## [1225] TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29
## [1231] TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 GEPO-GEPO05
## [1237] GEPO-GEPO05 GEPO-GEPO05 GEPO-GEPO05 GEPO-GEPO05 TRAR-TRAR14 TRAR-TRAR14
## [1243] TRAR-TRAR14 TRAR-TRAR14 TRAR-TRAR14 TRAR-TRAR14 TRAR-TRAR14 TRAR-TRAR14
## [1249] TRAR-TRAR14 TRAR-TRAR14 TRAR-TRAR14 TRAR-TRAR14
## 78 Levels: POP-PTPN60 POL-PTQT15 SPB-ESBD11 ESAC-ESAC07 ... TRAR-TRAR14
covert it to genind format
## [1] 1252
## [1] 11
## [1] 78
## [1] "POP-PTPN01" "POP-PTPN02" "POP-PTPN03" "POP-PTPN04" "POP-PTPN05"
## [6] "POP-PTPN06" "POP-PTPN07" "POP-PTPN08" "POP-PTPN09" "POP-PTPN10"
## [11] "POP-PTPN11" "POP-PTPN12" "POP-PTPN13" "POP-PTPN14" "POP-PTPN15"
## [16] "POP-PTPN16" "POP-PTPN17" "POP-PTPN18" "POP-PTPN19" "POP-PTPN20"
## [21] "POP-PTPN21" "POP-PTPN22" "POP-PTPN23" "POP-PTPN24" "POP-PTPN25"
## [26] "POP-PTPN26" "POP-PTPN27" "POP-PTPN28" "POP-PTPN29" "POP-PTPN30"
## [31] "POP-PTPN31" "POP-PTPN32" "POP-PTPN33" "POP-PTPN34" "POP-PTPN35"
## [36] "POP-PTPN36" "POP-PTPN37" "POP-PTPN38" "POP-PTPN39" "POP-PTPN40"
## [41] "POP-PTPN41" "POP-PTPN42" "POP-PTPN43" "POP-PTPN44" "POP-PTPN45"
## [46] "POP-PTPN46" "POP-PTPN47" "POP-PTPN48" "POP-PTPN49" "POP-PTPN50"
## [51] "POP-PTPN51" "POP-PTPN52" "POP-PTPN53" "POP-PTPN54" "POP-PTPN55"
## [56] "POP-PTPN56" "POP-PTPN57" "POP-PTPN58" "POP-PTPN59" "POP-PTPN60"
## [61] "POL-PTQT01" "POL-PTQT02" "POL-PTQT03" "POL-PTQT04" "POL-PTQT05"
## [66] "POL-PTQT06" "POL-PTQT07" "POL-PTQT08" "POL-PTQT09" "POL-PTQT10"
## [71] "POL-PTQT11" "POL-PTQT12" "POL-PTQT13" "POL-PTQT14" "POL-PTQT15"
## [76] "SPB-ESBD01" "SPB-ESBD02" "SPB-ESBD03" "SPB-ESBD04" "SPB-ESBD05"
## [81] "SPB-ESBD06" "SPB-ESBD07" "SPB-ESBD08" "SPB-ESBD09" "SPB-ESBD10"
## [86] "SPB-ESBD11" "ESAC-ESAC01" "ESAC-ESAC02" "ESAC-ESAC03" "ESAC-ESAC04"
## [91] "ESAC-ESAC05" "ESAC-ESAC06" "ESAC-ESAC07" "ESMO-ESMO01" "ESMO-ESMO02"
## [96] "ESMO-ESMO03" "ESMO-ESMO04" "ESMO-ESMO05" "ESMO-ESMO06" "ESMO-ESMO07"
## [101] "ESMO-ESMO08" "ESMO-ESMO09" "ESMO-ESMO10" "ESMO-ESMO11" "ESMO-ESMO12"
## [106] "ESMO-ESMO13" "ESMO-ESMO14" "ESMO-ESMO15" "ESMO-ESMO16" "ESMO-ESMO17"
## [111] "ESMO-ESMO18" "ESSV-ESSV01" "ESSV-ESSV02" "ESSV-ESSV03" "ESSV-ESSV05"
## [116] "ESSV-ESSV06" "ESSV-ESSV07" "ESSV-ESSV08" "ESSV-ESSV09" "ESSV-ESSV10"
## [121] "ESSV-ESSV11" "ESSV-ESSV12" "ESSV-ESSV13" "ESSV-ESSV15" "ESAL-ESAL01"
## [126] "ESAL-ESAL02" "ESAL-ESAL03" "ESAL-ESAL04" "ESAL-ESAL05" "ESAL-ESAL06"
## [131] "SPS-ESUP01" "SPS-ESUP02" "SPS-ESUP03" "SPS-ESUP04" "SPS-ESUP05"
## [136] "SPS-ESUP06" "SPS-ESUP07" "SPS-ESUP08" "SPS-ESUP09" "SPS-ESUP10"
## [141] "ESMN-ESMN01" "ESMN-ESMN03" "ESMN-ESMN04" "ESLS-ESLS01" "ESLS-ESLS02"
## [146] "ESLS-ESLS03" "ESMV-ESMV01" "ESMV-ESMV02" "ESMV-ESMV03" "ESFU-ESFU01"
## [151] "ESFU-ESFU02" "ESFU-ESFU03" "ESBM-ESBM01" "ESBM-ESBT01" "ESBM-ESBT02"
## [156] "ESBM-ESBT03" "ESTM-ESTM01" "ESTM-ESTM02" "ESTM-ESTO01" "ESTM-ESTO02"
## [161] "ESTM-ESTO03" "ESTM-ESTY01" "ESTM-ESTY02" "ESTM-ESTY03" "ESTM-ESTY04"
## [166] "ESTM-ESTY05" "ESTM-ESTY06" "ESTM-ESTY07" "ESTM-ESTY08" "ESTM-ESTY09"
## [171] "ESTM-ESTY10" "ESGD-ESGD01" "ESGD-ESGD02" "ESBN-ESBN01" "ESBN-ESBN02"
## [176] "ESBN-ESBN03" "ESBN-ESBN04" "ESBN-ESBN05" "ESBN-ESBN06" "ESSL-ESSL01"
## [181] "ESSL-ESSL02" "ESSL-ESSL03" "ESMC-ESMC03" "ESMC-ESMT01" "ESMC-ESMT02"
## [186] "ESMC-ESMT03" "ESVN-ESVN04" "ESPT-ESPT03" "ESAB-ESAB01" "ESAB-ESAB02"
## [191] "ESAB-ESAB03" "ESAB-ESAB04" "ESAB-ESAB05" "ESAB-ESAB06" "ESAB-ESAB07"
## [196] "ESAB-ESAB09" "ESAB-ESAB10" "ESAB-ESAB11" "ESAB-ESAB12" "ESAB-ESAB13"
## [201] "ESAB-ESAB14" "ESAB-ESAB15" "ESBY-ESBY01" "ESBY-ESBY02" "ESBY-ESBY03"
## [206] "ESBY-ESBY04" "ESBY-ESBY05" "ESBY-ESBY06" "ESNI-ESNI01" "ESNI-ESNI02"
## [211] "ESNI-ESNI04" "ESNI-ESNI05" "ESNI-ESNI06" "ESNI-ESNI07" "ESNI-ESNI08"
## [216] "ESNI-ESNI09" "ESNI-ESNI10" "ESNU-ESNU01" "ESNU-ESNU02" "ESNU-ESNU03"
## [221] "ESNU-ESNU04" "ESNU-ESNU05" "ESNU-ESNU06" "ESIR-ESIR01" "ESIR-ESIR02"
## [226] "ESIR-ESIR03" "ESAG-ESAG01" "ESAG-ESAG02" "ESAG-ESAG03" "ESAG-ESAG04"
## [231] "ESAG-ESAG05" "ESAG-ESAG06" "ESAG-ESAG07" "ESAG-ESAG08" "ESAG-ESAG09"
## [236] "ESAG-ESAG10" "ESAZ-ESAZ01" "ESAZ-ESAZ02" "ESAZ-ESAZ03" "ESAZ-ESAZ04"
## [241] "ESCN-ESCN01" "ESCN-ESCN02" "ESCN-ESCN03" "ESCN-ESCN04" "ESCT-ESCT01"
## [246] "ESCT-ESCT02" "ESCT-ESLA01" "ESCT-ESLA02" "ESCT-ESLU01" "ESCT-ESLU02"
## [251] "ESCT-ESLU03" "ESCT-ESLU04" "ESCT-ESLU05" "ESCT-ESLU06" "ESCT-ESLU07"
## [256] "ESCT-ESLU08" "ESCT-ESLU09" "ESCT-ESLU10" "ESCT-ESTT01" "ESMU-ESCV01"
## [261] "ESMU-ESCV02" "ESMU-ESCV03" "ESMU-ESCV04" "ESMU-ESMU01" "ESMU-ESMU02"
## [266] "ESMU-ESMU03" "ESMU-ESRM01" "ESMU-ESRM02" "ESMU-ESRM03" "ESMU-ESRM04"
## [271] "ESMU-ESRM05" "ESMU-ESRM06" "ESMU-ESRM07" "ESMU-ESRM08" "ESMU-ESRM09"
## [276] "ESMU-ESRM10" "ESPP-ESPP01" "ESPP-ESPP02" "ESPP-ESPP03" "ESPP-ESPP04"
## [281] "ESPP-ESPP05" "ESPP-ESPP06" "ESCH-ESCH01" "ESCH-ESCH02" "ESLM-ESLM01"
## [286] "ESLM-ESLM02" "ESLM-ESLM03" "ESLM-ESLM04" "ESCA-ESCA01" "ESCA-ESCA02"
## [291] "ESCA-ESCA03" "ESCA-ESCA04" "ESCA-ESCA05" "ESAY-ESAY01" "ESAY-ESAY02"
## [296] "ESAY-ESAY03" "ESAY-ESAY04" "ESAY-ESAY05" "ESAY-ESAY06" "ESAY-ESAY07"
## [301] "ESAY-ESAY09" "ESAY-ESAY10" "SPC-ESVL01" "SPC-ESVL02" "SPC-ESVL03"
## [306] "SPC-ESVL04" "SPC-ESVL05" "SPC-ESVL06" "SPC-ESVL07" "SPC-ESVL08"
## [311] "SPC-ESVL09" "SPC-ESVL10" "SPC-ESVL11" "SPC-ESVL12" "SPC-ESVL13"
## [316] "SPC-ESVL14" "SPC-ESVL15" "SPC-ESVL16" "SPC-ESVL17" "SPC-ESVL18"
## [321] "SPC-ESVL19" "SPC-ESVL20" "ESBS-ESBS01" "ESBS-ESBS02" "ESBS-ESBS03"
## [326] "ESBS-ESBS04" "ESBS-ESBS05" "ESBS-ESBS06" "ESBS-ESBS07" "ESBS-ESBC01"
## [331] "ESBS-ESBC02" "ESBS-ESBC03" "ESBS-ESBC04" "ESBS-ESBC05" "ESBS-ESBC06"
## [336] "ESBS-ESBC07" "ESBE-ESBE01" "ESBE-ESBE02" "ESBE-ESBE03" "ESBE-ESBE04"
## [341] "ESBE-ESBE05" "ESBE-ESBE06" "ESBE-ESBE07" "ESBE-ESBE08" "ESBE-ESBE09"
## [346] "ESBE-ESBE10" "ESBE-ESBE11" "ESBE-ESBE12" "ESBE-ESBE13" "ESBE-ESBE14"
## [351] "ESBE-ESBE15" "ESTS-ESTS01" "ESTS-ESTS02" "ESTS-ESTS03" "ESTS-ESTS04"
## [356] "ESTS-ESTS05" "ESTS-ESTS06" "ESTS-ESTS07" "ESTS-ESTS08" "ESTS-ESTS09"
## [361] "ESTS-ESTS10" "ESBA-ESBA01" "ESBA-ESBA02" "ESBA-ESBA03" "ESBA-ESBA04"
## [366] "ESBA-ESBA05" "ESBA-ESBA06" "ESBA-ESBA07" "ESBA-ESBA08" "ESBA-ESBA09"
## [371] "ESBA-ESBA10" "ESBA-ESBA11" "ESBA-ESBA12" "ESBA-ESBA13" "ESBA-ESBA14"
## [376] "ESBA-ESBA15" "ESBA-ESBA16" "ESBA-ESBA17" "ESBA-ESBA18" "ESBA-ESBA19"
## [381] "ESBA-ESBA20" "ESBA-ESBA21" "ESBA-ESBA22" "ESBA-ESBA23" "ESBA-ESBA24"
## [386] "ESBA-ESBA25" "ESBA-ESBA26" "ESBA-ESBA27" "ESBA-ESBA28" "ESCP-ESCP01"
## [391] "ESCP-ESCP02" "ESCP-ESCP03" "ESCP-ESCP04" "ESCP-ESCP05" "ESCP-ESCP06"
## [396] "ESCP-ESCP07" "ESCP-ESCP08" "ESCP-ESCP09" "ESCP-ESCP10" "ESCP-ESCP11"
## [401] "ESCP-ESCP12" "ESCP-ESCP13" "ESCP-ESCP14" "ESCP-ESCP15" "ESCP-ESCP16"
## [406] "ESCP-ESCP17" "ESCP-ESCP18" "ESCP-ESCP19" "SPM-ESMG01" "SPM-ESMG02"
## [411] "SPM-ESMG03" "SPM-ESMG04" "SPM-ESMG05" "SPM-ESMG06" "SPM-ESMG07"
## [416] "SPM-ESMG08" "SPM-ESMG09" "SPM-ESMG10" "SPM-ESMG11" "SPM-ESMG12"
## [421] "SPM-ESMG13" "SPM-ESMG14" "SPM-ESMG15" "SPM-ESMG16" "SPM-ESMG17"
## [426] "SPM-ESMG18" "SPM-ESMG19" "FRS-FRMH01" "FRS-FRMH02" "FRS-FRMH03"
## [431] "FRS-FRMH04" "FRS-FRMH05" "FRS-FRMH06" "FRS-FRMH07" "FRS-FRMH08"
## [436] "FRS-FRMH09" "FRS-FRMH10" "FRS-FRMH11" "FRS-FRMH12" "FRS-FRMH13"
## [441] "FRS-FRMH14" "FRS-FRMH15" "FRS-FRMH16" "FRS-FRMH17" "FRS-FRMH18"
## [446] "FRS-FRMH19" "FRS-FRMH20" "FRS-FRMH36" "FRS-FRMH37" "FRS-FRMH38"
## [451] "FRS-FRMH39" "FRS-FRMH40" "FRS-FRMH41" "FRS-FRMH42" "FRS-FRMH43"
## [456] "FRS-FRMH44" "FRS-FRMH45" "STS-FRST01" "STS-FRST02" "STS-FRST03"
## [461] "STS-FRST04" "STS-FRST05" "STS-FRST06" "STS-FRST07" "STS-FRST08"
## [466] "STS-FRST09" "STS-FRST10" "STS-FRST11" "STS-FRST12" "STS-FRST13"
## [471] "STS-FRST14" "STS-FRST15" "STS-FRST16" "STS-FRST17" "STS-FRST18"
## [476] "STS-FRST19" "STS-FRST20" "STS-FRST21" "STS-FRST22" "STS-FRST23"
## [481] "STS-FRST24" "STS-FRST25" "STS-FRST26" "STS-FRST27" "STS-FRST28"
## [486] "STS-FRST29" "STS-FRST30" "ITB-ITBL01" "ITB-ITBL02" "ITB-ITBL03"
## [491] "ITB-ITBL04" "ITB-ITBL05" "ITB-ITBL06" "ITB-ITBL07" "ITB-ITBL08"
## [496] "ITB-ITBL09" "ITB-ITBL10" "ITB-ITBL11" "ITB-ITBL12" "ITB-ITBL13"
## [501] "ITB-ITBL14" "ITB-ITBL15" "ITB-ITBO01" "ITB-ITBO02" "ITB-ITBO03"
## [506] "ITB-ITBO04" "ITB-ITBO05" "ITB-ITBO06" "ITB-ITBO07" "ITB-ITBO08"
## [511] "ITB-ITBO09" "ITB-ITBO10" "ITB-ITBO11" "ITB-ITBO12" "ITB-ITBO13"
## [516] "ITB-ITBO14" "ITB-ITBO15" "ITRO-ITRM01" "ITRO-ITRM02" "ITRO-ITRM03"
## [521] "ITRO-ITRM04" "ITRO-ITRM05" "ITRO-ITRM06" "ITRO-ITRM07" "ITRO-ITRM08"
## [526] "ITRO-ITRM09" "ITRO-ITRM10" "ITRO-ITRM11" "ITRO-ITRM12" "ITRO-ITRM13"
## [531] "ITRO-ITRO01" "ITRO-ITRO02" "ITRO-ITRO03" "ITRO-ITRO04" "ITRO-ITRO05"
## [536] "ITRO-ITRO06" "ITRO-ITRO07" "ITRO-ITRO08" "ITRO-ITRO09" "ITRO-ITRO10"
## [541] "ITRO-ITRO11" "ITRO-ITRO12" "ITRO-ITRO13" "ITRO-ITRO14" "ITRO-ITRO15"
## [546] "ITRO-ITRO16" "ITRO-ITRO17" "SLO-SLGO01" "SLO-SLGO02" "SLO-SLGO03"
## [551] "SLO-SLGO04" "SLO-SLGO05" "SLO-SLGO06" "SLO-SLGO07" "SLO-SLGO08"
## [556] "SLO-SLGO09" "SLO-SLGO10" "SLO-SLGO11" "SLO-SLGO12" "SLO-SLGO13"
## [561] "SLO-SLGO14" "SLO-SLGO15" "SLO-SLGO25" "SLO-SLGO26" "SLO-SLGO27"
## [566] "SLO-SLGO28" "SLO-SLGO29" "SLO-SLGO30" "SLO-SLGO31" "SLO-SLGO32"
## [571] "SLO-SLGO33" "SLO-SLGO34" "SLO-SLGO35" "SLO-SLGO36" "SLO-SLGO37"
## [576] "SLO-SLGO38" "SLO-SLGO39" "MAL-MTLU01" "MAL-MTLU02" "MAL-MTLU03"
## [581] "MAL-MTLU04" "MAL-MTLU05" "MAL-MTLU06" "MAL-MTLU07" "MAL-MTLU08"
## [586] "MAL-MTLU09" "MAL-MTLU10" "MAL-MTLU11" "MAL-MTLU12" "MAL-MTLU13"
## [591] "MAL-MTLU14" "MAL-MTLU15" "MAL-MTLU16" "MAL-MTLU17" "MAL-MTLU18"
## [596] "MAL-MTLU19" "MAL-MTLU20" "MAL-MTLU31" "MAL-MTLU32" "MAL-MTLU33"
## [601] "MAL-MTLU34" "MAL-MTLU35" "MAL-MTLU36" "MAL-MTLU37" "MAL-MTLU38"
## [606] "MAL-MTLU39" "ITP-ITBR01" "ITP-ITBR02" "ITP-ITBR03" "ITP-ITBR04"
## [611] "ITP-ITBR05" "ITP-ITBR06" "ITP-ITBR07" "ITP-ITBR08" "ITP-ITBR09"
## [616] "ITP-ITBR10" "ITP-ITBR11" "ITP-ITBR12" "ITP-ITBR13" "ITP-ITBR14"
## [621] "ITP-ITBR15" "ITP-ITBR16" "ITP-ITBR17" "ITP-ITBR18" "ITP-ITBR19"
## [626] "ITP-ITBR20" "ITP-ITBR21" "ITP-ITVL01" "ITP-ITVL02" "ITP-ITVL03"
## [631] "ITP-ITVL04" "ITP-ITVL05" "ITP-ITVL06" "ITP-ITVL07" "ITP-ITVL08"
## [636] "ITP-ITVL09" "CRO-CRPL01" "CRO-CRPL02" "CRO-CRPL03" "CRO-CRPL04"
## [641] "CRO-CRPL05" "CRO-CRPL06" "CRO-CRPL07" "CRO-CRPL08" "CRO-CRPL09"
## [646] "CRO-CRPL10" "CRO-CRPL11" "CRO-CRPL12" "CRO-CRPL13" "CRO-CRPL14"
## [651] "CRO-CRPL15" "CRO-CRPL16" "CRO-CRPL17" "CRO-CRPL18" "CRO-CRPL19"
## [656] "CRO-CRPL20" "CRO-CRPL21" "CRO-CRPL22" "CRO-CRPL23" "CRO-CRPL24"
## [661] "CRO-CRPL25" "CRO-CRPL26" "CRO-CRPL27" "CRO-CRPL28" "CRO-CRPL29"
## [666] "CRO-CRPL30" "ALD-ALDU01" "ALD-ALDU02" "ALD-ALDU03" "ALD-ALDU04"
## [671] "ALD-ALDU05" "ALD-ALDU06" "ALD-ALDU07" "ALD-ALDU08" "ALD-ALDU09"
## [676] "ALD-ALDU10" "ALD-ALDU11" "ALD-ALDU12" "ALD-ALDU13" "ALD-ALDU14"
## [681] "ALD-ALDU15" "ALD-ALDU16" "ALD-ALDU17" "ALD-ALDU18" "ALD-ALDU19"
## [686] "ALD-ALDU20" "ALD-ALDU21" "ALD-ALDU22" "ALD-ALDU23" "ALD-ALDU25"
## [691] "ALD-ALDU26" "ALD-ALDU27" "ALD-ALDU28" "ALD-ALDU29" "ALD-ALDU30"
## [696] "SER-SRNO01" "SER-SRNO02" "SER-SRNO03" "SER-SRNO04" "SER-SRNO05"
## [701] "SER-SRNO06" "SER-SRNO07" "SER-SRNO08" "SER-SRNO09" "SER-SRNO10"
## [706] "SER-SRNO11" "SER-SRNO12" "SER-SRNO14" "SER-SRNO15" "SER-SRNO16"
## [711] "SER-SRNO17" "SER-SRNO18" "SER-SRNO19" "SER-SRNO20" "SER-SRNO21"
## [716] "SER-SRNO22" "SER-SRNO23" "SER-SRNO24" "SER-SRNO25" "SER-SRNO26"
## [721] "SER-SRNO27" "SER-SRNO28" "SER-SRNO29" "SER-SRNO30" "ROTI-ROTI01"
## [726] "ROTI-ROTI03" "ROTI-ROTI04" "ROTI-ROTI05" "ROTI-ROTI06" "ROTI-ROTI07"
## [731] "ROTI-ROTI08" "ROTI-ROTI09" "ROTI-ROTI10" "ROTI-ROTI11" "ROTI-ROTI12"
## [736] "ROTI-ROTI13" "ROTI-ROTI14" "ROTI-ROTI15" "ROTI-ROTI16" "ROTI-ROTI17"
## [741] "ROTI-ROTI18" "ROTI-ROTI19" "ROTI-ROTI21" "ROTI-ROTI22" "ROTI-ROTI23"
## [746] "ROTI-ROTI24" "ROTI-ROTI25" "ROTI-ROTI26" "ROTI-ROTI27" "ROTI-ROTI28"
## [751] "ROTI-ROTI29" "ROTI-ROTI30" "RODE-RODE01" "RODE-RODE02" "RODE-RODE03"
## [756] "RODE-RODE04" "RODE-RODE05" "RODE-RODE06" "RODE-RODE07" "RODE-RODE08"
## [761] "RODE-RODE09" "RODE-RODE10" "RODE-RODE11" "RODE-RODE12" "RODE-RODE13"
## [766] "RODE-RODE14" "RODE-RODE15" "RODE-RODE16" "RODE-RODE17" "RODE-RODE18"
## [771] "RODE-RODE19" "RODE-RODE20" "RODE-RODE21" "RODE-RODE22" "RODE-RODE23"
## [776] "RODE-RODE24" "RODE-RODE25" "RODE-RODE26" "RODE-RODE27" "RODE-RODE28"
## [781] "RODE-RODE29" "RODE-RODE30" "ROS-ROSM01" "ROS-ROSM02" "ROS-ROSM03"
## [786] "ROS-ROSM04" "ROS-ROSM05" "ROS-ROSM06" "ROS-ROSM07" "ROS-ROSM08"
## [791] "ROS-ROSM09" "ROS-ROSM10" "ROS-ROSM11" "ROS-ROSM12" "ROS-ROSM13"
## [796] "ROS-ROSM14" "ROS-ROSM15" "ROS-ROSM16" "ROS-ROSM17" "ROS-ROSM18"
## [801] "ROS-ROSM19" "ROS-ROSM20" "ROS-ROSM21" "ROS-ROSM22" "ROS-ROSM23"
## [806] "ROS-ROSM24" "ROS-ROSM25" "ROS-ROSM26" "ROS-ROSM27" "ROS-ROSM28"
## [811] "ROS-ROSM29" "ROS-ROSM30" "GRTA-GRTA01" "GRTA-GRTA02" "GRTA-GRTA03"
## [816] "GRTA-GRTA04" "GRTA-GRTA05" "GRTA-GRTA06" "GRTA-GRTA07" "GRTA-GRTA08"
## [821] "GRTA-GRTA09" "GRTA-GRTA10" "GRTA-GRTA11" "GRTA-GRTA12" "GRTA-GRTA13"
## [826] "GRTA-GRTA14" "GRTA-GRTA15" "GRTA-GRTA23" "GRTA-GRTA24" "GRTA-GRTA25"
## [831] "GRTA-GRTA26" "GRTA-GRTA27" "GRTA-GRTI01" "GRTA-GRTI02" "GRTA-GRTI03"
## [836] "GRTA-GRTI04" "GRTA-GRTI05" "GRTA-GRTT01" "GRTA-GRTT02" "GRTA-GRTT03"
## [841] "GRTA-GRTT04" "GRTA-GRTT05" "BUL-BULO01" "BUL-BULO02" "BUL-BULO03"
## [846] "BUL-BULO04" "BUL-BULO05" "BUL-BULO06" "BUL-BULO07" "BUL-BULO08"
## [851] "BUL-BULO09" "BUL-BULO10" "BUL-BULO11" "BUL-BULO12" "BUL-BULO13"
## [856] "BUL-BULO14" "BUL-BULO15" "BUL-BULO16" "BUL-BULO17" "BUL-BULO18"
## [861] "BUL-BULO20" "BUL-BULO25" "BUL-BULO26" "BUL-BULO27" "BUL-BULO28"
## [866] "BUL-BULO29" "BUL-BULO30" "BUL-BULO31" "BUL-BULO32" "BUL-BULO33"
## [871] "BUL-BULO34" "ROPL-ROPL02" "ROPL-ROPL03" "ROPL-ROPL05" "ROPL-ROPL07"
## [876] "ROPL-ROPL08" "ROPL-ROPL11" "ROPL-ROPL12" "ROPL-ROPL13" "ROPL-ROPL14"
## [881] "ROPL-ROPL15" "ROPL-ROPL16" "ROPL-ROPL17" "ROPL-ROPL18" "ROPL-ROPL19"
## [886] "ROPL-ROPL20" "ROPL-ROPL21" "ROPL-ROPL22" "ROPL-ROPL23" "ROPL-ROPL25"
## [891] "ROPL-ROPL26" "ROPL-ROPL27" "ROPL-ROPL28" "ROPL-ROPL29" "ROPL-ROPL30"
## [896] "GRPA-GRPA01" "GRPA-GRPA02" "GRPA-GRPA03" "GRPA-GRPA04" "GRPA-GRPA05"
## [901] "GRPA-GRPI01" "GRPA-GRPI02" "GRPA-GRPI03" "GRPA-GRPI04" "GRPA-GRPI06"
## [906] "GRPA-GRPP01" "GRPA-GRPP02" "GRPA-GRPP03" "GRPA-GRPP04" "GRPA-GRPP05"
## [911] "GRPA-GRPR01" "GRPA-GRPR02" "GRPA-GRPR03" "GRPA-GRPR04" "GRPA-GRPR05"
## [916] "GRPA-GRPR06" "GRPA-GRPR07" "GRPA-GRPR08" "GRPA-GRPR09" "GRPA-GRPR10"
## [921] "GRPA-GRPU01" "GRPA-GRPU02" "GRPA-GRPU03" "GRPA-GRPU04" "GRA-GRAA01"
## [926] "GRA-GRAA02" "GRA-GRAA03" "GRA-GRAA04" "GRA-GRAA05" "GRA-GRAA06"
## [931] "GRA-GRAA07" "GRA-GRAA08" "GRA-GRAE01" "GRA-GRAE02" "GRA-GRAE03"
## [936] "GRA-GRAE04" "GRA-GRAE05" "GRA-GRAE06" "GRA-GRAE07" "GRA-GRAE08"
## [941] "GRA-GRAH01" "GRA-GRAH02" "GRA-GRAH05" "GRA-GRAH06" "GRA-GRAH07"
## [946] "GRA-GRAI01" "GRA-GRAN01" "GRA-GRAN02" "GRA-GRAN03" "GRA-GRAN04"
## [951] "GRA-GRAN05" "GRA-GRAN06" "GRA-GRAN07" "GRA-GRAN08" "GRC-GRCA01"
## [956] "GRC-GRCA02" "GRC-GRCA03" "GRC-GRCA04" "GRC-GRCA05" "GRC-GRCC01"
## [961] "GRC-GRCC02" "GRC-GRCC03" "GRC-GRCC04" "GRC-GRCC05" "GRC-GRCC06"
## [966] "GRC-GRCC08" "GRC-GRCC09" "GRC-GRCC10" "GRC-GRCC11" "GRC-GRCC12"
## [971] "GRC-GRCC13" "GRC-GRCC14" "GRC-GRCC15" "GRC-GRCC16" "GRC-GRCC17"
## [976] "GRC-GRCC18" "GRC-GRCC19" "GRC-GRCC20" "GRC-GRCC21" "GRC-GRCC22"
## [981] "GRC-GRCC23" "GRC-GRCC24" "GRC-GRCC25" "GRKV-GRKA01" "GRKV-GRKA02"
## [986] "GRKV-GRKA03" "GRKV-GRKA04" "GRKV-GRKA05" "GRKV-GRKB01" "GRKV-GRKB02"
## [991] "GRKV-GRKB03" "GRKV-GRKB04" "GRKV-GRKL01" "GRKV-GRKL02" "GRKV-GRKL03"
## [996] "GRKV-GRKL04" "GRKV-GRKL05" "GRKV-GRKV01" "GRKV-GRKV02" "GRKV-GRKV03"
## [1001] "GRKV-GRKV04" "GRKV-GRKV05" "GRKV-GRKV06" "GRKV-GRKV07" "GRKV-GRKV08"
## [1006] "GRKV-GRKV09" "GRKV-GRKV10" "GRKV-GRKV11" "GRKV-GRKV12" "GRKV-GRKV13"
## [1011] "GRKV-GRKV14" "GRKV-GRKV15" "ROBU-ROBU11" "ROBU-ROBU13" "ROBU-ROBU16"
## [1016] "ROBU-ROBU17" "ROBU-ROBU19" "ROBU-ROBU26" "ROBU-ROBU28" "ROBU-ROBU29"
## [1021] "TUA-TRLG01" "TUA-TRLG02" "TUA-TRLG03" "TUA-TRLG04" "TUA-TRLG05"
## [1026] "TUA-TRLG06" "TUA-TRLG07" "TUA-TRLG08" "TUA-TRLG09" "TUA-TRLG10"
## [1031] "TUA-TRLG11" "TUA-TRLG12" "TUA-TRLG13" "TUA-TRLG14" "TUA-TRLG15"
## [1036] "TUA-TRLG16" "TUA-TRLG17" "TUA-TRLG18" "TUA-TRLG19" "TUA-TRLG20"
## [1041] "TUA-TRLG21" "TUA-TRLG22" "TUA-TRLG23" "TUA-TRLG24" "TUA-TRLG25"
## [1046] "TUA-TRLG26" "TUA-TRLG27" "TUA-TRLG28" "TUA-TRLG29" "TUA-TRLG30"
## [1051] "TRGN-TRGN01" "TRGN-TRGN02" "TRGN-TRGN03" "TRGN-TRGN04" "TRGN-TRGN05"
## [1056] "TRGN-TRGN06" "TRGN-TRGN07" "TRGN-TRGN08" "TRGN-TRGN09" "TRGN-TRGN10"
## [1061] "TRGN-TRGN11" "TRGN-TRGN12" "TRGN-TRGN13" "TRGN-TRGN14" "TRGN-TRGN15"
## [1066] "TRGN-TRGN16" "TRGN-TRGN17" "TRGN-TRGN18" "TRGN-TRGN19" "TRGN-TRGN20"
## [1071] "TRGN-TRGN21" "TRGN-TRGN22" "TRGN-TRGN23" "TRGN-TRGN24" "TRGN-TRGN25"
## [1076] "TRGN-TRGN26" "TRGN-TRGN27" "TRGN-TRGN28" "ROCO-ROCO01" "ROCO-ROCO02"
## [1081] "ROCO-ROCO03" "ROCO-ROCO04" "ROCO-ROCO05" "ROCO-ROCO06" "ROCO-ROCO08"
## [1086] "ROCO-ROCO09" "ROCO-ROCO10" "ROCO-ROCO11" "ROCO-ROCO12" "ROCO-ROCO13"
## [1091] "ROCO-ROCO14" "ROCO-ROCO15" "ROCO-ROCO16" "ROCO-ROCO17" "ROCO-ROCO18"
## [1096] "ROCO-ROCO19" "ROCO-ROCO20" "ROCO-ROCO21" "ROCO-ROCO22" "ROCO-ROCO23"
## [1101] "ROCO-ROCO24" "ROCO-ROCO25" "ROCO-ROCO26" "ROCO-ROCO27" "ROCO-ROCO28"
## [1106] "ROCO-ROCO29" "ROCO-ROCO30" "TRIS-TRIT01" "TRIS-TRIT02" "TRIS-TRIT04"
## [1111] "TRIS-TRIT05" "TRIS-TRIT07" "TRIS-TRIT08" "TRIS-TRIT09" "TRIS-TRIS01"
## [1116] "TRIS-TRIS02" "TRIS-TRIS03" "TRIS-TRIS04" "TRIS-TRIS05" "TRIS-TRIS06"
## [1121] "TRIS-TRIS07" "TRIS-TRIS08" "TRIS-TRIS09" "TRIS-TRIS10" "TRIS-TRIS11"
## [1126] "TRIS-TRIS12" "TRIS-TRIS13" "TRIS-TRIS14" "TRIS-TRIS15" "TRIS-TRIS16"
## [1131] "TRIS-TRIS17" "TRIS-TRIS18" "TRIS-TRIS19" "TRIS-TRIS20" "RURM-RURM02"
## [1136] "RURM-RURM06" "RURM-RURM07" "SOC-RUSO01" "SOC-RUSO02" "SOC-RUSO03"
## [1141] "SOC-RUSO04" "SOC-RUSO05" "SOC-RUSO06" "SOC-RUSO07" "SOC-RUSO08"
## [1146] "SOC-RUSO09" "SOC-RUSO10" "TRTR-TRTR01" "TRTR-TRTR02" "TRTR-TRTR03"
## [1151] "TRTR-TRTR04" "TRTR-TRTR05" "TRTR-TRTR06" "TRTR-TRTR07" "TRTR-TRTR08"
## [1156] "TRTR-TRTR09" "TRTR-TRTR10" "TRTR-TRTR11" "TRTR-TRTR12" "TRTR-TRTR13"
## [1161] "TRTR-TRTR15" "RUPL-RUPL01" "RUPL-RUPL02" "RUPL-RUPL03" "RUPL-RUPL04"
## [1166] "RUPL-RUPL05" "RUPL-RUPL07" "RUPL-RUPL08" "RUPL-RUPL09" "RUPL-RUPL10"
## [1171] "RUBE-RUBE06" "RUBE-RUBE07" "RUBE-RUBE08" "RUBE-RUBE09" "RUBE-RUBE10"
## [1176] "RUBE-RUBE11" "RUBE-RUBE12" "RUBE-RUBE13" "RUBE-RUBE14" "RUBE-RUBE15"
## [1181] "RUBE-RUBE16" "RUBE-RUBE17" "RUBE-RUBE18" "RUBE-RUBE19" "RUBE-RUBE20"
## [1186] "ABAL-ABAL01" "ABAL-ABAL02" "ABAL-ABGL05" "ABAL-ABIN01" "ABAL-ABIN02"
## [1191] "ABAL-ABIN06" "ABAL-ABIN07" "ABAL-ABKH01" "ABAL-ABKH02" "ABAL-ABKO04"
## [1196] "TRRI-TRRI02" "TRRI-TRRI03" "TRRI-TRRI04" "TRRI-TRRI05" "TRRI-TRRI06"
## [1201] "TRRI-TRRI10" "ABSU-ABSU01" "ABSU-ABSU02" "ABSU-ABSU03" "ABSU-ABSU04"
## [1206] "ABSU-ABSU05" "TUH-TRHO01" "TUH-TRHO02" "TUH-TRHO03" "TUH-TRHO04"
## [1211] "TUH-TRHO05" "TUH-TRHO06" "TUH-TRHO07" "TUH-TRHO08" "TUH-TRHO09"
## [1216] "TUH-TRHO10" "TUH-TRHO11" "TUH-TRHO12" "TUH-TRHO13" "TUH-TRHO14"
## [1221] "TUH-TRHO15" "TUH-TRHO16" "TUH-TRHO17" "TUH-TRHO18" "TUH-TRHO19"
## [1226] "TUH-TRHO20" "TUH-TRHO21" "TUH-TRHO22" "TUH-TRHO23" "TUH-TRHO24"
## [1231] "TUH-TRHO25" "TUH-TRHO26" "TUH-TRHO27" "TUH-TRHO28" "TUH-TRHO29"
## [1236] "GEPO-GEPO01" "GEPO-GEPO02" "GEPO-GEPO03" "GEPO-GEPO04" "GEPO-GEPO05"
## [1241] "TRAR-TRAR01" "TRAR-TRAR02" "TRAR-TRAR03" "TRAR-TRAR04" "TRAR-TRAR06"
## [1246] "TRAR-TRAR07" "TRAR-TRAR08" "TRAR-TRAR10" "TRAR-TRAR11" "TRAR-TRAR12"
## [1251] "TRAR-TRAR13" "TRAR-TRAR14"
Save it as rds
To load it
## [1] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## 78 Levels: POP-PTPN60 POL-PTQT15 SPB-ESBD11 ESAC-ESAC07 ... TRAR-TRAR14
Import sample data Load the csv
sampling_loc <- read.csv(here("output/europe/dapc/microsats/sampling_loc_euro_microsats.csv"))
sampling_loc <- as.data.frame(sampling_loc)
head(sampling_loc)
## Pop_City Country Latitude Longitude Continent Abbreviation
## 1 Gravatai Brazil -29.93760 -50.99070 Americas GRV
## 2 Puerto Iguazu Argentina -25.59720 -54.57860 Americas POR
## 3 Vohimasy Madagascar -22.81591 47.75026 Africa VOH
## 4 Trois-Bassins Reunion -21.10901 55.31921 Africa TRO
## 5 Morondava Madagascar -20.28420 44.27940 Africa MAD
## 6 Dauguet Mauritius -20.18530 57.52154 Africa DAU
## Year Region Subregion order order2 orderold order_microsat
## 1 2018 South America 8 NA 82 NA
## 2 2018 South America NA NA NA NA
## 3 2016 & 2017 East Africa East Africa NA 79 NA NA
## 4 2017 Indian Ocean Indian Ocean 81 81 73 NA
## 5 2016 East Africa East Africa 80 78 72 NA
## 6 2022 Indian Ocean Indian Ocean 82 80 74 NA
## microsats microsat_code alt_code X Country.1 X.1 X.2 X.3 X.4 X.5 X.6
## 1 NA Brazil NA NA NA NA NA NA
## 2 NA Argentina NA NA NA NA NA NA
## 3 NA Madagascar NA NA NA NA NA NA
## 4 NA Reunion NA NA NA NA NA NA
## 5 NA Madagascar NA NA NA NA NA NA
## 6 NA Mauritius NA NA NA NA NA NA
Save it as rds
To load it
## Pop_City Country Latitude Longitude Continent Abbreviation
## 1 Gravatai Brazil -29.93760 -50.99070 Americas GRV
## 2 Puerto Iguazu Argentina -25.59720 -54.57860 Americas POR
## 3 Vohimasy Madagascar -22.81591 47.75026 Africa VOH
## 4 Trois-Bassins Reunion -21.10901 55.31921 Africa TRO
## 5 Morondava Madagascar -20.28420 44.27940 Africa MAD
## 6 Dauguet Mauritius -20.18530 57.52154 Africa DAU
## Year Region Subregion order order2 orderold order_microsat
## 1 2018 South America 8 NA 82 NA
## 2 2018 South America NA NA NA NA
## 3 2016 & 2017 East Africa East Africa NA 79 NA NA
## 4 2017 Indian Ocean Indian Ocean 81 81 73 NA
## 5 2016 East Africa East Africa 80 78 72 NA
## 6 2022 Indian Ocean Indian Ocean 82 80 74 NA
## microsats microsat_code alt_code X Country.1 X.1 X.2 X.3 X.4 X.5 X.6
## 1 NA Brazil NA NA NA NA NA NA
## 2 NA Argentina NA NA NA NA NA NA
## 3 NA Madagascar NA NA NA NA NA NA
## 4 NA Reunion NA NA NA NA NA NA
## 5 NA Madagascar NA NA NA NA NA NA
## 6 NA Mauritius NA NA NA NA NA NA
Load the csv
countr <- read.csv(here("output/europe/dapc/microsats/DAPC_countries_microsats.csv"
))
df <- as.data.frame(countr)
head(df)
## pop country
## 1 POP Portugal
## 2 POP Portugal
## 3 POP Portugal
## 4 POP Portugal
## 5 POP Portugal
## 6 POP Portugal
## [1] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [9] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [17] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [25] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [33] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [41] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [49] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [57] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [65] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [73] Portugal Portugal Portugal Spain Spain Spain Spain Spain
## [81] Spain Spain Spain Spain Spain Spain Spain Spain
## [89] Spain Spain Spain Spain Spain Spain Spain Spain
## [97] Spain Spain Spain Spain Spain Spain Spain Spain
## [105] Spain Spain Spain Spain Spain Spain Spain Spain
## [113] Spain Spain Spain Spain Spain Spain Spain Spain
## [121] Spain Spain Spain Spain Spain Spain Spain Spain
## [129] Spain Spain Spain Spain Spain Spain Spain Spain
## [137] Spain Spain Spain Spain Spain Spain Spain Spain
## [145] Spain Spain Spain Spain Spain Spain Spain Spain
## [153] Spain Spain Spain Spain Spain Spain Spain Spain
## [161] Spain Spain Spain Spain Spain Spain Spain Spain
## [169] Spain Spain Spain Spain Spain Spain Spain Spain
## [177] Spain Spain Spain Spain Spain Spain Spain Spain
## [185] Spain Spain Spain Spain Spain Spain Spain Spain
## [193] Spain Spain Spain Spain Spain Spain Spain Spain
## [201] Spain Spain Spain Spain Spain Spain Spain Spain
## [209] Spain Spain Spain Spain Spain Spain Spain Spain
## [217] Spain Spain Spain Spain Spain Spain Spain Spain
## [225] Spain Spain Spain Spain Spain Spain Spain Spain
## [233] Spain Spain Spain Spain Spain Spain Spain Spain
## [241] Spain Spain Spain Spain Spain Spain Spain Spain
## [249] Spain Spain Spain Spain Spain Spain Spain Spain
## [257] Spain Spain Spain Spain Spain Spain Spain Spain
## [265] Spain Spain Spain Spain Spain Spain Spain Spain
## [273] Spain Spain Spain Spain Spain Spain Spain Spain
## [281] Spain Spain Spain Spain Spain Spain Spain Spain
## [289] Spain Spain Spain Spain Spain Spain Spain Spain
## [297] Spain Spain Spain Spain Spain Spain Spain Spain
## [305] Spain Spain Spain Spain Spain Spain Spain Spain
## [313] Spain Spain Spain Spain Spain Spain Spain Spain
## [321] Spain Spain Spain Spain Spain Spain Spain Spain
## [329] Spain Spain Spain Spain Spain Spain Spain Spain
## [337] Spain Spain Spain Spain Spain Spain Spain Spain
## [345] Spain Spain Spain Spain Spain Spain Spain Spain
## [353] Spain Spain Spain Spain Spain Spain Spain Spain
## [361] Spain Spain Spain Spain Spain Spain Spain Spain
## [369] Spain Spain Spain Spain Spain Spain Spain Spain
## [377] Spain Spain Spain Spain Spain Spain Spain Spain
## [385] Spain Spain Spain Spain Spain Spain Spain Spain
## [393] Spain Spain Spain Spain Spain Spain Spain Spain
## [401] Spain Spain Spain Spain Spain Spain Spain Spain
## [409] Spain Spain Spain Spain Spain Spain Spain Spain
## [417] Spain Spain Spain Spain Spain Spain Spain Spain
## [425] Spain Spain Spain France France France France France
## [433] France France France France France France France France
## [441] France France France France France France France France
## [449] France France France France France France France France
## [457] France France France France France France France France
## [465] France France France France France France France France
## [473] France France France France France France France France
## [481] France France France France France France France Italy
## [489] Italy Italy Italy Italy Italy Italy Italy Italy
## [497] Italy Italy Italy Italy Italy Italy Italy Italy
## [505] Italy Italy Italy Italy Italy Italy Italy Italy
## [513] Italy Italy Italy Italy Italy Italy Italy Italy
## [521] Italy Italy Italy Italy Italy Italy Italy Italy
## [529] Italy Italy Italy Italy Italy Italy Italy Italy
## [537] Italy Italy Italy Italy Italy Italy Italy Italy
## [545] Italy Italy Italy Slovenia Slovenia Slovenia Slovenia Slovenia
## [553] Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia
## [561] Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia
## [569] Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia
## [577] Slovenia Malta Malta Malta Malta Malta Malta Malta
## [585] Malta Malta Malta Malta Malta Malta Malta Malta
## [593] Malta Malta Malta Malta Malta Malta Malta Malta
## [601] Malta Malta Malta Malta Malta Malta Italy Italy
## [609] Italy Italy Italy Italy Italy Italy Italy Italy
## [617] Italy Italy Italy Italy Italy Italy Italy Italy
## [625] Italy Italy Italy Italy Italy Italy Italy Italy
## [633] Italy Italy Italy Italy Croatia Croatia Croatia Croatia
## [641] Croatia Croatia Croatia Croatia Croatia Croatia Croatia Croatia
## [649] Croatia Croatia Croatia Croatia Croatia Croatia Croatia Croatia
## [657] Croatia Croatia Croatia Croatia Croatia Croatia Croatia Croatia
## [665] Croatia Croatia Albania Albania Albania Albania Albania Albania
## [673] Albania Albania Albania Albania Albania Albania Albania Albania
## [681] Albania Albania Albania Albania Albania Albania Albania Albania
## [689] Albania Albania Albania Albania Albania Albania Albania Serbia
## [697] Serbia Serbia Serbia Serbia Serbia Serbia Serbia Serbia
## [705] Serbia Serbia Serbia Serbia Serbia Serbia Serbia Serbia
## [713] Serbia Serbia Serbia Serbia Serbia Serbia Serbia Serbia
## [721] Serbia Serbia Serbia Serbia Romania Romania Romania Romania
## [729] Romania Romania Romania Romania Romania Romania Romania Romania
## [737] Romania Romania Romania Romania Romania Romania Romania Romania
## [745] Romania Romania Romania Romania Romania Romania Romania Romania
## [753] Romania Romania Romania Romania Romania Romania Romania Romania
## [761] Romania Romania Romania Romania Romania Romania Romania Romania
## [769] Romania Romania Romania Romania Romania Romania Romania Romania
## [777] Romania Romania Romania Romania Romania Romania Romania Romania
## [785] Romania Romania Romania Romania Romania Romania Romania Romania
## [793] Romania Romania Romania Romania Romania Romania Romania Romania
## [801] Romania Romania Romania Romania Romania Romania Romania Romania
## [809] Romania Romania Romania Romania Greece Greece Greece Greece
## [817] Greece Greece Greece Greece Greece Greece Greece Greece
## [825] Greece Greece Greece Greece Greece Greece Greece Greece
## [833] Greece Greece Greece Greece Greece Greece Greece Greece
## [841] Greece Greece Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria
## [849] Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria
## [857] Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria
## [865] Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Romania
## [873] Romania Romania Romania Romania Romania Romania Romania Romania
## [881] Romania Romania Romania Romania Romania Romania Romania Romania
## [889] Romania Romania Romania Romania Romania Romania Romania Greece
## [897] Greece Greece Greece Greece Greece Greece Greece Greece
## [905] Greece Greece Greece Greece Greece Greece Greece Greece
## [913] Greece Greece Greece Greece Greece Greece Greece Greece
## [921] Greece Greece Greece Greece Greece Greece Greece Greece
## [929] Greece Greece Greece Greece Greece Greece Greece Greece
## [937] Greece Greece Greece Greece Greece Greece Greece Greece
## [945] Greece Greece Greece Greece Greece Greece Greece Greece
## [953] Greece Greece Greece Greece Greece Greece Greece Greece
## [961] Greece Greece Greece Greece Greece Greece Greece Greece
## [969] Greece Greece Greece Greece Greece Greece Greece Greece
## [977] Greece Greece Greece Greece Greece Greece Greece Greece
## [985] Greece Greece Greece Greece Greece Greece Greece Greece
## [993] Greece Greece Greece Greece Greece Greece Greece Greece
## [1001] Greece Greece Greece Greece Greece Greece Greece Greece
## [1009] Greece Greece Greece Greece Romania Romania Romania Romania
## [1017] Romania Romania Romania Romania Turkey Turkey Turkey Turkey
## [1025] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [1033] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [1041] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [1049] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [1057] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [1065] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [1073] Turkey Turkey Turkey Turkey Turkey Turkey Romania Romania
## [1081] Romania Romania Romania Romania Romania Romania Romania Romania
## [1089] Romania Romania Romania Romania Romania Romania Romania Romania
## [1097] Romania Romania Romania Romania Romania Romania Romania Romania
## [1105] Romania Romania Romania Turkey Turkey Turkey Turkey Turkey
## [1113] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [1121] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [1129] Turkey Turkey Turkey Turkey Turkey Turkey Russia Russia
## [1137] Russia Russia Russia Russia Russia Russia Russia Russia
## [1145] Russia Russia Russia Turkey Turkey Turkey Turkey Turkey
## [1153] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [1161] Turkey Russia Russia Russia Russia Russia Russia Russia
## [1169] Russia Russia Russia Russia Russia Russia Russia Russia
## [1177] Russia Russia Russia Russia Russia Russia Russia Russia
## [1185] Russia Georgia Georgia Georgia Georgia Georgia Georgia Georgia
## [1193] Georgia Georgia Georgia Turkey Turkey Turkey Turkey Turkey
## [1201] Turkey Georgia Georgia Georgia Georgia Georgia Turkey Turkey
## [1209] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [1217] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [1225] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [1233] Turkey Turkey Turkey Georgia Georgia Georgia Georgia Georgia
## [1241] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [1249] Turkey Turkey Turkey Turkey
## 15 Levels: Albania Bulgaria Croatia France Georgia Greece Italy ... Turkey
Save the genind object
Load the genind object
## [1] "matrix" "array"
## [1] 1252 189
## MIC2.180 MIC2.183 MIC2.186 MIC2.181 MIC2.184
## POP-PTPN01 7.65828619 8.78896690 -0.0492656 -1.064093 -1.444994
## POP-PTPN02 7.65828619 8.78896690 -0.0492656 -1.064093 -1.444994
## POP-PTPN03 7.65828619 8.78896690 -0.0492656 -1.064093 -1.444994
## POP-PTPN04 -0.09339373 17.66347120 -0.0492656 -1.064093 -1.444994
## POP-PTPN05 15.40996612 -0.08553739 -0.0492656 -1.064093 -1.444994
grp <- find.clusters(microsat_country, max.n.clust=20)
#retained 200
#Choose the number of clusters (>=2): 70?
Save the genind object
Load the genind object
## [1] "Kstat" "stat" "grp" "size"
## [1] 410 6 7 1 77 4 1 6 75 12 4 8 5 4 17 393 14 12 121
## [20] 75
##
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
## Albania 2 0 0 0 3 0 0 0 2 0 0 0 0 1 0 21 0
## Bulgaria 3 0 0 0 1 0 0 0 1 0 0 0 0 0 0 24 0
## Croatia 3 0 0 0 1 0 0 0 9 0 0 0 0 0 0 17 0
## France 17 1 0 0 4 0 0 0 1 0 0 0 1 0 0 14 0
## Georgia 7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 12 0
## Greece 17 0 5 0 2 0 0 0 12 2 0 6 1 0 0 101 0
## Italy 20 3 0 0 3 0 0 0 7 0 0 0 0 0 1 29 0
## Malta 17 0 0 0 1 0 0 0 0 0 0 0 0 0 3 6 0
## Portugal 23 0 0 0 21 0 0 0 0 2 0 0 0 3 0 1 0
## Romania 75 1 1 0 13 0 0 1 0 4 0 0 0 0 0 25 0
## Russia 13 0 1 0 0 0 0 0 0 0 0 0 0 0 1 22 0
## Serbia 2 0 0 0 1 0 0 0 5 0 0 0 0 0 0 21 0
## Slovenia 7 0 0 0 1 0 0 0 0 0 0 0 0 0 2 20 0
## Spain 133 1 0 1 7 4 1 5 33 4 0 1 2 0 9 64 14
## Turkey 71 0 0 0 19 0 0 0 5 0 4 0 1 0 1 16 0
##
## 18 19 20
## Albania 0 0 0
## Bulgaria 0 0 0
## Croatia 0 0 0
## France 0 0 22
## Georgia 0 0 0
## Greece 0 1 0
## Italy 0 0 27
## Malta 0 2 0
## Portugal 12 13 0
## Romania 0 29 0
## Russia 0 0 0
## Serbia 0 0 0
## Slovenia 0 0 0
## Spain 0 73 0
## Turkey 0 3 26
Save the genind object
Load the genind object
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.data.frame(x = as.data.frame(x), grp = ..1)
##
## $n.pca: 175 first PCs of PCA used
## $n.da: 20 discriminant functions saved
## $var (proportion of conserved variance): 1
##
## $eig (eigenvalues): 1.27e+32 8.011e+31 7193000 1991000 874600 ...
##
## vector length content
## 1 $eig 20 eigenvalues
## 2 $grp 1252 prior group assignment
## 3 $prior 20 prior group probabilities
## 4 $assign 1252 posterior group assignment
## 5 $pca.cent 189 centring vector of PCA
## 6 $pca.norm 189 scaling vector of PCA
## 7 $pca.eig 175 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 1252 175 retained PCs of PCA
## 2 $means 20 175 group means
## 3 $loadings 175 20 loadings of variables
## 4 $ind.coord 1252 20 coordinates of individuals (principal components)
## 5 $grp.coord 20 20 coordinates of groups
## 6 $posterior 1252 20 posterior membership probabilities
## 7 $pca.loadings 189 175 PCA loadings of original variables
## 8 $var.contr 189 20 contribution of original variables
Cross-validation: The Discriminant Analysis of Principal Components (DAPC) relies on dimension reduction of the data using PCA followed by a linear discriminant analysis. How many PCA axes to retain is often a non-trivial question. Cross validation provides an objective way to decide how many axes to retain: different numbers are tried and the quality of the corresponding DAPC is assessed by cross- validation: DAPC is performed on a training set, typically made of 90% of the observations (comprising 90% of the observations in each subpopulation) , and then used to predict the groups of the 10% of remaining observations. The current method uses the average prediction success per group (result=“groupMean”), or the overall prediction success (result=“overall”). The number of PCs associated with the lowest Mean Squared Error is then retained in the DAPC.
xvalDapc(microsat_country, populations, n.pca.max = 200, n.da = NULL,
training.set = 0.9, result = c("groupMean", "overall"),
center = TRUE, scale = FALSE,
n.pca=NULL, n.rep = 30, xval.plot = TRUE)
## $`Cross-Validation Results`
## n.pca success
## 1 20 0.3803704
## 2 20 0.3743386
## 3 20 0.3492063
## 4 20 0.4496825
## 5 20 0.3478836
## 6 20 0.3787831
## 7 20 0.4215873
## 8 20 0.3866667
## 9 20 0.3936508
## 10 20 0.5329101
## 11 20 0.4070899
## 12 20 0.2666138
## 13 20 0.4225926
## 14 20 0.4067725
## 15 20 0.4477249
## 16 20 0.3144974
## 17 20 0.4384656
## 18 20 0.3810053
## 19 20 0.4119577
## 20 20 0.3601587
## 21 20 0.3852381
## 22 20 0.3339683
## 23 20 0.3551852
## 24 20 0.4291534
## 25 20 0.3813757
## 26 20 0.4636508
## 27 20 0.3746561
## 28 20 0.4000000
## 29 20 0.3001587
## 30 20 0.3591534
## 31 40 0.4014815
## 32 40 0.5032275
## 33 40 0.4540212
## 34 40 0.5309524
## 35 40 0.3625926
## 36 40 0.4295767
## 37 40 0.4317989
## 38 40 0.4034392
## 39 40 0.4986243
## 40 40 0.4070370
## 41 40 0.4193122
## 42 40 0.4125397
## 43 40 0.5560847
## 44 40 0.4148148
## 45 40 0.4339153
## 46 40 0.3826984
## 47 40 0.4620635
## 48 40 0.4858201
## 49 40 0.5643386
## 50 40 0.4430159
## 51 40 0.5651852
## 52 40 0.3759788
## 53 40 0.3482011
## 54 40 0.4398942
## 55 40 0.5004762
## 56 40 0.5459259
## 57 40 0.4444974
## 58 40 0.4215344
## 59 40 0.5525397
## 60 40 0.4694709
## 61 60 0.5136508
## 62 60 0.5874603
## 63 60 0.5248677
## 64 60 0.5771958
## 65 60 0.5021693
## 66 60 0.4938624
## 67 60 0.3812169
## 68 60 0.4451323
## 69 60 0.5495767
## 70 60 0.6119577
## 71 60 0.5438095
## 72 60 0.4853968
## 73 60 0.5820635
## 74 60 0.5888360
## 75 60 0.4204762
## 76 60 0.5418519
## 77 60 0.4534392
## 78 60 0.5828042
## 79 60 0.5733862
## 80 60 0.4167725
## 81 60 0.6570899
## 82 60 0.5355026
## 83 60 0.5387302
## 84 60 0.4422222
## 85 60 0.6008995
## 86 60 0.4447090
## 87 60 0.4502116
## 88 60 0.4382540
## 89 60 0.4997884
## 90 60 0.5159788
## 91 80 0.5016402
## 92 80 0.5256085
## 93 80 0.5351323
## 94 80 0.5039153
## 95 80 0.4835979
## 96 80 0.5193651
## 97 80 0.7158730
## 98 80 0.5348148
## 99 80 0.5354497
## 100 80 0.4386772
## 101 80 0.6655556
## 102 80 0.4986243
## 103 80 0.5143386
## 104 80 0.5882011
## 105 80 0.5593651
## 106 80 0.5699471
## 107 80 0.5148148
## 108 80 0.5728571
## 109 80 0.5321693
## 110 80 0.5275661
## 111 80 0.5325397
## 112 80 0.4971429
## 113 80 0.6362963
## 114 80 0.5637566
## 115 80 0.6120635
## 116 80 0.5335450
## 117 80 0.5846561
## 118 80 0.5204233
## 119 80 0.5384127
## 120 80 0.5888360
## 121 100 0.6215344
## 122 100 0.4435979
## 123 100 0.5726455
## 124 100 0.5843386
## 125 100 0.5219048
## 126 100 0.5629630
## 127 100 0.4852910
## 128 100 0.5256085
## 129 100 0.5006878
## 130 100 0.5580952
## 131 100 0.5483069
## 132 100 0.4713228
## 133 100 0.5832804
## 134 100 0.5300000
## 135 100 0.5112169
## 136 100 0.5162434
## 137 100 0.5710582
## 138 100 0.5670370
## 139 100 0.5332804
## 140 100 0.5221693
## 141 100 0.4648148
## 142 100 0.5294709
## 143 100 0.5885714
## 144 100 0.4835979
## 145 100 0.5417989
## 146 100 0.5568254
## 147 100 0.5642328
## 148 100 0.6224339
## 149 100 0.5621164
## 150 100 0.5435979
## 151 120 0.5678307
## 152 120 0.5415873
## 153 120 0.5459259
## 154 120 0.4814815
## 155 120 0.6589418
## 156 120 0.5680952
## 157 120 0.5138624
## 158 120 0.6082540
## 159 120 0.6787302
## 160 120 0.5043915
## 161 120 0.6173545
## 162 120 0.4959259
## 163 120 0.5917460
## 164 120 0.6396296
## 165 120 0.5987831
## 166 120 0.6071958
## 167 120 0.4485185
## 168 120 0.6123810
## 169 120 0.6121693
## 170 120 0.6193122
## 171 120 0.6490476
## 172 120 0.5127513
## 173 120 0.5700000
## 174 120 0.5770899
## 175 120 0.4765608
## 176 120 0.4871958
## 177 120 0.6631217
## 178 120 0.5650265
## 179 120 0.5742328
## 180 120 0.5332275
## 181 140 0.5956614
## 182 140 0.5964550
## 183 140 0.5204762
## 184 140 0.5443915
## 185 140 0.5690476
## 186 140 0.6707937
## 187 140 0.5868254
## 188 140 0.5999471
## 189 140 0.6210582
## 190 140 0.5529101
## 191 140 0.4768783
## 192 140 0.5835450
## 193 140 0.5232275
## 194 140 0.5255026
## 195 140 0.5404233
## 196 140 0.5884127
## 197 140 0.5737566
## 198 140 0.5286243
## 199 140 0.6272487
## 200 140 0.6931217
## 201 140 0.4797354
## 202 140 0.6017460
## 203 140 0.4987302
## 204 140 0.5443915
## 205 140 0.6802646
## 206 140 0.5434392
## 207 140 0.5418519
## 208 140 0.5268254
## 209 140 0.5853968
## 210 140 0.6353439
## 211 160 0.5572487
## 212 160 0.4794180
## 213 160 0.6719048
## 214 160 0.5330688
## 215 160 0.4447090
## 216 160 0.5863492
## 217 160 0.5867196
## 218 160 0.5035450
## 219 160 0.5864550
## 220 160 0.5056085
## 221 160 0.5649206
## 222 160 0.5011640
## 223 160 0.5588889
## 224 160 0.5445503
## 225 160 0.5539153
## 226 160 0.6515873
## 227 160 0.5532804
## 228 160 0.4708995
## 229 160 0.5087302
## 230 160 0.5884127
## 231 160 0.5582540
## 232 160 0.5349735
## 233 160 0.5757672
## 234 160 0.5722222
## 235 160 0.5639153
## 236 160 0.4694709
## 237 160 0.6046561
## 238 160 0.4814286
## 239 160 0.6240212
## 240 160 0.5404762
##
## $`Median and Confidence Interval for Random Chance`
## 2.5% 50% 97.5%
## 0.05324672 0.06543681 0.08107001
##
## $`Mean Successful Assignment by Number of PCs of PCA`
## 20 40 60 80 100 120 140 160
## 0.3884832 0.4553686 0.5166437 0.5481728 0.5396014 0.5706790 0.5718677 0.5492187
##
## $`Number of PCs Achieving Highest Mean Success`
## [1] "140"
##
## $`Root Mean Squared Error by Number of PCs of PCA`
## 20 40 60 80 100 120 140 160
## 0.6136742 0.5480642 0.4879886 0.4551804 0.4623702 0.4335367 0.4315412 0.4538494
##
## $`Number of PCs Achieving Lowest MSE`
## [1] "140"
##
## $DAPC
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.data.frame(x = as.data.frame(x), grp = ..1, n.pca = ..2,
## n.da = ..3)
##
## $n.pca: 140 first PCs of PCA used
## $n.da: 14 discriminant functions saved
## $var (proportion of conserved variance): 0.921
##
## $eig (eigenvalues): 190.2 129.1 106.2 95.35 79.23 ...
##
## vector length content
## 1 $eig 14 eigenvalues
## 2 $grp 1252 prior group assignment
## 3 $prior 15 prior group probabilities
## 4 $assign 1252 posterior group assignment
## 5 $pca.cent 189 centring vector of PCA
## 6 $pca.norm 189 scaling vector of PCA
## 7 $pca.eig 175 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 1252 140 retained PCs of PCA
## 2 $means 15 140 group means
## 3 $loadings 140 14 loadings of variables
## 4 $ind.coord 1252 14 coordinates of individuals (principal components)
## 5 $grp.coord 15 14 coordinates of groups
## 6 $posterior 1252 15 posterior membership probabilities
## 7 $pca.loadings 189 140 PCA loadings of original variables
## 8 $var.contr 189 14 contribution of original variables
$n.pca: 160 first PCs of PCA used $n.da: 14 discriminant functions saved $var (proportion of conserved variance): 0.975
Run DAPC with object using x-val recommendations
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.data.frame(x = as.data.frame(x), grp = ..3, n.pca = 140,
## n.da = 14)
##
## $n.pca: 140 first PCs of PCA used
## $n.da: 14 discriminant functions saved
## $var (proportion of conserved variance): 0.921
##
## $eig (eigenvalues): 190.2 129.1 106.2 95.35 79.23 ...
##
## vector length content
## 1 $eig 14 eigenvalues
## 2 $grp 1252 prior group assignment
## 3 $prior 15 prior group probabilities
## 4 $assign 1252 posterior group assignment
## 5 $pca.cent 189 centring vector of PCA
## 6 $pca.norm 189 scaling vector of PCA
## 7 $pca.eig 175 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 1252 140 retained PCs of PCA
## 2 $means 15 140 group means
## 3 $loadings 140 14 loadings of variables
## 4 $ind.coord 1252 14 coordinates of individuals (principal components)
## 5 $grp.coord 15 14 coordinates of groups
## 6 $posterior 1252 15 posterior membership probabilities
## 7 $pca.loadings 189 140 PCA loadings of original variables
## 8 $var.contr 189 14 contribution of original variables
dapc with optimal # of PCs recommended
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.data.frame(x = as.data.frame(x), grp = ..3, n.pca = 26,
## n.da = 14)
##
## $n.pca: 26 first PCs of PCA used
## $n.da: 14 discriminant functions saved
## $var (proportion of conserved variance): 0.294
##
## $eig (eigenvalues): 122.3 70.07 55.45 46.08 25.06 ...
##
## vector length content
## 1 $eig 14 eigenvalues
## 2 $grp 1252 prior group assignment
## 3 $prior 15 prior group probabilities
## 4 $assign 1252 posterior group assignment
## 5 $pca.cent 189 centring vector of PCA
## 6 $pca.norm 189 scaling vector of PCA
## 7 $pca.eig 175 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 1252 26 retained PCs of PCA
## 2 $means 15 26 group means
## 3 $loadings 26 14 loadings of variables
## 4 $ind.coord 1252 14 coordinates of individuals (principal components)
## 5 $grp.coord 15 14 coordinates of groups
## 6 $posterior 1252 15 posterior membership probabilities
## 7 $pca.loadings 189 26 PCA loadings of original variables
## 8 $var.contr 189 14 contribution of original variables
only 29% of variance retained with this one
Most contributing alleles
Check R symbols for plot
#to see all shapes -> plot shapes - para escolher os simbolos
N = 100; M = 1000
good.shapes = c(1:25,35:38,43,60,62:64)
foo = data.frame( x = rnorm(M), y = rnorm(M), s = factor( sample(1:N, M, replace = TRUE) ) )
ggplot(aes(x,y,shape=s ), data=foo ) +
scale_shape_manual(values=good.shapes[1:N]) +
geom_point()
## Warning: Removed 690 rows containing missing values or values outside the scale range
## (`geom_point()`).
myCol2 <- c("#51f310", "#146c45", "#75d5e1", "#FF7F00", "magenta", "red", "yellow3", "#52ef99", "#2524f9", "#1E90FF", "purple", "#fda547", "#cf749b", "#332288", "#a41415")
Plot using different discriminant functions
1 & 2
pdf(file = "output/europe/dapc/microsats/dapc_micro_all_PC1_2.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
For comparison
op <- par(cex = 0.39)
scatter(dapc_micro_2, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
1 & 3
pdf(file = "output/europe/dapc/microsats/dapc_micro_all_PC1_3.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=3)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=3)
1 & 4
pdf(file = "output/europe/dapc/microsats/dapc_micro_all_PC1_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=4)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=4)
2 & 3
pdf(file = "output/europe/dapc/microsats/dapc_micro_all_PC2_3.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=3)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=3)
2 & 4
pdf(file = "output/europe/dapc/microsats/dapc_micro_all_PC2_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=4)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=4)
iberia <- read.genepop("output/europe/dapc/microsats/iberia/for_dapc_albo_microsats_iberia.gen", ncode=3L)
##
## Converting data from a Genepop .gen file to a genind object...
##
##
## File description: ARBOMONITOR_Aedes_albopictus_iberia
##
## ...done.
## /// GENIND OBJECT /////////
##
## // 427 individuals; 11 loci; 159 alleles; size: 330.7 Kb
##
## // Basic content
## @tab: 427 x 159 matrix of allele counts
## @loc.n.all: number of alleles per locus (range: 5-24)
## @loc.fac: locus factor for the 159 columns of @tab
## @all.names: list of allele names for each locus
## @ploidy: ploidy of each individual (range: 2-2)
## @type: codom
## @call: read.genepop(file = "output/europe/dapc/microsats/iberia/for_dapc_albo_microsats_iberia.gen",
## ncode = 3L)
##
## // Optional content
## @pop: population of each individual (group size range: 1-60)
## [1] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [7] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [13] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [19] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [25] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [31] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [37] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [43] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [49] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [55] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [61] POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15
## [67] POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15
## [73] POL-PTQT15 POL-PTQT15 POL-PTQT15 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11
## [79] SPB-ESBD11 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11
## [85] SPB-ESBD11 SPB-ESBD11 ESAC-ESAC07 ESAC-ESAC07 ESAC-ESAC07 ESAC-ESAC07
## [91] ESAC-ESAC07 ESAC-ESAC07 ESAC-ESAC07 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18
## [97] ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18
## [103] ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18
## [109] ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15
## [115] ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15
## [121] ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15 ESAL-ESAL06 ESAL-ESAL06
## [127] ESAL-ESAL06 ESAL-ESAL06 ESAL-ESAL06 ESAL-ESAL06 SPS-ESUP10 SPS-ESUP10
## [133] SPS-ESUP10 SPS-ESUP10 SPS-ESUP10 SPS-ESUP10 SPS-ESUP10 SPS-ESUP10
## [139] SPS-ESUP10 SPS-ESUP10 ESMN-ESMN04 ESMN-ESMN04 ESMN-ESMN04 ESLS-ESLS03
## [145] ESLS-ESLS03 ESLS-ESLS03 ESMV-ESMV03 ESMV-ESMV03 ESMV-ESMV03 ESFU-ESFU03
## [151] ESFU-ESFU03 ESFU-ESFU03 ESBM-ESBT03 ESBM-ESBT03 ESBM-ESBT03 ESBM-ESBT03
## [157] ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10
## [163] ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10
## [169] ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESGD-ESGD02 ESGD-ESGD02 ESBN-ESBN06
## [175] ESBN-ESBN06 ESBN-ESBN06 ESBN-ESBN06 ESBN-ESBN06 ESBN-ESBN06 ESSL-ESSL03
## [181] ESSL-ESSL03 ESSL-ESSL03 ESMC-ESMT03 ESMC-ESMT03 ESMC-ESMT03 ESMC-ESMT03
## [187] ESVN-ESVN04 ESPT-ESPT03 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15
## [193] ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15
## [199] ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESBY-ESBY06 ESBY-ESBY06
## [205] ESBY-ESBY06 ESBY-ESBY06 ESBY-ESBY06 ESBY-ESBY06 ESNI-ESNI10 ESNI-ESNI10
## [211] ESNI-ESNI10 ESNI-ESNI10 ESNI-ESNI10 ESNI-ESNI10 ESNI-ESNI10 ESNI-ESNI10
## [217] ESNI-ESNI10 ESNU-ESNU06 ESNU-ESNU06 ESNU-ESNU06 ESNU-ESNU06 ESNU-ESNU06
## [223] ESNU-ESNU06 ESIR-ESIR03 ESIR-ESIR03 ESIR-ESIR03 ESAG-ESAG10 ESAG-ESAG10
## [229] ESAG-ESAG10 ESAG-ESAG10 ESAG-ESAG10 ESAG-ESAG10 ESAG-ESAG10 ESAG-ESAG10
## [235] ESAG-ESAG10 ESAG-ESAG10 ESAZ-ESAZ04 ESAZ-ESAZ04 ESAZ-ESAZ04 ESAZ-ESAZ04
## [241] ESCN-ESCN04 ESCN-ESCN04 ESCN-ESCN04 ESCN-ESCN04 ESCT-ESTT01 ESCT-ESTT01
## [247] ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01
## [253] ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01
## [259] ESCT-ESTT01 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10
## [265] ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10
## [271] ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10
## [277] ESPP-ESPP06 ESPP-ESPP06 ESPP-ESPP06 ESPP-ESPP06 ESPP-ESPP06 ESPP-ESPP06
## [283] ESCH-ESCH02 ESCH-ESCH02 ESLM-ESLM04 ESLM-ESLM04 ESLM-ESLM04 ESLM-ESLM04
## [289] ESCA-ESCA05 ESCA-ESCA05 ESCA-ESCA05 ESCA-ESCA05 ESCA-ESCA05 ESAY-ESAY10
## [295] ESAY-ESAY10 ESAY-ESAY10 ESAY-ESAY10 ESAY-ESAY10 ESAY-ESAY10 ESAY-ESAY10
## [301] ESAY-ESAY10 ESAY-ESAY10 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20
## [307] SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20
## [313] SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20
## [319] SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 ESBS-ESBC07 ESBS-ESBC07
## [325] ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07
## [331] ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07
## [337] ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15
## [343] ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15
## [349] ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESTS-ESTS10 ESTS-ESTS10 ESTS-ESTS10
## [355] ESTS-ESTS10 ESTS-ESTS10 ESTS-ESTS10 ESTS-ESTS10 ESTS-ESTS10 ESTS-ESTS10
## [361] ESTS-ESTS10 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28
## [367] ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28
## [373] ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28
## [379] ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28
## [385] ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESCP-ESCP19
## [391] ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19
## [397] ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19
## [403] ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19
## [409] SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19
## [415] SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19
## [421] SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19
## [427] SPM-ESMG19
## 42 Levels: POP-PTPN60 POL-PTQT15 SPB-ESBD11 ESAC-ESAC07 ... SPM-ESMG19
## [1] 427
## [1] 11
## [1] 42
## [1] "POP-PTPN01" "POP-PTPN02" "POP-PTPN03" "POP-PTPN04" "POP-PTPN05"
## [6] "POP-PTPN06" "POP-PTPN07" "POP-PTPN08" "POP-PTPN09" "POP-PTPN10"
## [11] "POP-PTPN11" "POP-PTPN12" "POP-PTPN13" "POP-PTPN14" "POP-PTPN15"
## [16] "POP-PTPN16" "POP-PTPN17" "POP-PTPN18" "POP-PTPN19" "POP-PTPN20"
## [21] "POP-PTPN21" "POP-PTPN22" "POP-PTPN23" "POP-PTPN24" "POP-PTPN25"
## [26] "POP-PTPN26" "POP-PTPN27" "POP-PTPN28" "POP-PTPN29" "POP-PTPN30"
## [31] "POP-PTPN31" "POP-PTPN32" "POP-PTPN33" "POP-PTPN34" "POP-PTPN35"
## [36] "POP-PTPN36" "POP-PTPN37" "POP-PTPN38" "POP-PTPN39" "POP-PTPN40"
## [41] "POP-PTPN41" "POP-PTPN42" "POP-PTPN43" "POP-PTPN44" "POP-PTPN45"
## [46] "POP-PTPN46" "POP-PTPN47" "POP-PTPN48" "POP-PTPN49" "POP-PTPN50"
## [51] "POP-PTPN51" "POP-PTPN52" "POP-PTPN53" "POP-PTPN54" "POP-PTPN55"
## [56] "POP-PTPN56" "POP-PTPN57" "POP-PTPN58" "POP-PTPN59" "POP-PTPN60"
## [61] "POL-PTQT01" "POL-PTQT02" "POL-PTQT03" "POL-PTQT04" "POL-PTQT05"
## [66] "POL-PTQT06" "POL-PTQT07" "POL-PTQT08" "POL-PTQT09" "POL-PTQT10"
## [71] "POL-PTQT11" "POL-PTQT12" "POL-PTQT13" "POL-PTQT14" "POL-PTQT15"
## [76] "SPB-ESBD01" "SPB-ESBD02" "SPB-ESBD03" "SPB-ESBD04" "SPB-ESBD05"
## [81] "SPB-ESBD06" "SPB-ESBD07" "SPB-ESBD08" "SPB-ESBD09" "SPB-ESBD10"
## [86] "SPB-ESBD11" "ESAC-ESAC01" "ESAC-ESAC02" "ESAC-ESAC03" "ESAC-ESAC04"
## [91] "ESAC-ESAC05" "ESAC-ESAC06" "ESAC-ESAC07" "ESMO-ESMO01" "ESMO-ESMO02"
## [96] "ESMO-ESMO03" "ESMO-ESMO04" "ESMO-ESMO05" "ESMO-ESMO06" "ESMO-ESMO07"
## [101] "ESMO-ESMO08" "ESMO-ESMO09" "ESMO-ESMO10" "ESMO-ESMO11" "ESMO-ESMO12"
## [106] "ESMO-ESMO13" "ESMO-ESMO14" "ESMO-ESMO15" "ESMO-ESMO16" "ESMO-ESMO17"
## [111] "ESMO-ESMO18" "ESSV-ESSV01" "ESSV-ESSV02" "ESSV-ESSV03" "ESSV-ESSV05"
## [116] "ESSV-ESSV06" "ESSV-ESSV07" "ESSV-ESSV08" "ESSV-ESSV09" "ESSV-ESSV10"
## [121] "ESSV-ESSV11" "ESSV-ESSV12" "ESSV-ESSV13" "ESSV-ESSV15" "ESAL-ESAL01"
## [126] "ESAL-ESAL02" "ESAL-ESAL03" "ESAL-ESAL04" "ESAL-ESAL05" "ESAL-ESAL06"
## [131] "SPS-ESUP01" "SPS-ESUP02" "SPS-ESUP03" "SPS-ESUP04" "SPS-ESUP05"
## [136] "SPS-ESUP06" "SPS-ESUP07" "SPS-ESUP08" "SPS-ESUP09" "SPS-ESUP10"
## [141] "ESMN-ESMN01" "ESMN-ESMN03" "ESMN-ESMN04" "ESLS-ESLS01" "ESLS-ESLS02"
## [146] "ESLS-ESLS03" "ESMV-ESMV01" "ESMV-ESMV02" "ESMV-ESMV03" "ESFU-ESFU01"
## [151] "ESFU-ESFU02" "ESFU-ESFU03" "ESBM-ESBM01" "ESBM-ESBT01" "ESBM-ESBT02"
## [156] "ESBM-ESBT03" "ESTM-ESTM01" "ESTM-ESTM02" "ESTM-ESTO01" "ESTM-ESTO02"
## [161] "ESTM-ESTO03" "ESTM-ESTY01" "ESTM-ESTY02" "ESTM-ESTY03" "ESTM-ESTY04"
## [166] "ESTM-ESTY05" "ESTM-ESTY06" "ESTM-ESTY07" "ESTM-ESTY08" "ESTM-ESTY09"
## [171] "ESTM-ESTY10" "ESGD-ESGD01" "ESGD-ESGD02" "ESBN-ESBN01" "ESBN-ESBN02"
## [176] "ESBN-ESBN03" "ESBN-ESBN04" "ESBN-ESBN05" "ESBN-ESBN06" "ESSL-ESSL01"
## [181] "ESSL-ESSL02" "ESSL-ESSL03" "ESMC-ESMC03" "ESMC-ESMT01" "ESMC-ESMT02"
## [186] "ESMC-ESMT03" "ESVN-ESVN04" "ESPT-ESPT03" "ESAB-ESAB01" "ESAB-ESAB02"
## [191] "ESAB-ESAB03" "ESAB-ESAB04" "ESAB-ESAB05" "ESAB-ESAB06" "ESAB-ESAB07"
## [196] "ESAB-ESAB09" "ESAB-ESAB10" "ESAB-ESAB11" "ESAB-ESAB12" "ESAB-ESAB13"
## [201] "ESAB-ESAB14" "ESAB-ESAB15" "ESBY-ESBY01" "ESBY-ESBY02" "ESBY-ESBY03"
## [206] "ESBY-ESBY04" "ESBY-ESBY05" "ESBY-ESBY06" "ESNI-ESNI01" "ESNI-ESNI02"
## [211] "ESNI-ESNI04" "ESNI-ESNI05" "ESNI-ESNI06" "ESNI-ESNI07" "ESNI-ESNI08"
## [216] "ESNI-ESNI09" "ESNI-ESNI10" "ESNU-ESNU01" "ESNU-ESNU02" "ESNU-ESNU03"
## [221] "ESNU-ESNU04" "ESNU-ESNU05" "ESNU-ESNU06" "ESIR-ESIR01" "ESIR-ESIR02"
## [226] "ESIR-ESIR03" "ESAG-ESAG01" "ESAG-ESAG02" "ESAG-ESAG03" "ESAG-ESAG04"
## [231] "ESAG-ESAG05" "ESAG-ESAG06" "ESAG-ESAG07" "ESAG-ESAG08" "ESAG-ESAG09"
## [236] "ESAG-ESAG10" "ESAZ-ESAZ01" "ESAZ-ESAZ02" "ESAZ-ESAZ03" "ESAZ-ESAZ04"
## [241] "ESCN-ESCN01" "ESCN-ESCN02" "ESCN-ESCN03" "ESCN-ESCN04" "ESCT-ESCT01"
## [246] "ESCT-ESCT02" "ESCT-ESLA01" "ESCT-ESLA02" "ESCT-ESLU01" "ESCT-ESLU02"
## [251] "ESCT-ESLU03" "ESCT-ESLU04" "ESCT-ESLU05" "ESCT-ESLU06" "ESCT-ESLU07"
## [256] "ESCT-ESLU08" "ESCT-ESLU09" "ESCT-ESLU10" "ESCT-ESTT01" "ESMU-ESCV01"
## [261] "ESMU-ESCV02" "ESMU-ESCV03" "ESMU-ESCV04" "ESMU-ESMU01" "ESMU-ESMU02"
## [266] "ESMU-ESMU03" "ESMU-ESRM01" "ESMU-ESRM02" "ESMU-ESRM03" "ESMU-ESRM04"
## [271] "ESMU-ESRM05" "ESMU-ESRM06" "ESMU-ESRM07" "ESMU-ESRM08" "ESMU-ESRM09"
## [276] "ESMU-ESRM10" "ESPP-ESPP01" "ESPP-ESPP02" "ESPP-ESPP03" "ESPP-ESPP04"
## [281] "ESPP-ESPP05" "ESPP-ESPP06" "ESCH-ESCH01" "ESCH-ESCH02" "ESLM-ESLM01"
## [286] "ESLM-ESLM02" "ESLM-ESLM03" "ESLM-ESLM04" "ESCA-ESCA01" "ESCA-ESCA02"
## [291] "ESCA-ESCA03" "ESCA-ESCA04" "ESCA-ESCA05" "ESAY-ESAY01" "ESAY-ESAY02"
## [296] "ESAY-ESAY03" "ESAY-ESAY04" "ESAY-ESAY05" "ESAY-ESAY06" "ESAY-ESAY07"
## [301] "ESAY-ESAY09" "ESAY-ESAY10" "SPC-ESVL01" "SPC-ESVL02" "SPC-ESVL03"
## [306] "SPC-ESVL04" "SPC-ESVL05" "SPC-ESVL06" "SPC-ESVL07" "SPC-ESVL08"
## [311] "SPC-ESVL09" "SPC-ESVL10" "SPC-ESVL11" "SPC-ESVL12" "SPC-ESVL13"
## [316] "SPC-ESVL14" "SPC-ESVL15" "SPC-ESVL16" "SPC-ESVL17" "SPC-ESVL18"
## [321] "SPC-ESVL19" "SPC-ESVL20" "ESBS-ESBS01" "ESBS-ESBS02" "ESBS-ESBS03"
## [326] "ESBS-ESBS04" "ESBS-ESBS05" "ESBS-ESBS06" "ESBS-ESBS07" "ESBS-ESBC01"
## [331] "ESBS-ESBC02" "ESBS-ESBC03" "ESBS-ESBC04" "ESBS-ESBC05" "ESBS-ESBC06"
## [336] "ESBS-ESBC07" "ESBE-ESBE01" "ESBE-ESBE02" "ESBE-ESBE03" "ESBE-ESBE04"
## [341] "ESBE-ESBE05" "ESBE-ESBE06" "ESBE-ESBE07" "ESBE-ESBE08" "ESBE-ESBE09"
## [346] "ESBE-ESBE10" "ESBE-ESBE11" "ESBE-ESBE12" "ESBE-ESBE13" "ESBE-ESBE14"
## [351] "ESBE-ESBE15" "ESTS-ESTS01" "ESTS-ESTS02" "ESTS-ESTS03" "ESTS-ESTS04"
## [356] "ESTS-ESTS05" "ESTS-ESTS06" "ESTS-ESTS07" "ESTS-ESTS08" "ESTS-ESTS09"
## [361] "ESTS-ESTS10" "ESBA-ESBA01" "ESBA-ESBA02" "ESBA-ESBA03" "ESBA-ESBA04"
## [366] "ESBA-ESBA05" "ESBA-ESBA06" "ESBA-ESBA07" "ESBA-ESBA08" "ESBA-ESBA09"
## [371] "ESBA-ESBA10" "ESBA-ESBA11" "ESBA-ESBA12" "ESBA-ESBA13" "ESBA-ESBA14"
## [376] "ESBA-ESBA15" "ESBA-ESBA16" "ESBA-ESBA17" "ESBA-ESBA18" "ESBA-ESBA19"
## [381] "ESBA-ESBA20" "ESBA-ESBA21" "ESBA-ESBA22" "ESBA-ESBA23" "ESBA-ESBA24"
## [386] "ESBA-ESBA25" "ESBA-ESBA26" "ESBA-ESBA27" "ESBA-ESBA28" "ESCP-ESCP01"
## [391] "ESCP-ESCP02" "ESCP-ESCP03" "ESCP-ESCP04" "ESCP-ESCP05" "ESCP-ESCP06"
## [396] "ESCP-ESCP07" "ESCP-ESCP08" "ESCP-ESCP09" "ESCP-ESCP10" "ESCP-ESCP11"
## [401] "ESCP-ESCP12" "ESCP-ESCP13" "ESCP-ESCP14" "ESCP-ESCP15" "ESCP-ESCP16"
## [406] "ESCP-ESCP17" "ESCP-ESCP18" "ESCP-ESCP19" "SPM-ESMG01" "SPM-ESMG02"
## [411] "SPM-ESMG03" "SPM-ESMG04" "SPM-ESMG05" "SPM-ESMG06" "SPM-ESMG07"
## [416] "SPM-ESMG08" "SPM-ESMG09" "SPM-ESMG10" "SPM-ESMG11" "SPM-ESMG12"
## [421] "SPM-ESMG13" "SPM-ESMG14" "SPM-ESMG15" "SPM-ESMG16" "SPM-ESMG17"
## [426] "SPM-ESMG18" "SPM-ESMG19"
Save it as rds
To load it
## [1] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## 42 Levels: POP-PTPN60 POL-PTQT15 SPB-ESBD11 ESAC-ESAC07 ... SPM-ESMG19
Import sample data Load the csv
sampling_loc <- read.csv(here("output/europe/dapc/microsats/sampling_loc_euro_microsats.csv"))
sampling_loc <- as.data.frame(sampling_loc)
head(sampling_loc)
## Pop_City Country Latitude Longitude Continent Abbreviation
## 1 Gravatai Brazil -29.93760 -50.99070 Americas GRV
## 2 Puerto Iguazu Argentina -25.59720 -54.57860 Americas POR
## 3 Vohimasy Madagascar -22.81591 47.75026 Africa VOH
## 4 Trois-Bassins Reunion -21.10901 55.31921 Africa TRO
## 5 Morondava Madagascar -20.28420 44.27940 Africa MAD
## 6 Dauguet Mauritius -20.18530 57.52154 Africa DAU
## Year Region Subregion order order2 orderold order_microsat
## 1 2018 South America 8 NA 82 NA
## 2 2018 South America NA NA NA NA
## 3 2016 & 2017 East Africa East Africa NA 79 NA NA
## 4 2017 Indian Ocean Indian Ocean 81 81 73 NA
## 5 2016 East Africa East Africa 80 78 72 NA
## 6 2022 Indian Ocean Indian Ocean 82 80 74 NA
## microsats microsat_code alt_code X Country.1 X.1 X.2 X.3 X.4 X.5 X.6
## 1 NA Brazil NA NA NA NA NA NA
## 2 NA Argentina NA NA NA NA NA NA
## 3 NA Madagascar NA NA NA NA NA NA
## 4 NA Reunion NA NA NA NA NA NA
## 5 NA Madagascar NA NA NA NA NA NA
## 6 NA Mauritius NA NA NA NA NA NA
Load the csv
countr <- read.csv(here("output/europe/dapc/microsats/iberia/DAPC_countries_microsats_iberia.csv"
))
df <- as.data.frame(countr)
head(df)
## pop country
## 1 POP Portugal
## 2 POP Portugal
## 3 POP Portugal
## 4 POP Portugal
## 5 POP Portugal
## 6 POP Portugal
## [1] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [9] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [17] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [25] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [33] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [41] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [49] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [57] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [65] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [73] Portugal Portugal Portugal Spain Spain Spain Spain Spain
## [81] Spain Spain Spain Spain Spain Spain Spain Spain
## [89] Spain Spain Spain Spain Spain Spain Spain Spain
## [97] Spain Spain Spain Spain Spain Spain Spain Spain
## [105] Spain Spain Spain Spain Spain Spain Spain Spain
## [113] Spain Spain Spain Spain Spain Spain Spain Spain
## [121] Spain Spain Spain Spain Spain Spain Spain Spain
## [129] Spain Spain Spain Spain Spain Spain Spain Spain
## [137] Spain Spain Spain Spain Spain Spain Spain Spain
## [145] Spain Spain Spain Spain Spain Spain Spain Spain
## [153] Spain Spain Spain Spain Spain Spain Spain Spain
## [161] Spain Spain Spain Spain Spain Spain Spain Spain
## [169] Spain Spain Spain Spain Spain Spain Spain Spain
## [177] Spain Spain Spain Spain Spain Spain Spain Spain
## [185] Spain Spain Spain Spain Spain Spain Spain Spain
## [193] Spain Spain Spain Spain Spain Spain Spain Spain
## [201] Spain Spain Spain Spain Spain Spain Spain Spain
## [209] Spain Spain Spain Spain Spain Spain Spain Spain
## [217] Spain Spain Spain Spain Spain Spain Spain Spain
## [225] Spain Spain Spain Spain Spain Spain Spain Spain
## [233] Spain Spain Spain Spain Spain Spain Spain Spain
## [241] Spain Spain Spain Spain Spain Spain Spain Spain
## [249] Spain Spain Spain Spain Spain Spain Spain Spain
## [257] Spain Spain Spain Spain Spain Spain Spain Spain
## [265] Spain Spain Spain Spain Spain Spain Spain Spain
## [273] Spain Spain Spain Spain Spain Spain Spain Spain
## [281] Spain Spain Spain Spain Spain Spain Spain Spain
## [289] Spain Spain Spain Spain Spain Spain Spain Spain
## [297] Spain Spain Spain Spain Spain Spain Spain Spain
## [305] Spain Spain Spain Spain Spain Spain Spain Spain
## [313] Spain Spain Spain Spain Spain Spain Spain Spain
## [321] Spain Spain Spain Spain Spain Spain Spain Spain
## [329] Spain Spain Spain Spain Spain Spain Spain Spain
## [337] Spain Spain Spain Spain Spain Spain Spain Spain
## [345] Spain Spain Spain Spain Spain Spain Spain Spain
## [353] Spain Spain Spain Spain Spain Spain Spain Spain
## [361] Spain Spain Spain Spain Spain Spain Spain Spain
## [369] Spain Spain Spain Spain Spain Spain Spain Spain
## [377] Spain Spain Spain Spain Spain Spain Spain Spain
## [385] Spain Spain Spain Spain Spain Spain Spain Spain
## [393] Spain Spain Spain Spain Spain Spain Spain Spain
## [401] Spain Spain Spain Spain Spain Spain Spain Spain
## [409] Spain Spain Spain Spain Spain Spain Spain Spain
## [417] Spain Spain Spain Spain Spain Spain Spain Spain
## [425] Spain Spain Spain
## Levels: Portugal Spain
Save the genind object
## [1] POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP
## [16] POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP
## [31] POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP
## [46] POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP
## [61] POL POL POL POL POL POL POL POL POL POL POL POL POL POL POL
## [76] SPB SPB SPB SPB SPB SPB SPB SPB SPB SPB SPB ESAC ESAC ESAC ESAC
## [91] ESAC ESAC ESAC ESMO ESMO ESMO ESMO ESMO ESMO ESMO ESMO ESMO ESMO ESMO ESMO
## [106] ESMO ESMO ESMO ESMO ESMO ESMO ESSV ESSV ESSV ESSV ESSV ESSV ESSV ESSV ESSV
## [121] ESSV ESSV ESSV ESSV ESAL ESAL ESAL ESAL ESAL ESAL SPS SPS SPS SPS SPS
## [136] SPS SPS SPS SPS SPS ESMN ESMN ESMN ESLS ESLS ESLS ESMV ESMV ESMV ESFU
## [151] ESFU ESFU ESBM ESBM ESBM ESBM ESTM ESTM ESTM ESTM ESTM ESTM ESTM ESTM ESTM
## [166] ESTM ESTM ESTM ESTM ESTM ESTM ESGD ESGD ESBN ESBN ESBN ESBN ESBN ESBN ESSL
## [181] ESSL ESSL ESMC ESMC ESMC ESMC ESVN ESPT ESAB ESAB ESAB ESAB ESAB ESAB ESAB
## [196] ESAB ESAB ESAB ESAB ESAB ESAB ESAB ESBY ESBY ESBY ESBY ESBY ESBY ESNI ESNI
## [211] ESNI ESNI ESNI ESNI ESNI ESNI ESNI ESNU ESNU ESNU ESNU ESNU ESNU ESIR ESIR
## [226] ESIR ESAG ESAG ESAG ESAG ESAG ESAG ESAG ESAG ESAG ESAG ESAZ ESAZ ESAZ ESAZ
## [241] ESCN ESCN ESCN ESCN ESCT ESCT ESCT ESCT ESCT ESCT ESCT ESCT ESCT ESCT ESCT
## [256] ESCT ESCT ESCT ESCT ESMU ESMU ESMU ESMU ESMU ESMU ESMU ESMU ESMU ESMU ESMU
## [271] ESMU ESMU ESMU ESMU ESMU ESMU ESPP ESPP ESPP ESPP ESPP ESPP ESCH ESCH ESLM
## [286] ESLM ESLM ESLM ESCA ESCA ESCA ESCA ESCA ESAY ESAY ESAY ESAY ESAY ESAY ESAY
## [301] ESAY ESAY SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC
## [316] SPC SPC SPC SPC SPC SPC SPC ESBS ESBS ESBS ESBS ESBS ESBS ESBS ESBS
## [331] ESBS ESBS ESBS ESBS ESBS ESBS ESBE ESBE ESBE ESBE ESBE ESBE ESBE ESBE ESBE
## [346] ESBE ESBE ESBE ESBE ESBE ESBE ESTS ESTS ESTS ESTS ESTS ESTS ESTS ESTS ESTS
## [361] ESTS ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA
## [376] ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESCP
## [391] ESCP ESCP ESCP ESCP ESCP ESCP ESCP ESCP ESCP ESCP ESCP ESCP ESCP ESCP ESCP
## [406] ESCP ESCP ESCP SPM SPM SPM SPM SPM SPM SPM SPM SPM SPM SPM SPM
## [421] SPM SPM SPM SPM SPM SPM SPM
## 42 Levels: ESAB ESAC ESAG ESAL ESAY ESAZ ESBA ESBE ESBM ESBN ESBS ESBY ... SPS
Save the genind object
Load the genind object
## NULL
## /// GENIND OBJECT /////////
##
## // 5 individuals; 1 locus; 5 alleles; size: 10.1 Kb
##
## // Basic content
## @tab: 5 x 5 matrix of allele counts
## @loc.n.all: number of alleles per locus (range: 5-5)
## @loc.fac: locus factor for the 5 columns of @tab
## @all.names: list of allele names for each locus
## @ploidy: ploidy of each individual (range: 2-2)
## @type: codom
## @call: .local(x = x, i = i, j = j, drop = drop)
##
## // Optional content
## @pop: population of each individual (group size range: 5-5)
## @strata: a data frame with 1 columns ( pop.iberia. )
grp <- find.clusters(microsat_pop_iberia, max.n.clust=15)
#retained 200
#Choose the number of clusters (>=2): 12
Re-do allowing # of clusters to be # of pops
grp2 <- find.clusters(microsat_pop_iberia, max.n.clust=42)
#retained 200
#Choose the number of clusters (>=2):
Save the genind object
Load the genind object
## [1] "Kstat" "stat" "grp" "size"
## [1] 46 11 18 1 15 111 38 1 1 4 1 180
##
## 1 2 3 4 5 6 7 8 9 10 11 12
## ESAB 0 0 0 0 0 0 0 0 0 0 0 14
## ESAC 0 0 0 0 0 7 0 0 0 0 0 0
## ESAG 0 0 0 0 0 0 0 0 0 0 0 10
## ESAL 0 0 0 0 0 6 0 0 0 0 0 0
## ESAY 1 0 0 0 0 0 0 0 0 0 0 8
## ESAZ 0 0 0 0 0 0 0 0 0 0 0 4
## ESBA 0 2 0 1 0 17 4 1 0 0 0 3
## ESBE 0 0 0 0 0 2 0 0 0 0 0 13
## ESBM 4 0 0 0 0 0 0 0 0 0 0 0
## ESBN 5 0 0 0 0 0 0 0 0 0 0 1
## ESBS 0 0 0 0 0 2 0 0 0 0 0 12
## ESBY 0 0 0 0 0 0 0 0 0 0 0 6
## ESCA 0 0 0 0 0 1 0 0 0 0 0 4
## ESCH 0 0 0 0 0 0 0 0 0 0 0 2
## ESCN 0 0 0 0 0 0 0 0 0 0 0 4
## ESCP 15 0 0 0 0 4 0 0 0 0 0 0
## ESCT 0 0 0 0 0 2 0 0 0 0 0 13
## ESFU 2 0 0 0 0 0 0 0 0 0 0 1
## ESGD 0 0 0 0 0 0 0 0 0 0 0 2
## ESIR 0 0 0 0 0 0 0 0 0 0 0 3
## ESLM 0 0 0 0 0 0 0 0 0 0 0 4
## ESLS 1 0 0 0 0 0 0 0 0 0 0 2
## ESMC 1 0 0 0 0 0 0 0 0 0 0 3
## ESMN 1 0 0 0 0 0 0 0 0 0 0 2
## ESMO 0 0 18 0 0 0 0 0 0 0 0 0
## ESMU 1 0 0 0 0 0 0 0 0 0 0 16
## ESMV 0 0 0 0 0 1 0 0 0 0 0 2
## ESNI 0 0 0 0 0 0 0 0 0 0 0 9
## ESNU 0 0 0 0 0 0 0 0 0 0 0 6
## ESPP 1 0 0 0 0 0 0 0 0 1 0 4
## ESPT 0 0 0 0 0 0 1 0 0 0 0 0
## ESSL 0 0 0 0 0 0 0 0 0 3 0 0
## ESSV 0 0 0 0 0 3 0 0 1 0 0 9
## ESTM 9 0 0 0 0 1 0 0 0 0 0 5
## ESTS 3 0 0 0 0 0 0 0 0 0 0 7
## ESVN 0 0 0 0 0 0 0 0 0 0 1 0
## POL 0 0 0 0 0 0 15 0 0 0 0 0
## POP 1 9 0 0 15 17 17 0 0 0 0 1
## SPB 0 0 0 0 0 11 0 0 0 0 0 0
## SPC 0 0 0 0 0 19 1 0 0 0 0 0
## SPM 1 0 0 0 0 18 0 0 0 0 0 0
## SPS 0 0 0 0 0 0 0 0 0 0 0 10
Save the genind object
Load the genind object
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.data.frame(x = as.data.frame(x), grp = ..1)
##
## $n.pca: 143 first PCs of PCA used
## $n.da: 12 discriminant functions saved
## $var (proportion of conserved variance): 1
##
## $eig (eigenvalues): 3.116e+32 1.69e+32 1.399e+32 9.196e+31 1928000 ...
##
## vector length content
## 1 $eig 12 eigenvalues
## 2 $grp 427 prior group assignment
## 3 $prior 12 prior group probabilities
## 4 $assign 427 posterior group assignment
## 5 $pca.cent 159 centring vector of PCA
## 6 $pca.norm 159 scaling vector of PCA
## 7 $pca.eig 143 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 427 143 retained PCs of PCA
## 2 $means 12 143 group means
## 3 $loadings 143 12 loadings of variables
## 4 $ind.coord 427 12 coordinates of individuals (principal components)
## 5 $grp.coord 12 12 coordinates of groups
## 6 $posterior 427 12 posterior membership probabilities
## 7 $pca.loadings 159 143 PCA loadings of original variables
## 8 $var.contr 159 12 contribution of original variables
Cross-validation: The Discriminant Analysis of Principal Components (DAPC) relies on dimension reduction of the data using PCA followed by a linear discriminant analysis. How many PCA axes to retain is often a non-trivial question. Cross validation provides an objective way to decide how many axes to retain: different numbers are tried and the quality of the corresponding DAPC is assessed by cross- validation: DAPC is performed on a training set, typically made of 90% of the observations (comprising 90% of the observations in each subpopulation) , and then used to predict the groups of the 10% of remaining observations. The current method uses the average prediction success per group (result=“groupMean”), or the overall prediction success (result=“overall”). The number of PCs associated with the lowest Mean Squared Error is then retained in the DAPC.
xvalDapc(microsat_pop_iberia, populations, n.pca.max = 200, n.da = NULL,
training.set = 0.9, result = c("groupMean", "overall"),
center = TRUE, scale = FALSE,
n.pca=NULL, n.rep = 30, xval.plot = TRUE)
n pcs = 40 40 discriminant functions saved proportion of conserved variance: 0.564
Run DAPC with object using x-val recommendations
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.genind(x = microsat_pop_iberia, n.pca = 40, n.da = 40, grp = populations)
##
## $n.pca: 40 first PCs of PCA used
## $n.da: 40 discriminant functions saved
## $var (proportion of conserved variance): 0.858
##
## $eig (eigenvalues): 64.99 33.61 27.25 21.95 17.35 ...
##
## vector length content
## 1 $eig 40 eigenvalues
## 2 $grp 427 prior group assignment
## 3 $prior 42 prior group probabilities
## 4 $assign 427 posterior group assignment
## 5 $pca.cent 159 centring vector of PCA
## 6 $pca.norm 159 scaling vector of PCA
## 7 $pca.eig 140 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 427 40 retained PCs of PCA
## 2 $means 42 40 group means
## 3 $loadings 40 40 loadings of variables
## 4 $ind.coord 427 40 coordinates of individuals (principal components)
## 5 $grp.coord 42 40 coordinates of groups
## 6 $posterior 427 42 posterior membership probabilities
## 7 $pca.loadings 159 40 PCA loadings of original variables
## 8 $var.contr 159 40 contribution of original variables
dapc with optimal # of PCs recommended
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.genind(x = microsat_pop_iberia, n.pca = 23, n.da = 12, grp = populations)
##
## $n.pca: 23 first PCs of PCA used
## $n.da: 12 discriminant functions saved
## $var (proportion of conserved variance): 0.701
##
## $eig (eigenvalues): 45.87 23.45 18.79 13.28 11.4 ...
##
## vector length content
## 1 $eig 23 eigenvalues
## 2 $grp 427 prior group assignment
## 3 $prior 42 prior group probabilities
## 4 $assign 427 posterior group assignment
## 5 $pca.cent 159 centring vector of PCA
## 6 $pca.norm 159 scaling vector of PCA
## 7 $pca.eig 140 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 427 23 retained PCs of PCA
## 2 $means 42 23 group means
## 3 $loadings 23 12 loadings of variables
## 4 $ind.coord 427 12 coordinates of individuals (principal components)
## 5 $grp.coord 42 12 coordinates of groups
## 6 $posterior 427 42 posterior membership probabilities
## 7 $pca.loadings 159 23 PCA loadings of original variables
## 8 $var.contr 159 12 contribution of original variables
only 38% of variance retained with this one
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.genind(x = microsat_pop_iberia, n.pca = 120, n.da = 12,
## grp = populations)
##
## $n.pca: 120 first PCs of PCA used
## $n.da: 12 discriminant functions saved
## $var (proportion of conserved variance): 0.998
##
## $eig (eigenvalues): 3903 122.8 92.83 78.14 65.99 ...
##
## vector length content
## 1 $eig 41 eigenvalues
## 2 $grp 427 prior group assignment
## 3 $prior 42 prior group probabilities
## 4 $assign 427 posterior group assignment
## 5 $pca.cent 159 centring vector of PCA
## 6 $pca.norm 159 scaling vector of PCA
## 7 $pca.eig 140 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 427 120 retained PCs of PCA
## 2 $means 42 120 group means
## 3 $loadings 120 12 loadings of variables
## 4 $ind.coord 427 12 coordinates of individuals (principal components)
## 5 $grp.coord 42 12 coordinates of groups
## 6 $posterior 427 42 posterior membership probabilities
## 7 $pca.loadings 159 120 PCA loadings of original variables
## 8 $var.contr 159 12 contribution of original variables
All very similar. Use 1st one for plotting.
Check R symbols for plot
#to see all shapes -> plot shapes - para escolher os simbolos
N = 100; M = 1000
good.shapes = c(1:25,35:38,43,60,62:64)
foo = data.frame( x = rnorm(M), y = rnorm(M), s = factor( sample(1:N, M, replace = TRUE) ) )
ggplot(aes(x,y,shape=s ), data=foo ) +
scale_shape_manual(values=good.shapes[1:N]) +
geom_point()
## Warning: Removed 660 rows containing missing values or values outside the scale range
## (`geom_point()`).
42 pops now
## X.FB000D
## 1 #0DFF00
## 2 #2A0DFC
## 3 #FFD0D0
## 4 #FE0DDE
## 5 #16D1FE
## 6 #EDE90D
## 7 #FF9300
## 8 #168F51
## 9 #7A3B92
## 10 #AB1C56
## 11 #764200
## 12 #1C515D
## 13 #CC16FD
## 14 #B4EAE6
## 15 #FB90D7
## 16 #859BFE
## 17 #D7E8A3
## 18 #FD2278
## 19 #16FFA5
## 20 #DCC7FC
## 21 #84D026
## 22 #FAC46D
## 23 #FC998C
## 24 #CB3D1C
## 25 #F20DA3
## 26 #454F1C
## 27 #874263
## 28 #00FBDE
## 29 #E682FA
## 30 #165190
## 31 #7C0DC2
## 32 #AC009B
## 33 #92830D
## 34 #968894
## 35 #169FAB
## 36 #9AF5BE
## 37 #8AAA88
## 38 #658B00
## 39 #7FA7DB
## 40 #0042BB
## 41 #AD5100
## 42 #A7886D
## 43 #FE85AD
## 44 #007EFE
## 45 #B67EB2
## 46 #C39CF8
## 47 #66F4FD
## 48 #D03D97
## 49 #564069
## 50 #0DD745
## 51 #FF560D
## 52 #CA8288
## 53 #DB22E2
## 54 #F3667A
## 55 #0D7E6C
## 56 #9822FC
## 57 #E7DFEF
## 58 #D0EB6D
## 59 #F6D4A7
## 60 #0DADFA
## 61 #FE69DD
## 62 #5DCB6C
## 63 #8F72FE
## 64 #FCD100
## 65 #AC7700
## 66 #D9CA5A
## 67 #E0E0C8
## 68 #F7AFFE
## 69 #940D0D
## 70 #51C6AD
## 71 #FFB216
## 72 #8778B3
## 73 #8BFC16
## 74 #8DADC0
## 75 #9600AB
## 76 #FBB4D8
## 77 #FE5198
## 78 #B35156
## 79 #C370FF
myCol42 <- c("#51f310", "#146c45", "#75d5e1", "#FF7F00", "magenta", "red", "yellow3", "#52ef99", "#2524f9", "#1E90FF", "purple2", "#fda547", "#cf749D", "#332288", "#a41415", "yellow", "#C370FF", "#B35156", "#FE5198", "#9600AB", "#8DADE0", "#8778B3", "#FFB216", "#AC7700", "#8F72FE", "#FE69DD", "#FF560D", "#0DC745", "#66F4FD", "#C39CF8", "#0042BB", "#AD5100", "#658B00", "gray", "gray43", "#169FAB", "#92830D", "#AC009B", "purple4", "#CB3D1C", "#FAC46D", "#FC998C")
Plot using different discriminant functions
1 & 2
pdf(file = "output/europe/dapc/microsats/iberia/dapc1_microsat_all_iberia_PC1_2.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_iberia_1, pch = good.shapes, cstar = 0, col=myCol42, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_iberia_1, pch = good.shapes, cstar = 0, col=myCol42, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
pdf(file = "output/europe/dapc/microsats/iberia/dapc2_microsat_all_iberia_PC1_2.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCol42, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCol42, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
Look the same - just plot dapc2
PCs 1 & 3
pdf(file = "output/europe/dapc/microsats/iberia/dapc2_microsat_all_iberia_PC1_3.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCol42, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=3)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCol42, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=3)
PCs 1 & 4
pdf(file = "output/europe/dapc/microsats/iberia/dapc2_microsat_all_iberia_PC1_4", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCol42, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=4)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCol42, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=4)
PCs 2 & 3
pdf(file = "output/europe/dapc/microsats/iberia/dapc2_microsat_all_iberia_PC2_3.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCol42, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=3)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCol42, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=3)
PCs 3 & 4
pdf(file = "output/europe/dapc/microsats/iberia/dapc2_microsat_all_iberia_PC3_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCol42, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =3, yax=4)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCol42, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =3, yax=4)
#### 4.1.9.1. Colored by regions
#10 unique regions:
#Portugal
#Extremadura
#Andalusia
#Valencia
#Madrid
#North
#Aragon
#Murcia
#Catalonia
#Balearic Islands
myCols_new <- c("#a41415", "yellow3", "#51f310", "yellow3", "#2524f9", "#51f310","#FE69DD","#66F4FD","#a41415", "#a41415", "#2524f9","#C370FF","#51f310",
"#66F4FD","#51f310","#FF560D","#51f310","#a41415", "#2524f9","#C370FF","#2524f9","#a41415", "#a41415", "#a41415", "yellow3","#51f310","#a41415", "#a41415", "#66F4FD","#51f310","#146c45","#a41415", "#a41415", "#a41415", "#FE69DD","#2524f9","#FF7F00", "#FF7F00", "yellow3","#2524f9","#FF560D",
"#a41415")
Plot using different discriminant functions
1 & 2
pdf(file = "output/europe/dapc/microsats/iberia/dapc2_microsat_all_iberia_regions_PC1_2.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCols_new, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCols_new, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
1 & 2
pdf(file = "output/europe/dapc/microsats/iberia/dapc2_microsat_all_iberia_regions_PC1_3.pdf.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCols_new, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=3)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCols_new, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=3)
1 & 4
pdf(file = "output/europe/dapc/microsats/iberia/dapc2_microsat_all_iberia_regions_PC1_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCols_new, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=4)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCols_new, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=4)
pdf(file = "output/europe/dapc/microsats/iberia/dapc2_microsat_all_iberia_regions_PC2_3.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCols_new, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax=2, yax=3)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCols_new, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax=2, yax=3)
pdf(file = "output/europe/dapc/microsats/iberia/dapc2_microsat_all_iberia_regions_PC2_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCols_new, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax=2, yax=4)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCols_new, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax=2, yax=4)
pdf(file = "output/europe/dapc/microsats/iberia/dapc2_microsat_all_iberia_regions_PC3_4.pdf.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCols_new, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax=3, yax=4)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_iberia_2, pch = good.shapes, cstar = 0, col=myCols_new, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax=3, yax=4)
eastern <- read.genepop("/gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/dapc/microsats/eastern_europe/for_dapc_albo_microsats_eastern.gen", ncode=3L)
##
## Converting data from a Genepop .gen file to a genind object...
##
##
## File description: ARBOMONITOR_Aedes_albopictus
##
## ...done.
## /// GENIND OBJECT /////////
##
## // 410 individuals; 11 loci; 147 alleles; size: 296.5 Kb
##
## // Basic content
## @tab: 410 x 147 matrix of allele counts
## @loc.n.all: number of alleles per locus (range: 6-19)
## @loc.fac: locus factor for the 147 columns of @tab
## @all.names: list of allele names for each locus
## @ploidy: ploidy of each individual (range: 2-2)
## @type: codom
## @call: read.genepop(file = "/gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/dapc/microsats/eastern_europe/for_dapc_albo_microsats_eastern.gen",
## ncode = 3L)
##
## // Optional content
## @pop: population of each individual (group size range: 3-30)
## [1] SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30
## [7] SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30
## [13] SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30
## [19] SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30
## [25] SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 ROTI-ROTI30
## [31] ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30
## [37] ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30
## [43] ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30
## [49] ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30
## [55] ROTI-ROTI30 ROTI-ROTI30 ROTI-ROTI30 RODE-RODE30 RODE-RODE30 RODE-RODE30
## [61] RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30
## [67] RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30
## [73] RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30
## [79] RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30 RODE-RODE30
## [85] RODE-RODE30 RODE-RODE30 RODE-RODE30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30
## [91] ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30
## [97] ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30
## [103] ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30
## [109] ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30
## [115] ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30
## [121] ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30
## [127] ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30
## [133] ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30
## [139] ROPL-ROPL30 ROPL-ROPL30 ROPL-ROPL30 ROBU-ROBU29 ROBU-ROBU29 ROBU-ROBU29
## [145] ROBU-ROBU29 ROBU-ROBU29 ROBU-ROBU29 ROBU-ROBU29 ROBU-ROBU29 ROCO-ROCO30
## [151] ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30
## [157] ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30
## [163] ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30
## [169] ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30
## [175] ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 ROCO-ROCO30 BUL-BULO34 BUL-BULO34
## [181] BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34
## [187] BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34
## [193] BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34
## [199] BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34
## [205] BUL-BULO34 BUL-BULO34 BUL-BULO34 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30
## [211] TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30
## [217] TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30
## [223] TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30
## [229] TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30
## [235] TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28
## [241] TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28
## [247] TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28
## [253] TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28
## [259] TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28 TRGN-TRGN28
## [265] TRGN-TRGN28 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20
## [271] TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20
## [277] TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20
## [283] TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20
## [289] TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRIS-TRIS20 TRTR-TRTR15 TRTR-TRTR15
## [295] TRTR-TRTR15 TRTR-TRTR15 TRTR-TRTR15 TRTR-TRTR15 TRTR-TRTR15 TRTR-TRTR15
## [301] TRTR-TRTR15 TRTR-TRTR15 TRTR-TRTR15 TRTR-TRTR15 TRTR-TRTR15 TRTR-TRTR15
## [307] TRRI-TRRI10 TRRI-TRRI10 TRRI-TRRI10 TRRI-TRRI10 TRRI-TRRI10 TRRI-TRRI10
## [313] TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29
## [319] TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29
## [325] TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29
## [331] TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29
## [337] TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TRAR-TRAR14
## [343] TRAR-TRAR14 TRAR-TRAR14 TRAR-TRAR14 TRAR-TRAR14 TRAR-TRAR14 TRAR-TRAR14
## [349] TRAR-TRAR14 TRAR-TRAR14 TRAR-TRAR14 TRAR-TRAR14 TRAR-TRAR14 RUBE-RUBE20
## [355] RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20
## [361] RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20 RUBE-RUBE20
## [367] RUBE-RUBE20 RUBE-RUBE20 RUPL-RUPL10 RUPL-RUPL10 RUPL-RUPL10 RUPL-RUPL10
## [373] RUPL-RUPL10 RUPL-RUPL10 RUPL-RUPL10 RUPL-RUPL10 RUPL-RUPL10 RURM-RURM07
## [379] RURM-RURM07 RURM-RURM07 SOC-RUSO10 SOC-RUSO10 SOC-RUSO10 SOC-RUSO10
## [385] SOC-RUSO10 SOC-RUSO10 SOC-RUSO10 SOC-RUSO10 SOC-RUSO10 SOC-RUSO10
## [391] ABAL-ABKO04 ABAL-ABKO04 ABAL-ABKO04 ABAL-ABKO04 ABAL-ABKO04 ABAL-ABKO04
## [397] ABAL-ABKO04 ABAL-ABKO04 ABAL-ABKO04 ABAL-ABKO04 GES-ABSU05 GES-ABSU05
## [403] GES-ABSU05 GES-ABSU05 GES-ABSU05 GEPO-GEPO05 GEPO-GEPO05 GEPO-GEPO05
## [409] GEPO-GEPO05 GEPO-GEPO05
## 22 Levels: SER-SRNO30 ROTI-ROTI30 RODE-RODE30 ROS-ROSM30 ... GEPO-GEPO05
## [1] 410
## [1] 11
## [1] 22
## [1] "SER-SRNO01" "SER-SRNO02" "SER-SRNO03" "SER-SRNO04" "SER-SRNO05"
## [6] "SER-SRNO06" "SER-SRNO07" "SER-SRNO08" "SER-SRNO09" "SER-SRNO10"
## [11] "SER-SRNO11" "SER-SRNO12" "SER-SRNO14" "SER-SRNO15" "SER-SRNO16"
## [16] "SER-SRNO17" "SER-SRNO18" "SER-SRNO19" "SER-SRNO20" "SER-SRNO21"
## [21] "SER-SRNO22" "SER-SRNO23" "SER-SRNO24" "SER-SRNO25" "SER-SRNO26"
## [26] "SER-SRNO27" "SER-SRNO28" "SER-SRNO29" "SER-SRNO30" "ROTI-ROTI01"
## [31] "ROTI-ROTI03" "ROTI-ROTI04" "ROTI-ROTI05" "ROTI-ROTI06" "ROTI-ROTI07"
## [36] "ROTI-ROTI08" "ROTI-ROTI09" "ROTI-ROTI10" "ROTI-ROTI11" "ROTI-ROTI12"
## [41] "ROTI-ROTI13" "ROTI-ROTI14" "ROTI-ROTI15" "ROTI-ROTI16" "ROTI-ROTI17"
## [46] "ROTI-ROTI18" "ROTI-ROTI19" "ROTI-ROTI21" "ROTI-ROTI22" "ROTI-ROTI23"
## [51] "ROTI-ROTI24" "ROTI-ROTI25" "ROTI-ROTI26" "ROTI-ROTI27" "ROTI-ROTI28"
## [56] "ROTI-ROTI29" "ROTI-ROTI30" "RODE-RODE01" "RODE-RODE02" "RODE-RODE03"
## [61] "RODE-RODE04" "RODE-RODE05" "RODE-RODE06" "RODE-RODE07" "RODE-RODE08"
## [66] "RODE-RODE09" "RODE-RODE10" "RODE-RODE11" "RODE-RODE12" "RODE-RODE13"
## [71] "RODE-RODE14" "RODE-RODE15" "RODE-RODE16" "RODE-RODE17" "RODE-RODE18"
## [76] "RODE-RODE19" "RODE-RODE20" "RODE-RODE21" "RODE-RODE22" "RODE-RODE23"
## [81] "RODE-RODE24" "RODE-RODE25" "RODE-RODE26" "RODE-RODE27" "RODE-RODE28"
## [86] "RODE-RODE29" "RODE-RODE30" "ROS-ROSM01" "ROS-ROSM02" "ROS-ROSM03"
## [91] "ROS-ROSM04" "ROS-ROSM05" "ROS-ROSM06" "ROS-ROSM07" "ROS-ROSM08"
## [96] "ROS-ROSM09" "ROS-ROSM10" "ROS-ROSM11" "ROS-ROSM12" "ROS-ROSM13"
## [101] "ROS-ROSM14" "ROS-ROSM15" "ROS-ROSM16" "ROS-ROSM17" "ROS-ROSM18"
## [106] "ROS-ROSM19" "ROS-ROSM20" "ROS-ROSM21" "ROS-ROSM22" "ROS-ROSM23"
## [111] "ROS-ROSM24" "ROS-ROSM25" "ROS-ROSM26" "ROS-ROSM27" "ROS-ROSM28"
## [116] "ROS-ROSM29" "ROS-ROSM30" "ROPL-ROPL02" "ROPL-ROPL03" "ROPL-ROPL05"
## [121] "ROPL-ROPL07" "ROPL-ROPL08" "ROPL-ROPL11" "ROPL-ROPL12" "ROPL-ROPL13"
## [126] "ROPL-ROPL14" "ROPL-ROPL15" "ROPL-ROPL16" "ROPL-ROPL17" "ROPL-ROPL18"
## [131] "ROPL-ROPL19" "ROPL-ROPL20" "ROPL-ROPL21" "ROPL-ROPL22" "ROPL-ROPL23"
## [136] "ROPL-ROPL25" "ROPL-ROPL26" "ROPL-ROPL27" "ROPL-ROPL28" "ROPL-ROPL29"
## [141] "ROPL-ROPL30" "ROBU-ROBU11" "ROBU-ROBU13" "ROBU-ROBU16" "ROBU-ROBU17"
## [146] "ROBU-ROBU19" "ROBU-ROBU26" "ROBU-ROBU28" "ROBU-ROBU29" "ROCO-ROCO01"
## [151] "ROCO-ROCO02" "ROCO-ROCO03" "ROCO-ROCO04" "ROCO-ROCO05" "ROCO-ROCO06"
## [156] "ROCO-ROCO08" "ROCO-ROCO09" "ROCO-ROCO10" "ROCO-ROCO11" "ROCO-ROCO12"
## [161] "ROCO-ROCO13" "ROCO-ROCO14" "ROCO-ROCO15" "ROCO-ROCO16" "ROCO-ROCO17"
## [166] "ROCO-ROCO18" "ROCO-ROCO19" "ROCO-ROCO20" "ROCO-ROCO21" "ROCO-ROCO22"
## [171] "ROCO-ROCO23" "ROCO-ROCO24" "ROCO-ROCO25" "ROCO-ROCO26" "ROCO-ROCO27"
## [176] "ROCO-ROCO28" "ROCO-ROCO29" "ROCO-ROCO30" "BUL-BULO01" "BUL-BULO02"
## [181] "BUL-BULO03" "BUL-BULO04" "BUL-BULO05" "BUL-BULO06" "BUL-BULO07"
## [186] "BUL-BULO08" "BUL-BULO09" "BUL-BULO10" "BUL-BULO11" "BUL-BULO12"
## [191] "BUL-BULO13" "BUL-BULO14" "BUL-BULO15" "BUL-BULO16" "BUL-BULO17"
## [196] "BUL-BULO18" "BUL-BULO20" "BUL-BULO25" "BUL-BULO26" "BUL-BULO27"
## [201] "BUL-BULO28" "BUL-BULO29" "BUL-BULO30" "BUL-BULO31" "BUL-BULO32"
## [206] "BUL-BULO33" "BUL-BULO34" "TUA-TRLG01" "TUA-TRLG02" "TUA-TRLG03"
## [211] "TUA-TRLG04" "TUA-TRLG05" "TUA-TRLG06" "TUA-TRLG07" "TUA-TRLG08"
## [216] "TUA-TRLG09" "TUA-TRLG10" "TUA-TRLG11" "TUA-TRLG12" "TUA-TRLG13"
## [221] "TUA-TRLG14" "TUA-TRLG15" "TUA-TRLG16" "TUA-TRLG17" "TUA-TRLG18"
## [226] "TUA-TRLG19" "TUA-TRLG20" "TUA-TRLG21" "TUA-TRLG22" "TUA-TRLG23"
## [231] "TUA-TRLG24" "TUA-TRLG25" "TUA-TRLG26" "TUA-TRLG27" "TUA-TRLG28"
## [236] "TUA-TRLG29" "TUA-TRLG30" "TRGN-TRGN01" "TRGN-TRGN02" "TRGN-TRGN03"
## [241] "TRGN-TRGN04" "TRGN-TRGN05" "TRGN-TRGN06" "TRGN-TRGN07" "TRGN-TRGN08"
## [246] "TRGN-TRGN09" "TRGN-TRGN10" "TRGN-TRGN11" "TRGN-TRGN12" "TRGN-TRGN13"
## [251] "TRGN-TRGN14" "TRGN-TRGN15" "TRGN-TRGN16" "TRGN-TRGN17" "TRGN-TRGN18"
## [256] "TRGN-TRGN19" "TRGN-TRGN20" "TRGN-TRGN21" "TRGN-TRGN22" "TRGN-TRGN23"
## [261] "TRGN-TRGN24" "TRGN-TRGN25" "TRGN-TRGN26" "TRGN-TRGN27" "TRGN-TRGN28"
## [266] "TRIS-TRIT01" "TRIS-TRIT02" "TRIS-TRIT04" "TRIS-TRIT05" "TRIS-TRIT07"
## [271] "TRIS-TRIT08" "TRIS-TRIT09" "TRIS-TRIS01" "TRIS-TRIS02" "TRIS-TRIS03"
## [276] "TRIS-TRIS04" "TRIS-TRIS05" "TRIS-TRIS06" "TRIS-TRIS07" "TRIS-TRIS08"
## [281] "TRIS-TRIS09" "TRIS-TRIS10" "TRIS-TRIS11" "TRIS-TRIS12" "TRIS-TRIS13"
## [286] "TRIS-TRIS14" "TRIS-TRIS15" "TRIS-TRIS16" "TRIS-TRIS17" "TRIS-TRIS18"
## [291] "TRIS-TRIS19" "TRIS-TRIS20" "TRTR-TRTR01" "TRTR-TRTR02" "TRTR-TRTR03"
## [296] "TRTR-TRTR04" "TRTR-TRTR05" "TRTR-TRTR06" "TRTR-TRTR07" "TRTR-TRTR08"
## [301] "TRTR-TRTR09" "TRTR-TRTR10" "TRTR-TRTR11" "TRTR-TRTR12" "TRTR-TRTR13"
## [306] "TRTR-TRTR15" "TRRI-TRRI02" "TRRI-TRRI03" "TRRI-TRRI04" "TRRI-TRRI05"
## [311] "TRRI-TRRI06" "TRRI-TRRI10" "TUH-TRHO01" "TUH-TRHO02" "TUH-TRHO03"
## [316] "TUH-TRHO04" "TUH-TRHO05" "TUH-TRHO06" "TUH-TRHO07" "TUH-TRHO08"
## [321] "TUH-TRHO09" "TUH-TRHO10" "TUH-TRHO11" "TUH-TRHO12" "TUH-TRHO13"
## [326] "TUH-TRHO14" "TUH-TRHO15" "TUH-TRHO16" "TUH-TRHO17" "TUH-TRHO18"
## [331] "TUH-TRHO19" "TUH-TRHO20" "TUH-TRHO21" "TUH-TRHO22" "TUH-TRHO23"
## [336] "TUH-TRHO24" "TUH-TRHO25" "TUH-TRHO26" "TUH-TRHO27" "TUH-TRHO28"
## [341] "TUH-TRHO29" "TRAR-TRAR01" "TRAR-TRAR02" "TRAR-TRAR03" "TRAR-TRAR04"
## [346] "TRAR-TRAR06" "TRAR-TRAR07" "TRAR-TRAR08" "TRAR-TRAR10" "TRAR-TRAR11"
## [351] "TRAR-TRAR12" "TRAR-TRAR13" "TRAR-TRAR14" "RUBE-RUBE06" "RUBE-RUBE07"
## [356] "RUBE-RUBE08" "RUBE-RUBE09" "RUBE-RUBE10" "RUBE-RUBE11" "RUBE-RUBE12"
## [361] "RUBE-RUBE13" "RUBE-RUBE14" "RUBE-RUBE15" "RUBE-RUBE16" "RUBE-RUBE17"
## [366] "RUBE-RUBE18" "RUBE-RUBE19" "RUBE-RUBE20" "RUPL-RUPL01" "RUPL-RUPL02"
## [371] "RUPL-RUPL03" "RUPL-RUPL04" "RUPL-RUPL05" "RUPL-RUPL07" "RUPL-RUPL08"
## [376] "RUPL-RUPL09" "RUPL-RUPL10" "RURM-RURM02" "RURM-RURM06" "RURM-RURM07"
## [381] "SOC-RUSO01" "SOC-RUSO02" "SOC-RUSO03" "SOC-RUSO04" "SOC-RUSO05"
## [386] "SOC-RUSO06" "SOC-RUSO07" "SOC-RUSO08" "SOC-RUSO09" "SOC-RUSO10"
## [391] "ABAL-ABAL01" "ABAL-ABAL02" "ABAL-ABGL05" "ABAL-ABIN01" "ABAL-ABIN02"
## [396] "ABAL-ABIN06" "ABAL-ABIN07" "ABAL-ABKH01" "ABAL-ABKH02" "ABAL-ABKO04"
## [401] "GES-ABSU01" "GES-ABSU02" "GES-ABSU03" "GES-ABSU04" "GES-ABSU05"
## [406] "GEPO-GEPO01" "GEPO-GEPO02" "GEPO-GEPO03" "GEPO-GEPO04" "GEPO-GEPO05"
Save it as rds
saveRDS(
iberia, here(
"output/europe/dapc/microsats/eastern_europe/microsats_europe_eastern.rds"
)
)
To load it
## [1] SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30
## 22 Levels: SER-SRNO30 ROTI-ROTI30 RODE-RODE30 ROS-ROSM30 ... GEPO-GEPO05
Import sample data Load the csv
sampling_loc <- read.csv(here("output/europe/dapc/microsats/sampling_loc_euro_microsats.csv"))
sampling_loc <- as.data.frame(sampling_loc)
head(sampling_loc)
## Pop_City Country Latitude Longitude Continent Abbreviation
## 1 Gravatai Brazil -29.93760 -50.99070 Americas GRV
## 2 Puerto Iguazu Argentina -25.59720 -54.57860 Americas POR
## 3 Vohimasy Madagascar -22.81591 47.75026 Africa VOH
## 4 Trois-Bassins Reunion -21.10901 55.31921 Africa TRO
## 5 Morondava Madagascar -20.28420 44.27940 Africa MAD
## 6 Dauguet Mauritius -20.18530 57.52154 Africa DAU
## Year Region Subregion order order2 orderold order_microsat
## 1 2018 South America 8 NA 82 NA
## 2 2018 South America NA NA NA NA
## 3 2016 & 2017 East Africa East Africa NA 79 NA NA
## 4 2017 Indian Ocean Indian Ocean 81 81 73 NA
## 5 2016 East Africa East Africa 80 78 72 NA
## 6 2022 Indian Ocean Indian Ocean 82 80 74 NA
## microsats microsat_code alt_code X Country.1 X.1 X.2 X.3 X.4 X.5 X.6
## 1 NA Brazil NA NA NA NA NA NA
## 2 NA Argentina NA NA NA NA NA NA
## 3 NA Madagascar NA NA NA NA NA NA
## 4 NA Reunion NA NA NA NA NA NA
## 5 NA Madagascar NA NA NA NA NA NA
## 6 NA Mauritius NA NA NA NA NA NA
Load the csv
countr <- read.csv(here("output/europe/dapc/microsats/eastern_europe/DAPC_countries_microsats_eastern.csv"
))
df <- as.data.frame(countr)
head(df)
## pop country
## 1 SER Serbia
## 2 SER Serbia
## 3 SER Serbia
## 4 SER Serbia
## 5 SER Serbia
## 6 SER Serbia
## [1] Serbia Serbia Serbia Serbia Serbia Serbia Serbia Serbia
## [9] Serbia Serbia Serbia Serbia Serbia Serbia Serbia Serbia
## [17] Serbia Serbia Serbia Serbia Serbia Serbia Serbia Serbia
## [25] Serbia Serbia Serbia Serbia Serbia Romania Romania Romania
## [33] Romania Romania Romania Romania Romania Romania Romania Romania
## [41] Romania Romania Romania Romania Romania Romania Romania Romania
## [49] Romania Romania Romania Romania Romania Romania Romania Romania
## [57] Romania Romania Romania Romania Romania Romania Romania Romania
## [65] Romania Romania Romania Romania Romania Romania Romania Romania
## [73] Romania Romania Romania Romania Romania Romania Romania Romania
## [81] Romania Romania Romania Romania Romania Romania Romania Romania
## [89] Romania Romania Romania Romania Romania Romania Romania Romania
## [97] Romania Romania Romania Romania Romania Romania Romania Romania
## [105] Romania Romania Romania Romania Romania Romania Romania Romania
## [113] Romania Romania Romania Romania Romania Romania Romania Romania
## [121] Romania Romania Romania Romania Romania Romania Romania Romania
## [129] Romania Romania Romania Romania Romania Romania Romania Romania
## [137] Romania Romania Romania Romania Romania Romania Romania Romania
## [145] Romania Romania Romania Romania Romania Romania Romania Romania
## [153] Romania Romania Romania Romania Romania Romania Romania Romania
## [161] Romania Romania Romania Romania Romania Romania Romania Romania
## [169] Romania Romania Romania Romania Romania Romania Romania Romania
## [177] Romania Romania Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria
## [185] Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria
## [193] Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria
## [201] Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Turkey
## [209] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [217] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [225] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [233] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [241] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [249] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [257] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [265] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [273] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [281] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [289] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [297] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [305] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [313] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [321] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [329] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [337] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [345] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [353] Turkey Russia Russia Russia Russia Russia Russia Russia
## [361] Russia Russia Russia Russia Russia Russia Russia Russia
## [369] Russia Russia Russia Russia Russia Russia Russia Russia
## [377] Russia Russia Russia Russia Russia Russia Russia Russia
## [385] Russia Russia Russia Russia Russia Russia Georgia Georgia
## [393] Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia
## [401] Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia
## [409] Georgia Georgia
## Levels: Bulgaria Georgia Romania Russia Serbia Turkey
Save the genind object
## [1] SER SER SER SER SER SER SER SER SER SER SER SER SER SER SER
## [16] SER SER SER SER SER SER SER SER SER SER SER SER SER SER ROTI
## [31] ROTI ROTI ROTI ROTI ROTI ROTI ROTI ROTI ROTI ROTI ROTI ROTI ROTI ROTI ROTI
## [46] ROTI ROTI ROTI ROTI ROTI ROTI ROTI ROTI ROTI ROTI ROTI ROTI RODE RODE RODE
## [61] RODE RODE RODE RODE RODE RODE RODE RODE RODE RODE RODE RODE RODE RODE RODE
## [76] RODE RODE RODE RODE RODE RODE RODE RODE RODE RODE RODE RODE ROS ROS ROS
## [91] ROS ROS ROS ROS ROS ROS ROS ROS ROS ROS ROS ROS ROS ROS ROS
## [106] ROS ROS ROS ROS ROS ROS ROS ROS ROS ROS ROS ROS ROPL ROPL ROPL
## [121] ROPL ROPL ROPL ROPL ROPL ROPL ROPL ROPL ROPL ROPL ROPL ROPL ROPL ROPL ROPL
## [136] ROPL ROPL ROPL ROPL ROPL ROPL ROBU ROBU ROBU ROBU ROBU ROBU ROBU ROBU ROCO
## [151] ROCO ROCO ROCO ROCO ROCO ROCO ROCO ROCO ROCO ROCO ROCO ROCO ROCO ROCO ROCO
## [166] ROCO ROCO ROCO ROCO ROCO ROCO ROCO ROCO ROCO ROCO ROCO ROCO ROCO BUL BUL
## [181] BUL BUL BUL BUL BUL BUL BUL BUL BUL BUL BUL BUL BUL BUL BUL
## [196] BUL BUL BUL BUL BUL BUL BUL BUL BUL BUL BUL BUL TUA TUA TUA
## [211] TUA TUA TUA TUA TUA TUA TUA TUA TUA TUA TUA TUA TUA TUA TUA
## [226] TUA TUA TUA TUA TUA TUA TUA TUA TUA TUA TUA TUA TRGN TRGN TRGN
## [241] TRGN TRGN TRGN TRGN TRGN TRGN TRGN TRGN TRGN TRGN TRGN TRGN TRGN TRGN TRGN
## [256] TRGN TRGN TRGN TRGN TRGN TRGN TRGN TRGN TRGN TRGN TRIS TRIS TRIS TRIS TRIS
## [271] TRIS TRIS TRIS TRIS TRIS TRIS TRIS TRIS TRIS TRIS TRIS TRIS TRIS TRIS TRIS
## [286] TRIS TRIS TRIS TRIS TRIS TRIS TRIS TRTR TRTR TRTR TRTR TRTR TRTR TRTR TRTR
## [301] TRTR TRTR TRTR TRTR TRTR TRTR TRRI TRRI TRRI TRRI TRRI TRRI TUH TUH TUH
## [316] TUH TUH TUH TUH TUH TUH TUH TUH TUH TUH TUH TUH TUH TUH TUH
## [331] TUH TUH TUH TUH TUH TUH TUH TUH TUH TUH TUH TRAR TRAR TRAR TRAR
## [346] TRAR TRAR TRAR TRAR TRAR TRAR TRAR TRAR RUBE RUBE RUBE RUBE RUBE RUBE RUBE
## [361] RUBE RUBE RUBE RUBE RUBE RUBE RUBE RUBE RUPL RUPL RUPL RUPL RUPL RUPL RUPL
## [376] RUPL RUPL RURM RURM RURM SOC SOC SOC SOC SOC SOC SOC SOC SOC SOC
## [391] ABAL ABAL ABAL ABAL ABAL ABAL ABAL ABAL ABAL ABAL GES GES GES GES GES
## [406] GEPO GEPO GEPO GEPO GEPO
## 22 Levels: ABAL BUL GEPO GES ROBU ROCO RODE ROPL ROS ROTI RUBE RUPL ... TUH
Save the genind object
Load the genind object
## NULL
## /// GENIND OBJECT /////////
##
## // 5 individuals; 1 locus; 5 alleles; size: 8.7 Kb
##
## // Basic content
## @tab: 5 x 5 matrix of allele counts
## @loc.n.all: number of alleles per locus (range: 5-5)
## @loc.fac: locus factor for the 5 columns of @tab
## @all.names: list of allele names for each locus
## @ploidy: ploidy of each individual (range: 2-2)
## @type: codom
## @call: .local(x = x, i = i, j = j, drop = drop)
##
## // Optional content
## @pop: population of each individual (group size range: 5-5)
## @strata: a data frame with 1 columns ( pop.eastern. )
grp <- find.clusters(microsat_pop_eastern, max.n.clust=15)
#retained 150
#Choose the number of clusters (>=2): 6
Save the genind object
Load the genind object
## [1] "Kstat" "stat" "grp" "size"
## [1] 157 48 14 26 153 12
##
## 1 2 3 4 5 6
## ABAL 0 9 0 0 1 0
## BUL 0 0 0 0 29 0
## GEPO 5 0 0 0 0 0
## GES 0 4 0 0 1 0
## ROBU 6 0 0 0 2 0
## ROCO 9 0 0 0 20 0
## RODE 22 0 0 0 8 0
## ROPL 9 0 0 1 14 0
## ROS 5 0 0 25 0 0
## ROTI 18 0 0 0 10 0
## RUBE 1 14 0 0 0 0
## RUPL 0 9 0 0 0 0
## RURM 0 3 0 0 0 0
## SER 1 0 0 0 28 0
## SOC 0 9 0 0 1 0
## TRAR 10 0 0 0 2 0
## TRGN 12 0 0 0 16 0
## TRIS 9 0 0 0 18 0
## TRRI 6 0 0 0 0 0
## TRTR 13 0 0 0 1 0
## TUA 15 0 5 0 1 9
## TUH 16 0 9 0 1 3
Save the genind object
Load the genind object
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.data.frame(x = as.data.frame(x), grp = ..1)
##
## $n.pca: 136 first PCs of PCA used
## $n.da: 5 discriminant functions saved
## $var (proportion of conserved variance): 1
##
## $eig (eigenvalues): 1469 718.6 571 357.7 299.8 vector length content
## 1 $eig 5 eigenvalues
## 2 $grp 410 prior group assignment
## 3 $prior 6 prior group probabilities
## 4 $assign 410 posterior group assignment
## 5 $pca.cent 147 centring vector of PCA
## 6 $pca.norm 147 scaling vector of PCA
## 7 $pca.eig 136 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 410 136 retained PCs of PCA
## 2 $means 6 136 group means
## 3 $loadings 136 5 loadings of variables
## 4 $ind.coord 410 5 coordinates of individuals (principal components)
## 5 $grp.coord 6 5 coordinates of groups
## 6 $posterior 410 6 posterior membership probabilities
## 7 $pca.loadings 147 136 PCA loadings of original variables
## 8 $var.contr 147 5 contribution of original variables
Cross-validation: The Discriminant Analysis of Principal Components (DAPC) relies on dimension reduction of the data using PCA followed by a linear discriminant analysis. How many PCA axes to retain is often a non-trivial question. Cross validation provides an objective way to decide how many axes to retain: different numbers are tried and the quality of the corresponding DAPC is assessed by cross- validation: DAPC is performed on a training set, typically made of 90% of the observations (comprising 90% of the observations in each subpopulation) , and then used to predict the groups of the 10% of remaining observations. The current method uses the average prediction success per group (result=“groupMean”), or the overall prediction success (result=“overall”). The number of PCs associated with the lowest Mean Squared Error is then retained in the DAPC.
xvalDapc(microsat_pop_eastern, populations, n.pca.max = 200, n.da = NULL,
training.set = 0.9, result = c("groupMean", "overall"),
center = TRUE, scale = FALSE,
n.pca=NULL, n.rep = 30, xval.plot = TRUE)
40 first PCs of PCA used 21 discriminant functions saved proportion of conserved variance: 0.559
Run DAPC with object using x-val recommendations
dapc_eastern_1 <- dapc(microsat_pop_eastern, n.pca = 40, n.da = 21, grp = populations)
dapc_eastern_1
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.genind(x = microsat_pop_eastern, n.pca = 40, n.da = 21,
## grp = populations)
##
## $n.pca: 40 first PCs of PCA used
## $n.da: 21 discriminant functions saved
## $var (proportion of conserved variance): 0.844
##
## $eig (eigenvalues): 70.44 36.43 29.57 28.57 15.05 ...
##
## vector length content
## 1 $eig 21 eigenvalues
## 2 $grp 410 prior group assignment
## 3 $prior 22 prior group probabilities
## 4 $assign 410 posterior group assignment
## 5 $pca.cent 147 centring vector of PCA
## 6 $pca.norm 147 scaling vector of PCA
## 7 $pca.eig 136 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 410 40 retained PCs of PCA
## 2 $means 22 40 group means
## 3 $loadings 40 21 loadings of variables
## 4 $ind.coord 410 21 coordinates of individuals (principal components)
## 5 $grp.coord 22 21 coordinates of groups
## 6 $posterior 410 22 posterior membership probabilities
## 7 $pca.loadings 147 40 PCA loadings of original variables
## 8 $var.contr 147 21 contribution of original variables
dapc with optimal # of PCs recommended
dapc_eastern_2 <- dapc(microsat_pop_eastern, n.pca = 13, n.da = 5, grp = populations)
dapc_eastern_2
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.genind(x = microsat_pop_eastern, n.pca = 13, n.da = 5, grp = populations)
##
## $n.pca: 13 first PCs of PCA used
## $n.da: 5 discriminant functions saved
## $var (proportion of conserved variance): 0.494
##
## $eig (eigenvalues): 36.3 17.62 13.78 10.19 6.149 ...
##
## vector length content
## 1 $eig 13 eigenvalues
## 2 $grp 410 prior group assignment
## 3 $prior 22 prior group probabilities
## 4 $assign 410 posterior group assignment
## 5 $pca.cent 147 centring vector of PCA
## 6 $pca.norm 147 scaling vector of PCA
## 7 $pca.eig 136 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 410 13 retained PCs of PCA
## 2 $means 22 13 group means
## 3 $loadings 13 5 loadings of variables
## 4 $ind.coord 410 5 coordinates of individuals (principal components)
## 5 $grp.coord 22 5 coordinates of groups
## 6 $posterior 410 22 posterior membership probabilities
## 7 $pca.loadings 147 13 PCA loadings of original variables
## 8 $var.contr 147 5 contribution of original variables
colors for each pop
myCol22 <- c("#51f310", "#146c45", "#75d5e1", "#FF7F00", "magenta", "red", "yellow3", "#2524f9", "purple", "#332288", "#a41415", "yellow", "#0DC745", "#FE5198", "#169FAB", "gray43", "#FFB216", "#AC7700", "#C39CF8", "#FC998C", "#FF560D", "purple4")
Plot using different discriminant functions 1 & 2
pdf(file = "output/europe/dapc/microsats/eastern_europe/dapc_eastern_euro_microsats_all_PC1_2.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol22, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol22, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
1 & 3
pdf(file = "output/europe/dapc/microsats/eastern_europe/dapc_eastern_euro_microsats_all_PC1_3.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol22, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=3)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol22, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=3)
1 & 4
pdf(file = "output/europe/dapc/microsats/eastern_europe/dapc_eastern_euro_microsats_all_PC1_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol22, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=4)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol22, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=4)
2 & 3
pdf(file = "output/europe/dapc/microsats/eastern_europe/dapc_eastern_euro_microsats_all_PC2_3.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol22, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=3)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol22, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=3)
2 & 4
pdf(file = "output/europe/dapc/microsats/eastern_europe/dapc_eastern_euro_microsats_all_PC2_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol22, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=4)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol22, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=4)
3 & 4
pdf(file = "output/europe/dapc/microsats/eastern_europe/dapc_eastern_euro_microsats_all_PC3_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol22, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =3, yax=4)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol22, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =3, yax=4)
Plot by 6 countries now
#myCol11 <- c("#51f310", "#146c45", "#75d5e1", "#FF7F00", "magenta", "red", "yellow3", "#2524f9", "purple", "#332288", "#a41415")
#for regions
myCol6 <- c("magenta",
"yellow3",
"magenta",
"magenta",
"#FF7F00",
"#FF7F00",
"#FF7F00",
"#FF7F00",
"#FF7F00",
"#FF7F00",
"purple",
"purple",
"purple",
"#51f310",
"purple",
"#75d5e1",
"#75d5e1",
"#75d5e1",
"#75d5e1",
"#75d5e1",
"#75d5e1",
"#75d5e1")
Plot using different discriminant functions 1 & 2
pdf(file = "output/europe/dapc/microsats/eastern_europe/dapc_eastern_euro_microsats_all_country_PC1_2.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol6, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol6, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
1 & 3
pdf(file = "output/europe/dapc/microsats/eastern_europe/dapc_eastern_euro_microsats_all_country_PC1_3.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol6, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=3)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol6, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=3)
1 & 4
pdf(file = "output/europe/dapc/microsats/eastern_europe/dapc_eastern_euro_microsats_all_country_PC1_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol6, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=4)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol6, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=4)
2 & 3
pdf(file = "output/europe/dapc/microsats/eastern_europe/dapc_eastern_euro_microsats_all_country_PC2_3.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol6, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=3)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol6, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=3)
2 & 4
pdf(file = "output/europe/dapc/microsats/eastern_europe/dapc_eastern_euro_microsats_all_country_PC2_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol6, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax=2, yax=4)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol6, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax=2, yax=4)
3 & 4
pdf(file = "output/europe/dapc/microsats/eastern_europe/dapc_eastern_euro_microsats_all_country_PC3_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol6, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax=3, yax=4)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_eastern_1, pch = good.shapes, cstar = 0, col=myCol6, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax=3, yax=4)
southern <- read.genepop("output/europe/dapc/microsats/southern/for_dapc_albo_microsats_southern.gen", ncode=3L)
##
## Converting data from a Genepop .gen file to a genind object...
##
##
## File description: ARBOMONITOR_Aedes_albopictus
##
## ...done.
## /// GENIND OBJECT /////////
##
## // 782 individuals; 11 loci; 179 alleles; size: 643.5 Kb
##
## // Basic content
## @tab: 782 x 179 matrix of allele counts
## @loc.n.all: number of alleles per locus (range: 6-27)
## @loc.fac: locus factor for the 179 columns of @tab
## @all.names: list of allele names for each locus
## @ploidy: ploidy of each individual (range: 2-2)
## @type: codom
## @call: read.genepop(file = "output/europe/dapc/microsats/southern/for_dapc_albo_microsats_southern.gen",
## ncode = 3L)
##
## // Optional content
## @pop: population of each individual (group size range: 1-60)
## [1] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [7] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [13] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [19] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [25] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [31] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [37] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [43] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [49] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [55] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [61] POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15
## [67] POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15 POL-PTQT15
## [73] POL-PTQT15 POL-PTQT15 POL-PTQT15 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11
## [79] SPB-ESBD11 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11
## [85] SPB-ESBD11 SPB-ESBD11 ESAC-ESAC07 ESAC-ESAC07 ESAC-ESAC07 ESAC-ESAC07
## [91] ESAC-ESAC07 ESAC-ESAC07 ESAC-ESAC07 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18
## [97] ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18
## [103] ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18
## [109] ESMO-ESMO18 ESMO-ESMO18 ESMO-ESMO18 ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15
## [115] ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15
## [121] ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15 ESSV-ESSV15 ESAL-ESAL06 ESAL-ESAL06
## [127] ESAL-ESAL06 ESAL-ESAL06 ESAL-ESAL06 ESAL-ESAL06 SPS-ESUP10 SPS-ESUP10
## [133] SPS-ESUP10 SPS-ESUP10 SPS-ESUP10 SPS-ESUP10 SPS-ESUP10 SPS-ESUP10
## [139] SPS-ESUP10 SPS-ESUP10 ESMN-ESMN04 ESMN-ESMN04 ESMN-ESMN04 ESLS-ESLS03
## [145] ESLS-ESLS03 ESLS-ESLS03 ESMV-ESMV03 ESMV-ESMV03 ESMV-ESMV03 ESFU-ESFU03
## [151] ESFU-ESFU03 ESFU-ESFU03 ESBM-ESBT03 ESBM-ESBT03 ESBM-ESBT03 ESBM-ESBT03
## [157] ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10
## [163] ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10
## [169] ESTM-ESTY10 ESTM-ESTY10 ESTM-ESTY10 ESGD-ESGD02 ESGD-ESGD02 ESBN-ESBN06
## [175] ESBN-ESBN06 ESBN-ESBN06 ESBN-ESBN06 ESBN-ESBN06 ESBN-ESBN06 ESSL-ESSL03
## [181] ESSL-ESSL03 ESSL-ESSL03 ESMC-ESMT03 ESMC-ESMT03 ESMC-ESMT03 ESMC-ESMT03
## [187] ESVN-ESVN04 ESPT-ESPT03 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15
## [193] ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15
## [199] ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESAB-ESAB15 ESBY-ESBY06 ESBY-ESBY06
## [205] ESBY-ESBY06 ESBY-ESBY06 ESBY-ESBY06 ESBY-ESBY06 ESNI-ESNI10 ESNI-ESNI10
## [211] ESNI-ESNI10 ESNI-ESNI10 ESNI-ESNI10 ESNI-ESNI10 ESNI-ESNI10 ESNI-ESNI10
## [217] ESNI-ESNI10 ESNU-ESNU06 ESNU-ESNU06 ESNU-ESNU06 ESNU-ESNU06 ESNU-ESNU06
## [223] ESNU-ESNU06 ESIR-ESIR03 ESIR-ESIR03 ESIR-ESIR03 ESAG-ESAG10 ESAG-ESAG10
## [229] ESAG-ESAG10 ESAG-ESAG10 ESAG-ESAG10 ESAG-ESAG10 ESAG-ESAG10 ESAG-ESAG10
## [235] ESAG-ESAG10 ESAG-ESAG10 ESAZ-ESAZ04 ESAZ-ESAZ04 ESAZ-ESAZ04 ESAZ-ESAZ04
## [241] ESCN-ESCN04 ESCN-ESCN04 ESCN-ESCN04 ESCN-ESCN04 ESCT-ESTT01 ESCT-ESTT01
## [247] ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01
## [253] ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01 ESCT-ESTT01
## [259] ESCT-ESTT01 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10
## [265] ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10
## [271] ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10 ESMU-ESRM10
## [277] ESPP-ESPP06 ESPP-ESPP06 ESPP-ESPP06 ESPP-ESPP06 ESPP-ESPP06 ESPP-ESPP06
## [283] ESCH-ESCH02 ESCH-ESCH02 ESLM-ESLM04 ESLM-ESLM04 ESLM-ESLM04 ESLM-ESLM04
## [289] ESCA-ESCA05 ESCA-ESCA05 ESCA-ESCA05 ESCA-ESCA05 ESCA-ESCA05 ESAY-ESAY10
## [295] ESAY-ESAY10 ESAY-ESAY10 ESAY-ESAY10 ESAY-ESAY10 ESAY-ESAY10 ESAY-ESAY10
## [301] ESAY-ESAY10 ESAY-ESAY10 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20
## [307] SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20
## [313] SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20
## [319] SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 ESBS-ESBC07 ESBS-ESBC07
## [325] ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07
## [331] ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07 ESBS-ESBC07
## [337] ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15
## [343] ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15
## [349] ESBE-ESBE15 ESBE-ESBE15 ESBE-ESBE15 ESTS-ESTS10 ESTS-ESTS10 ESTS-ESTS10
## [355] ESTS-ESTS10 ESTS-ESTS10 ESTS-ESTS10 ESTS-ESTS10 ESTS-ESTS10 ESTS-ESTS10
## [361] ESTS-ESTS10 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28
## [367] ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28
## [373] ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28
## [379] ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28
## [385] ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESBA-ESBA28 ESCP-ESCP19
## [391] ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19
## [397] ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19
## [403] ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19 ESCP-ESCP19
## [409] SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19
## [415] SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19
## [421] SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19
## [427] SPM-ESMG19 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15
## [433] ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15
## [439] ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15
## [445] ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15
## [451] ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15
## [457] ITB-ITBO15 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17
## [463] ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17
## [469] ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17
## [475] ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17
## [481] ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17 ITRO-ITRO17
## [487] ITRO-ITRO17 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09
## [493] ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09
## [499] ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09
## [505] ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09
## [511] ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09
## [517] ITP-ITVL09 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39
## [523] MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39
## [529] MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39
## [535] MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39
## [541] MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39
## [547] SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39
## [553] SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39
## [559] SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39
## [565] SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39
## [571] SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39
## [577] CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30
## [583] CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30
## [589] CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30
## [595] CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30
## [601] CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30
## [607] ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30
## [613] ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30
## [619] ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30
## [625] ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30
## [631] ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 GRC-GRCC25
## [637] GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25
## [643] GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25
## [649] GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25
## [655] GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25
## [661] GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRPA-GRPU04 GRPA-GRPU04
## [667] GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04
## [673] GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04
## [679] GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04
## [685] GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04
## [691] GRPA-GRPU04 GRPA-GRPU04 GRPA-GRPU04 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08
## [697] GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08
## [703] GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08
## [709] GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08
## [715] GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08
## [721] GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05
## [727] GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05
## [733] GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05
## [739] GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05
## [745] GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05
## [751] GRTA-GRTT05 GRTA-GRTT05 GRTA-GRTT05 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15
## [757] GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15
## [763] GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15
## [769] GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15
## [775] GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15 GRKV-GRKV15
## [781] GRKV-GRKV15 GRKV-GRKV15
## 54 Levels: POP-PTPN60 POL-PTQT15 SPB-ESBD11 ESAC-ESAC07 ... GRKV-GRKV15
## [1] 782
## [1] 11
## [1] 54
## [1] "POP-PTPN01" "POP-PTPN02" "POP-PTPN03" "POP-PTPN04" "POP-PTPN05"
## [6] "POP-PTPN06" "POP-PTPN07" "POP-PTPN08" "POP-PTPN09" "POP-PTPN10"
## [11] "POP-PTPN11" "POP-PTPN12" "POP-PTPN13" "POP-PTPN14" "POP-PTPN15"
## [16] "POP-PTPN16" "POP-PTPN17" "POP-PTPN18" "POP-PTPN19" "POP-PTPN20"
## [21] "POP-PTPN21" "POP-PTPN22" "POP-PTPN23" "POP-PTPN24" "POP-PTPN25"
## [26] "POP-PTPN26" "POP-PTPN27" "POP-PTPN28" "POP-PTPN29" "POP-PTPN30"
## [31] "POP-PTPN31" "POP-PTPN32" "POP-PTPN33" "POP-PTPN34" "POP-PTPN35"
## [36] "POP-PTPN36" "POP-PTPN37" "POP-PTPN38" "POP-PTPN39" "POP-PTPN40"
## [41] "POP-PTPN41" "POP-PTPN42" "POP-PTPN43" "POP-PTPN44" "POP-PTPN45"
## [46] "POP-PTPN46" "POP-PTPN47" "POP-PTPN48" "POP-PTPN49" "POP-PTPN50"
## [51] "POP-PTPN51" "POP-PTPN52" "POP-PTPN53" "POP-PTPN54" "POP-PTPN55"
## [56] "POP-PTPN56" "POP-PTPN57" "POP-PTPN58" "POP-PTPN59" "POP-PTPN60"
## [61] "POL-PTQT01" "POL-PTQT02" "POL-PTQT03" "POL-PTQT04" "POL-PTQT05"
## [66] "POL-PTQT06" "POL-PTQT07" "POL-PTQT08" "POL-PTQT09" "POL-PTQT10"
## [71] "POL-PTQT11" "POL-PTQT12" "POL-PTQT13" "POL-PTQT14" "POL-PTQT15"
## [76] "SPB-ESBD01" "SPB-ESBD02" "SPB-ESBD03" "SPB-ESBD04" "SPB-ESBD05"
## [81] "SPB-ESBD06" "SPB-ESBD07" "SPB-ESBD08" "SPB-ESBD09" "SPB-ESBD10"
## [86] "SPB-ESBD11" "ESAC-ESAC01" "ESAC-ESAC02" "ESAC-ESAC03" "ESAC-ESAC04"
## [91] "ESAC-ESAC05" "ESAC-ESAC06" "ESAC-ESAC07" "ESMO-ESMO01" "ESMO-ESMO02"
## [96] "ESMO-ESMO03" "ESMO-ESMO04" "ESMO-ESMO05" "ESMO-ESMO06" "ESMO-ESMO07"
## [101] "ESMO-ESMO08" "ESMO-ESMO09" "ESMO-ESMO10" "ESMO-ESMO11" "ESMO-ESMO12"
## [106] "ESMO-ESMO13" "ESMO-ESMO14" "ESMO-ESMO15" "ESMO-ESMO16" "ESMO-ESMO17"
## [111] "ESMO-ESMO18" "ESSV-ESSV01" "ESSV-ESSV02" "ESSV-ESSV03" "ESSV-ESSV05"
## [116] "ESSV-ESSV06" "ESSV-ESSV07" "ESSV-ESSV08" "ESSV-ESSV09" "ESSV-ESSV10"
## [121] "ESSV-ESSV11" "ESSV-ESSV12" "ESSV-ESSV13" "ESSV-ESSV15" "ESAL-ESAL01"
## [126] "ESAL-ESAL02" "ESAL-ESAL03" "ESAL-ESAL04" "ESAL-ESAL05" "ESAL-ESAL06"
## [131] "SPS-ESUP01" "SPS-ESUP02" "SPS-ESUP03" "SPS-ESUP04" "SPS-ESUP05"
## [136] "SPS-ESUP06" "SPS-ESUP07" "SPS-ESUP08" "SPS-ESUP09" "SPS-ESUP10"
## [141] "ESMN-ESMN01" "ESMN-ESMN03" "ESMN-ESMN04" "ESLS-ESLS01" "ESLS-ESLS02"
## [146] "ESLS-ESLS03" "ESMV-ESMV01" "ESMV-ESMV02" "ESMV-ESMV03" "ESFU-ESFU01"
## [151] "ESFU-ESFU02" "ESFU-ESFU03" "ESBM-ESBM01" "ESBM-ESBT01" "ESBM-ESBT02"
## [156] "ESBM-ESBT03" "ESTM-ESTM01" "ESTM-ESTM02" "ESTM-ESTO01" "ESTM-ESTO02"
## [161] "ESTM-ESTO03" "ESTM-ESTY01" "ESTM-ESTY02" "ESTM-ESTY03" "ESTM-ESTY04"
## [166] "ESTM-ESTY05" "ESTM-ESTY06" "ESTM-ESTY07" "ESTM-ESTY08" "ESTM-ESTY09"
## [171] "ESTM-ESTY10" "ESGD-ESGD01" "ESGD-ESGD02" "ESBN-ESBN01" "ESBN-ESBN02"
## [176] "ESBN-ESBN03" "ESBN-ESBN04" "ESBN-ESBN05" "ESBN-ESBN06" "ESSL-ESSL01"
## [181] "ESSL-ESSL02" "ESSL-ESSL03" "ESMC-ESMC03" "ESMC-ESMT01" "ESMC-ESMT02"
## [186] "ESMC-ESMT03" "ESVN-ESVN04" "ESPT-ESPT03" "ESAB-ESAB01" "ESAB-ESAB02"
## [191] "ESAB-ESAB03" "ESAB-ESAB04" "ESAB-ESAB05" "ESAB-ESAB06" "ESAB-ESAB07"
## [196] "ESAB-ESAB09" "ESAB-ESAB10" "ESAB-ESAB11" "ESAB-ESAB12" "ESAB-ESAB13"
## [201] "ESAB-ESAB14" "ESAB-ESAB15" "ESBY-ESBY01" "ESBY-ESBY02" "ESBY-ESBY03"
## [206] "ESBY-ESBY04" "ESBY-ESBY05" "ESBY-ESBY06" "ESNI-ESNI01" "ESNI-ESNI02"
## [211] "ESNI-ESNI04" "ESNI-ESNI05" "ESNI-ESNI06" "ESNI-ESNI07" "ESNI-ESNI08"
## [216] "ESNI-ESNI09" "ESNI-ESNI10" "ESNU-ESNU01" "ESNU-ESNU02" "ESNU-ESNU03"
## [221] "ESNU-ESNU04" "ESNU-ESNU05" "ESNU-ESNU06" "ESIR-ESIR01" "ESIR-ESIR02"
## [226] "ESIR-ESIR03" "ESAG-ESAG01" "ESAG-ESAG02" "ESAG-ESAG03" "ESAG-ESAG04"
## [231] "ESAG-ESAG05" "ESAG-ESAG06" "ESAG-ESAG07" "ESAG-ESAG08" "ESAG-ESAG09"
## [236] "ESAG-ESAG10" "ESAZ-ESAZ01" "ESAZ-ESAZ02" "ESAZ-ESAZ03" "ESAZ-ESAZ04"
## [241] "ESCN-ESCN01" "ESCN-ESCN02" "ESCN-ESCN03" "ESCN-ESCN04" "ESCT-ESCT01"
## [246] "ESCT-ESCT02" "ESCT-ESLA01" "ESCT-ESLA02" "ESCT-ESLU01" "ESCT-ESLU02"
## [251] "ESCT-ESLU03" "ESCT-ESLU04" "ESCT-ESLU05" "ESCT-ESLU06" "ESCT-ESLU07"
## [256] "ESCT-ESLU08" "ESCT-ESLU09" "ESCT-ESLU10" "ESCT-ESTT01" "ESMU-ESCV01"
## [261] "ESMU-ESCV02" "ESMU-ESCV03" "ESMU-ESCV04" "ESMU-ESMU01" "ESMU-ESMU02"
## [266] "ESMU-ESMU03" "ESMU-ESRM01" "ESMU-ESRM02" "ESMU-ESRM03" "ESMU-ESRM04"
## [271] "ESMU-ESRM05" "ESMU-ESRM06" "ESMU-ESRM07" "ESMU-ESRM08" "ESMU-ESRM09"
## [276] "ESMU-ESRM10" "ESPP-ESPP01" "ESPP-ESPP02" "ESPP-ESPP03" "ESPP-ESPP04"
## [281] "ESPP-ESPP05" "ESPP-ESPP06" "ESCH-ESCH01" "ESCH-ESCH02" "ESLM-ESLM01"
## [286] "ESLM-ESLM02" "ESLM-ESLM03" "ESLM-ESLM04" "ESCA-ESCA01" "ESCA-ESCA02"
## [291] "ESCA-ESCA03" "ESCA-ESCA04" "ESCA-ESCA05" "ESAY-ESAY01" "ESAY-ESAY02"
## [296] "ESAY-ESAY03" "ESAY-ESAY04" "ESAY-ESAY05" "ESAY-ESAY06" "ESAY-ESAY07"
## [301] "ESAY-ESAY09" "ESAY-ESAY10" "SPC-ESVL01" "SPC-ESVL02" "SPC-ESVL03"
## [306] "SPC-ESVL04" "SPC-ESVL05" "SPC-ESVL06" "SPC-ESVL07" "SPC-ESVL08"
## [311] "SPC-ESVL09" "SPC-ESVL10" "SPC-ESVL11" "SPC-ESVL12" "SPC-ESVL13"
## [316] "SPC-ESVL14" "SPC-ESVL15" "SPC-ESVL16" "SPC-ESVL17" "SPC-ESVL18"
## [321] "SPC-ESVL19" "SPC-ESVL20" "ESBS-ESBS01" "ESBS-ESBS02" "ESBS-ESBS03"
## [326] "ESBS-ESBS04" "ESBS-ESBS05" "ESBS-ESBS06" "ESBS-ESBS07" "ESBS-ESBC01"
## [331] "ESBS-ESBC02" "ESBS-ESBC03" "ESBS-ESBC04" "ESBS-ESBC05" "ESBS-ESBC06"
## [336] "ESBS-ESBC07" "ESBE-ESBE01" "ESBE-ESBE02" "ESBE-ESBE03" "ESBE-ESBE04"
## [341] "ESBE-ESBE05" "ESBE-ESBE06" "ESBE-ESBE07" "ESBE-ESBE08" "ESBE-ESBE09"
## [346] "ESBE-ESBE10" "ESBE-ESBE11" "ESBE-ESBE12" "ESBE-ESBE13" "ESBE-ESBE14"
## [351] "ESBE-ESBE15" "ESTS-ESTS01" "ESTS-ESTS02" "ESTS-ESTS03" "ESTS-ESTS04"
## [356] "ESTS-ESTS05" "ESTS-ESTS06" "ESTS-ESTS07" "ESTS-ESTS08" "ESTS-ESTS09"
## [361] "ESTS-ESTS10" "ESBA-ESBA01" "ESBA-ESBA02" "ESBA-ESBA03" "ESBA-ESBA04"
## [366] "ESBA-ESBA05" "ESBA-ESBA06" "ESBA-ESBA07" "ESBA-ESBA08" "ESBA-ESBA09"
## [371] "ESBA-ESBA10" "ESBA-ESBA11" "ESBA-ESBA12" "ESBA-ESBA13" "ESBA-ESBA14"
## [376] "ESBA-ESBA15" "ESBA-ESBA16" "ESBA-ESBA17" "ESBA-ESBA18" "ESBA-ESBA19"
## [381] "ESBA-ESBA20" "ESBA-ESBA21" "ESBA-ESBA22" "ESBA-ESBA23" "ESBA-ESBA24"
## [386] "ESBA-ESBA25" "ESBA-ESBA26" "ESBA-ESBA27" "ESBA-ESBA28" "ESCP-ESCP01"
## [391] "ESCP-ESCP02" "ESCP-ESCP03" "ESCP-ESCP04" "ESCP-ESCP05" "ESCP-ESCP06"
## [396] "ESCP-ESCP07" "ESCP-ESCP08" "ESCP-ESCP09" "ESCP-ESCP10" "ESCP-ESCP11"
## [401] "ESCP-ESCP12" "ESCP-ESCP13" "ESCP-ESCP14" "ESCP-ESCP15" "ESCP-ESCP16"
## [406] "ESCP-ESCP17" "ESCP-ESCP18" "ESCP-ESCP19" "SPM-ESMG01" "SPM-ESMG02"
## [411] "SPM-ESMG03" "SPM-ESMG04" "SPM-ESMG05" "SPM-ESMG06" "SPM-ESMG07"
## [416] "SPM-ESMG08" "SPM-ESMG09" "SPM-ESMG10" "SPM-ESMG11" "SPM-ESMG12"
## [421] "SPM-ESMG13" "SPM-ESMG14" "SPM-ESMG15" "SPM-ESMG16" "SPM-ESMG17"
## [426] "SPM-ESMG18" "SPM-ESMG19" "ITB-ITBL01" "ITB-ITBL02" "ITB-ITBL03"
## [431] "ITB-ITBL04" "ITB-ITBL05" "ITB-ITBL06" "ITB-ITBL07" "ITB-ITBL08"
## [436] "ITB-ITBL09" "ITB-ITBL10" "ITB-ITBL11" "ITB-ITBL12" "ITB-ITBL13"
## [441] "ITB-ITBL14" "ITB-ITBL15" "ITB-ITBO01" "ITB-ITBO02" "ITB-ITBO03"
## [446] "ITB-ITBO04" "ITB-ITBO05" "ITB-ITBO06" "ITB-ITBO07" "ITB-ITBO08"
## [451] "ITB-ITBO09" "ITB-ITBO10" "ITB-ITBO11" "ITB-ITBO12" "ITB-ITBO13"
## [456] "ITB-ITBO14" "ITB-ITBO15" "ITRO-ITRM01" "ITRO-ITRM02" "ITRO-ITRM03"
## [461] "ITRO-ITRM04" "ITRO-ITRM05" "ITRO-ITRM06" "ITRO-ITRM07" "ITRO-ITRM08"
## [466] "ITRO-ITRM09" "ITRO-ITRM10" "ITRO-ITRM11" "ITRO-ITRM12" "ITRO-ITRM13"
## [471] "ITRO-ITRO01" "ITRO-ITRO02" "ITRO-ITRO03" "ITRO-ITRO04" "ITRO-ITRO05"
## [476] "ITRO-ITRO06" "ITRO-ITRO07" "ITRO-ITRO08" "ITRO-ITRO09" "ITRO-ITRO10"
## [481] "ITRO-ITRO11" "ITRO-ITRO12" "ITRO-ITRO13" "ITRO-ITRO14" "ITRO-ITRO15"
## [486] "ITRO-ITRO16" "ITRO-ITRO17" "ITP-ITBR01" "ITP-ITBR02" "ITP-ITBR03"
## [491] "ITP-ITBR04" "ITP-ITBR05" "ITP-ITBR06" "ITP-ITBR07" "ITP-ITBR08"
## [496] "ITP-ITBR09" "ITP-ITBR10" "ITP-ITBR11" "ITP-ITBR12" "ITP-ITBR13"
## [501] "ITP-ITBR14" "ITP-ITBR15" "ITP-ITBR16" "ITP-ITBR17" "ITP-ITBR18"
## [506] "ITP-ITBR19" "ITP-ITBR20" "ITP-ITBR21" "ITP-ITVL01" "ITP-ITVL02"
## [511] "ITP-ITVL03" "ITP-ITVL04" "ITP-ITVL05" "ITP-ITVL06" "ITP-ITVL07"
## [516] "ITP-ITVL08" "ITP-ITVL09" "MAL-MTLU01" "MAL-MTLU02" "MAL-MTLU03"
## [521] "MAL-MTLU04" "MAL-MTLU05" "MAL-MTLU06" "MAL-MTLU07" "MAL-MTLU08"
## [526] "MAL-MTLU09" "MAL-MTLU10" "MAL-MTLU11" "MAL-MTLU12" "MAL-MTLU13"
## [531] "MAL-MTLU14" "MAL-MTLU15" "MAL-MTLU16" "MAL-MTLU17" "MAL-MTLU18"
## [536] "MAL-MTLU19" "MAL-MTLU20" "MAL-MTLU31" "MAL-MTLU32" "MAL-MTLU33"
## [541] "MAL-MTLU34" "MAL-MTLU35" "MAL-MTLU36" "MAL-MTLU37" "MAL-MTLU38"
## [546] "MAL-MTLU39" "SLO-SLGO01" "SLO-SLGO02" "SLO-SLGO03" "SLO-SLGO04"
## [551] "SLO-SLGO05" "SLO-SLGO06" "SLO-SLGO07" "SLO-SLGO08" "SLO-SLGO09"
## [556] "SLO-SLGO10" "SLO-SLGO11" "SLO-SLGO12" "SLO-SLGO13" "SLO-SLGO14"
## [561] "SLO-SLGO15" "SLO-SLGO25" "SLO-SLGO26" "SLO-SLGO27" "SLO-SLGO28"
## [566] "SLO-SLGO29" "SLO-SLGO30" "SLO-SLGO31" "SLO-SLGO32" "SLO-SLGO33"
## [571] "SLO-SLGO34" "SLO-SLGO35" "SLO-SLGO36" "SLO-SLGO37" "SLO-SLGO38"
## [576] "SLO-SLGO39" "CRO-CRPL01" "CRO-CRPL02" "CRO-CRPL03" "CRO-CRPL04"
## [581] "CRO-CRPL05" "CRO-CRPL06" "CRO-CRPL07" "CRO-CRPL08" "CRO-CRPL09"
## [586] "CRO-CRPL10" "CRO-CRPL11" "CRO-CRPL12" "CRO-CRPL13" "CRO-CRPL14"
## [591] "CRO-CRPL15" "CRO-CRPL16" "CRO-CRPL17" "CRO-CRPL18" "CRO-CRPL19"
## [596] "CRO-CRPL20" "CRO-CRPL21" "CRO-CRPL22" "CRO-CRPL23" "CRO-CRPL24"
## [601] "CRO-CRPL25" "CRO-CRPL26" "CRO-CRPL27" "CRO-CRPL28" "CRO-CRPL29"
## [606] "CRO-CRPL30" "ALD-ALDU01" "ALD-ALDU02" "ALD-ALDU03" "ALD-ALDU04"
## [611] "ALD-ALDU05" "ALD-ALDU06" "ALD-ALDU07" "ALD-ALDU08" "ALD-ALDU09"
## [616] "ALD-ALDU10" "ALD-ALDU11" "ALD-ALDU12" "ALD-ALDU13" "ALD-ALDU14"
## [621] "ALD-ALDU15" "ALD-ALDU16" "ALD-ALDU17" "ALD-ALDU18" "ALD-ALDU19"
## [626] "ALD-ALDU20" "ALD-ALDU21" "ALD-ALDU22" "ALD-ALDU23" "ALD-ALDU25"
## [631] "ALD-ALDU26" "ALD-ALDU27" "ALD-ALDU28" "ALD-ALDU29" "ALD-ALDU30"
## [636] "GRC-GRCA01" "GRC-GRCA02" "GRC-GRCA03" "GRC-GRCA04" "GRC-GRCA05"
## [641] "GRC-GRCC01" "GRC-GRCC02" "GRC-GRCC03" "GRC-GRCC04" "GRC-GRCC05"
## [646] "GRC-GRCC06" "GRC-GRCC08" "GRC-GRCC09" "GRC-GRCC10" "GRC-GRCC11"
## [651] "GRC-GRCC12" "GRC-GRCC13" "GRC-GRCC14" "GRC-GRCC15" "GRC-GRCC16"
## [656] "GRC-GRCC17" "GRC-GRCC18" "GRC-GRCC19" "GRC-GRCC20" "GRC-GRCC21"
## [661] "GRC-GRCC22" "GRC-GRCC23" "GRC-GRCC24" "GRC-GRCC25" "GRPA-GRPA01"
## [666] "GRPA-GRPA02" "GRPA-GRPA03" "GRPA-GRPA04" "GRPA-GRPA05" "GRPA-GRPI01"
## [671] "GRPA-GRPI02" "GRPA-GRPI03" "GRPA-GRPI04" "GRPA-GRPI06" "GRPA-GRPP01"
## [676] "GRPA-GRPP02" "GRPA-GRPP03" "GRPA-GRPP04" "GRPA-GRPP05" "GRPA-GRPR01"
## [681] "GRPA-GRPR02" "GRPA-GRPR03" "GRPA-GRPR04" "GRPA-GRPR05" "GRPA-GRPR06"
## [686] "GRPA-GRPR07" "GRPA-GRPR08" "GRPA-GRPR09" "GRPA-GRPR10" "GRPA-GRPU01"
## [691] "GRPA-GRPU02" "GRPA-GRPU03" "GRPA-GRPU04" "GRA-GRAA01" "GRA-GRAA02"
## [696] "GRA-GRAA03" "GRA-GRAA04" "GRA-GRAA05" "GRA-GRAA06" "GRA-GRAA07"
## [701] "GRA-GRAA08" "GRA-GRAE01" "GRA-GRAE02" "GRA-GRAE03" "GRA-GRAE04"
## [706] "GRA-GRAE05" "GRA-GRAE06" "GRA-GRAE07" "GRA-GRAE08" "GRA-GRAH01"
## [711] "GRA-GRAH02" "GRA-GRAH05" "GRA-GRAH06" "GRA-GRAH07" "GRA-GRAI01"
## [716] "GRA-GRAN01" "GRA-GRAN02" "GRA-GRAN03" "GRA-GRAN04" "GRA-GRAN05"
## [721] "GRA-GRAN06" "GRA-GRAN07" "GRA-GRAN08" "GRTA-GRTA01" "GRTA-GRTA02"
## [726] "GRTA-GRTA03" "GRTA-GRTA04" "GRTA-GRTA05" "GRTA-GRTA06" "GRTA-GRTA07"
## [731] "GRTA-GRTA08" "GRTA-GRTA09" "GRTA-GRTA10" "GRTA-GRTA11" "GRTA-GRTA12"
## [736] "GRTA-GRTA13" "GRTA-GRTA14" "GRTA-GRTA15" "GRTA-GRTA23" "GRTA-GRTA24"
## [741] "GRTA-GRTA25" "GRTA-GRTA26" "GRTA-GRTA27" "GRTA-GRTI01" "GRTA-GRTI02"
## [746] "GRTA-GRTI03" "GRTA-GRTI04" "GRTA-GRTI05" "GRTA-GRTT01" "GRTA-GRTT02"
## [751] "GRTA-GRTT03" "GRTA-GRTT04" "GRTA-GRTT05" "GRKV-GRKA01" "GRKV-GRKA02"
## [756] "GRKV-GRKA03" "GRKV-GRKA04" "GRKV-GRKA05" "GRKV-GRKB01" "GRKV-GRKB02"
## [761] "GRKV-GRKB03" "GRKV-GRKB04" "GRKV-GRKL01" "GRKV-GRKL02" "GRKV-GRKL03"
## [766] "GRKV-GRKL04" "GRKV-GRKL05" "GRKV-GRKV01" "GRKV-GRKV02" "GRKV-GRKV03"
## [771] "GRKV-GRKV04" "GRKV-GRKV05" "GRKV-GRKV06" "GRKV-GRKV07" "GRKV-GRKV08"
## [776] "GRKV-GRKV09" "GRKV-GRKV10" "GRKV-GRKV11" "GRKV-GRKV12" "GRKV-GRKV13"
## [781] "GRKV-GRKV14" "GRKV-GRKV15"
Save it as rds
To load it
## [1] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## 54 Levels: POP-PTPN60 POL-PTQT15 SPB-ESBD11 ESAC-ESAC07 ... GRKV-GRKV15
Import sample data Load the csv
sampling_loc <- read.csv(here("output/europe/dapc/microsats/sampling_loc_euro_microsats.csv"))
sampling_loc <- as.data.frame(sampling_loc)
head(sampling_loc)
## Pop_City Country Latitude Longitude Continent Abbreviation
## 1 Gravatai Brazil -29.93760 -50.99070 Americas GRV
## 2 Puerto Iguazu Argentina -25.59720 -54.57860 Americas POR
## 3 Vohimasy Madagascar -22.81591 47.75026 Africa VOH
## 4 Trois-Bassins Reunion -21.10901 55.31921 Africa TRO
## 5 Morondava Madagascar -20.28420 44.27940 Africa MAD
## 6 Dauguet Mauritius -20.18530 57.52154 Africa DAU
## Year Region Subregion order order2 orderold order_microsat
## 1 2018 South America 8 NA 82 NA
## 2 2018 South America NA NA NA NA
## 3 2016 & 2017 East Africa East Africa NA 79 NA NA
## 4 2017 Indian Ocean Indian Ocean 81 81 73 NA
## 5 2016 East Africa East Africa 80 78 72 NA
## 6 2022 Indian Ocean Indian Ocean 82 80 74 NA
## microsats microsat_code alt_code X Country.1 X.1 X.2 X.3 X.4 X.5 X.6
## 1 NA Brazil NA NA NA NA NA NA
## 2 NA Argentina NA NA NA NA NA NA
## 3 NA Madagascar NA NA NA NA NA NA
## 4 NA Reunion NA NA NA NA NA NA
## 5 NA Madagascar NA NA NA NA NA NA
## 6 NA Mauritius NA NA NA NA NA NA
Load the csv
countr <- read.csv(here("output/europe/dapc/microsats/southern/DAPC_countries_microsats_southern.csv"
))
df <- as.data.frame(countr)
head(df)
## pops country
## 1 POP Portugal
## 2 POP Portugal
## 3 POP Portugal
## 4 POP Portugal
## 5 POP Portugal
## 6 POP Portugal
## [1] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [9] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [17] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [25] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [33] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [41] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [49] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [57] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [65] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [73] Portugal Portugal Portugal Spain Spain Spain Spain Spain
## [81] Spain Spain Spain Spain Spain Spain Spain Spain
## [89] Spain Spain Spain Spain Spain Spain Spain Spain
## [97] Spain Spain Spain Spain Spain Spain Spain Spain
## [105] Spain Spain Spain Spain Spain Spain Spain Spain
## [113] Spain Spain Spain Spain Spain Spain Spain Spain
## [121] Spain Spain Spain Spain Spain Spain Spain Spain
## [129] Spain Spain Spain Spain Spain Spain Spain Spain
## [137] Spain Spain Spain Spain Spain Spain Spain Spain
## [145] Spain Spain Spain Spain Spain Spain Spain Spain
## [153] Spain Spain Spain Spain Spain Spain Spain Spain
## [161] Spain Spain Spain Spain Spain Spain Spain Spain
## [169] Spain Spain Spain Spain Spain Spain Spain Spain
## [177] Spain Spain Spain Spain Spain Spain Spain Spain
## [185] Spain Spain Spain Spain Spain Spain Spain Spain
## [193] Spain Spain Spain Spain Spain Spain Spain Spain
## [201] Spain Spain Spain Spain Spain Spain Spain Spain
## [209] Spain Spain Spain Spain Spain Spain Spain Spain
## [217] Spain Spain Spain Spain Spain Spain Spain Spain
## [225] Spain Spain Spain Spain Spain Spain Spain Spain
## [233] Spain Spain Spain Spain Spain Spain Spain Spain
## [241] Spain Spain Spain Spain Spain Spain Spain Spain
## [249] Spain Spain Spain Spain Spain Spain Spain Spain
## [257] Spain Spain Spain Spain Spain Spain Spain Spain
## [265] Spain Spain Spain Spain Spain Spain Spain Spain
## [273] Spain Spain Spain Spain Spain Spain Spain Spain
## [281] Spain Spain Spain Spain Spain Spain Spain Spain
## [289] Spain Spain Spain Spain Spain Spain Spain Spain
## [297] Spain Spain Spain Spain Spain Spain Spain Spain
## [305] Spain Spain Spain Spain Spain Spain Spain Spain
## [313] Spain Spain Spain Spain Spain Spain Spain Spain
## [321] Spain Spain Spain Spain Spain Spain Spain Spain
## [329] Spain Spain Spain Spain Spain Spain Spain Spain
## [337] Spain Spain Spain Spain Spain Spain Spain Spain
## [345] Spain Spain Spain Spain Spain Spain Spain Spain
## [353] Spain Spain Spain Spain Spain Spain Spain Spain
## [361] Spain Spain Spain Spain Spain Spain Spain Spain
## [369] Spain Spain Spain Spain Spain Spain Spain Spain
## [377] Spain Spain Spain Spain Spain Spain Spain Spain
## [385] Spain Spain Spain Spain Spain Spain Spain Spain
## [393] Spain Spain Spain Spain Spain Spain Spain Spain
## [401] Spain Spain Spain Spain Spain Spain Spain Spain
## [409] Spain Spain Spain Spain Spain Spain Spain Spain
## [417] Spain Spain Spain Spain Spain Spain Spain Spain
## [425] Spain Spain Spain Italy Italy Italy Italy Italy
## [433] Italy Italy Italy Italy Italy Italy Italy Italy
## [441] Italy Italy Italy Italy Italy Italy Italy Italy
## [449] Italy Italy Italy Italy Italy Italy Italy Italy
## [457] Italy Italy Italy Italy Italy Italy Italy Italy
## [465] Italy Italy Italy Italy Italy Italy Italy Italy
## [473] Italy Italy Italy Italy Italy Italy Italy Italy
## [481] Italy Italy Italy Italy Italy Italy Italy Italy
## [489] Italy Italy Italy Italy Italy Italy Italy Italy
## [497] Italy Italy Italy Italy Italy Italy Italy Italy
## [505] Italy Italy Italy Italy Italy Italy Italy Italy
## [513] Italy Italy Italy Italy Italy Malta Malta Malta
## [521] Malta Malta Malta Malta Malta Malta Malta Malta
## [529] Malta Malta Malta Malta Malta Malta Malta Malta
## [537] Malta Malta Malta Malta Malta Malta Malta Malta
## [545] Malta Malta Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia
## [553] Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia
## [561] Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia
## [569] Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia
## [577] Croatia Croatia Croatia Croatia Croatia Croatia Croatia Croatia
## [585] Croatia Croatia Croatia Croatia Croatia Croatia Croatia Croatia
## [593] Croatia Croatia Croatia Croatia Croatia Croatia Croatia Croatia
## [601] Croatia Croatia Croatia Croatia Croatia Croatia Albania Albania
## [609] Albania Albania Albania Albania Albania Albania Albania Albania
## [617] Albania Albania Albania Albania Albania Albania Albania Albania
## [625] Albania Albania Albania Albania Albania Albania Albania Albania
## [633] Albania Albania Albania Greece Greece Greece Greece Greece
## [641] Greece Greece Greece Greece Greece Greece Greece Greece
## [649] Greece Greece Greece Greece Greece Greece Greece Greece
## [657] Greece Greece Greece Greece Greece Greece Greece Greece
## [665] Greece Greece Greece Greece Greece Greece Greece Greece
## [673] Greece Greece Greece Greece Greece Greece Greece Greece
## [681] Greece Greece Greece Greece Greece Greece Greece Greece
## [689] Greece Greece Greece Greece Greece Greece Greece Greece
## [697] Greece Greece Greece Greece Greece Greece Greece Greece
## [705] Greece Greece Greece Greece Greece Greece Greece Greece
## [713] Greece Greece Greece Greece Greece Greece Greece Greece
## [721] Greece Greece Greece Greece Greece Greece Greece Greece
## [729] Greece Greece Greece Greece Greece Greece Greece Greece
## [737] Greece Greece Greece Greece Greece Greece Greece Greece
## [745] Greece Greece Greece Greece Greece Greece Greece Greece
## [753] Greece Greece Greece Greece Greece Greece Greece Greece
## [761] Greece Greece Greece Greece Greece Greece Greece Greece
## [769] Greece Greece Greece Greece Greece Greece Greece Greece
## [777] Greece Greece Greece Greece Greece Greece
## Levels: Albania Croatia Greece Italy Malta Portugal Slovenia Spain
Save the genind object
## [1] POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP
## [16] POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP
## [31] POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP
## [46] POP POP POP POP POP POP POP POP POP POP POP POP POP POP POP
## [61] POL POL POL POL POL POL POL POL POL POL POL POL POL POL POL
## [76] SPB SPB SPB SPB SPB SPB SPB SPB SPB SPB SPB ESAC ESAC ESAC ESAC
## [91] ESAC ESAC ESAC ESMO ESMO ESMO ESMO ESMO ESMO ESMO ESMO ESMO ESMO ESMO ESMO
## [106] ESMO ESMO ESMO ESMO ESMO ESMO ESSV ESSV ESSV ESSV ESSV ESSV ESSV ESSV ESSV
## [121] ESSV ESSV ESSV ESSV ESAL ESAL ESAL ESAL ESAL ESAL SPS SPS SPS SPS SPS
## [136] SPS SPS SPS SPS SPS ESMN ESMN ESMN ESLS ESLS ESLS ESMV ESMV ESMV ESFU
## [151] ESFU ESFU ESBM ESBM ESBM ESBM ESTM ESTM ESTM ESTM ESTM ESTM ESTM ESTM ESTM
## [166] ESTM ESTM ESTM ESTM ESTM ESTM ESGD ESGD ESBN ESBN ESBN ESBN ESBN ESBN ESSL
## [181] ESSL ESSL ESMC ESMC ESMC ESMC ESVN ESPT ESAB ESAB ESAB ESAB ESAB ESAB ESAB
## [196] ESAB ESAB ESAB ESAB ESAB ESAB ESAB ESBY ESBY ESBY ESBY ESBY ESBY ESNI ESNI
## [211] ESNI ESNI ESNI ESNI ESNI ESNI ESNI ESNU ESNU ESNU ESNU ESNU ESNU ESIR ESIR
## [226] ESIR ESAG ESAG ESAG ESAG ESAG ESAG ESAG ESAG ESAG ESAG ESAZ ESAZ ESAZ ESAZ
## [241] ESCN ESCN ESCN ESCN ESCT ESCT ESCT ESCT ESCT ESCT ESCT ESCT ESCT ESCT ESCT
## [256] ESCT ESCT ESCT ESCT ESMU ESMU ESMU ESMU ESMU ESMU ESMU ESMU ESMU ESMU ESMU
## [271] ESMU ESMU ESMU ESMU ESMU ESMU ESPP ESPP ESPP ESPP ESPP ESPP ESCH ESCH ESLM
## [286] ESLM ESLM ESLM ESCA ESCA ESCA ESCA ESCA ESAY ESAY ESAY ESAY ESAY ESAY ESAY
## [301] ESAY ESAY SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC SPC
## [316] SPC SPC SPC SPC SPC SPC SPC ESBS ESBS ESBS ESBS ESBS ESBS ESBS ESBS
## [331] ESBS ESBS ESBS ESBS ESBS ESBS ESBE ESBE ESBE ESBE ESBE ESBE ESBE ESBE ESBE
## [346] ESBE ESBE ESBE ESBE ESBE ESBE ESTS ESTS ESTS ESTS ESTS ESTS ESTS ESTS ESTS
## [361] ESTS ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA
## [376] ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESBA ESCP
## [391] ESCP ESCP ESCP ESCP ESCP ESCP ESCP ESCP ESCP ESCP ESCP ESCP ESCP ESCP ESCP
## [406] ESCP ESCP ESCP SPM SPM SPM SPM SPM SPM SPM SPM SPM SPM SPM SPM
## [421] SPM SPM SPM SPM SPM SPM SPM ITB ITB ITB ITB ITB ITB ITB ITB
## [436] ITB ITB ITB ITB ITB ITB ITB ITB ITB ITB ITB ITB ITB ITB ITB
## [451] ITB ITB ITB ITB ITB ITB ITB ITRO ITRO ITRO ITRO ITRO ITRO ITRO ITRO
## [466] ITRO ITRO ITRO ITRO ITRO ITRO ITRO ITRO ITRO ITRO ITRO ITRO ITRO ITRO ITRO
## [481] ITRO ITRO ITRO ITRO ITRO ITRO ITRO ITP ITP ITP ITP ITP ITP ITP ITP
## [496] ITP ITP ITP ITP ITP ITP ITP ITP ITP ITP ITP ITP ITP ITP ITP
## [511] ITP ITP ITP ITP ITP ITP ITP MAL MAL MAL MAL MAL MAL MAL MAL
## [526] MAL MAL MAL MAL MAL MAL MAL MAL MAL MAL MAL MAL MAL MAL MAL
## [541] MAL MAL MAL MAL MAL MAL SLO SLO SLO SLO SLO SLO SLO SLO SLO
## [556] SLO SLO SLO SLO SLO SLO SLO SLO SLO SLO SLO SLO SLO SLO SLO
## [571] SLO SLO SLO SLO SLO SLO CRO CRO CRO CRO CRO CRO CRO CRO CRO
## [586] CRO CRO CRO CRO CRO CRO CRO CRO CRO CRO CRO CRO CRO CRO CRO
## [601] CRO CRO CRO CRO CRO CRO ALD ALD ALD ALD ALD ALD ALD ALD ALD
## [616] ALD ALD ALD ALD ALD ALD ALD ALD ALD ALD ALD ALD ALD ALD ALD
## [631] ALD ALD ALD ALD ALD GRC GRC GRC GRC GRC GRC GRC GRC GRC GRC
## [646] GRC GRC GRC GRC GRC GRC GRC GRC GRC GRC GRC GRC GRC GRC GRC
## [661] GRC GRC GRC GRC GRPA GRPA GRPA GRPA GRPA GRPA GRPA GRPA GRPA GRPA GRPA
## [676] GRPA GRPA GRPA GRPA GRPA GRPA GRPA GRPA GRPA GRPA GRPA GRPA GRPA GRPA GRPA
## [691] GRPA GRPA GRPA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA
## [706] GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA GRA
## [721] GRA GRA GRA GRTA GRTA GRTA GRTA GRTA GRTA GRTA GRTA GRTA GRTA GRTA GRTA
## [736] GRTA GRTA GRTA GRTA GRTA GRTA GRTA GRTA GRTA GRTA GRTA GRTA GRTA GRTA GRTA
## [751] GRTA GRTA GRTA GRKV GRKV GRKV GRKV GRKV GRKV GRKV GRKV GRKV GRKV GRKV GRKV
## [766] GRKV GRKV GRKV GRKV GRKV GRKV GRKV GRKV GRKV GRKV GRKV GRKV GRKV GRKV GRKV
## [781] GRKV GRKV
## 54 Levels: ALD CRO ESAB ESAC ESAG ESAL ESAY ESAZ ESBA ESBE ESBM ESBN ... SPS
Save the genind object
Load the genind object
## NULL
## /// GENIND OBJECT /////////
##
## // 5 individuals; 1 locus; 5 alleles; size: 10.9 Kb
##
## // Basic content
## @tab: 5 x 5 matrix of allele counts
## @loc.n.all: number of alleles per locus (range: 5-5)
## @loc.fac: locus factor for the 5 columns of @tab
## @all.names: list of allele names for each locus
## @ploidy: ploidy of each individual (range: 2-2)
## @type: codom
## @call: .local(x = x, i = i, j = j, drop = drop)
##
## // Optional content
## @pop: population of each individual (group size range: 5-5)
## @strata: a data frame with 1 columns ( pop.southern. )
grp <- find.clusters(microsat_pop_southern, max.n.clust=22)
#retained 150
#Choose the number of clusters (>=2): 20
Save the genind object
Load the genind object
## [1] "Kstat" "stat" "grp" "size"
## [1] 30 6 1 7 1 1 177 3 5 3 14 14 71 27 276 6 21 15 102
## [20] 2
##
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
## ALD 0 0 0 0 0 0 11 0 0 0 0 0 0 0 17 1 0 0 0 0
## CRO 0 0 0 0 0 0 4 0 0 0 0 0 2 0 24 0 0 0 0 0
## ESAB 0 0 0 0 0 0 5 0 0 0 0 0 0 0 9 0 0 0 0 0
## ESAC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0
## ESAG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 6 0
## ESAL 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 5 0
## ESAY 0 0 0 0 0 0 4 0 0 0 0 0 0 0 5 0 0 0 0 0
## ESAZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
## ESBA 0 0 1 0 0 1 4 0 0 2 0 0 3 0 2 0 0 1 14 0
## ESBE 0 0 0 0 0 0 1 0 0 0 0 0 9 0 5 0 0 0 0 0
## ESBM 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0
## ESBN 0 0 0 0 0 0 1 0 0 0 0 0 0 0 5 0 0 0 0 0
## ESBS 0 0 0 0 0 0 3 0 0 0 0 0 1 0 7 0 0 0 3 0
## ESBY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0
## ESCA 3 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
## ESCH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
## ESCN 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## ESCP 0 0 0 0 0 0 0 0 0 0 0 14 1 0 0 0 0 0 4 0
## ESCT 0 0 0 0 1 0 6 0 0 0 0 0 0 0 7 0 0 0 1 0
## ESFU 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0
## ESGD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
## ESIR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
## ESLM 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
## ESLS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
## ESMC 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
## ESMN 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0
## ESMO 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0
## ESMU 8 0 0 0 0 0 1 0 0 0 0 0 0 0 8 0 0 0 0 0
## ESMV 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
## ESNI 4 0 0 0 0 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0
## ESNU 0 0 0 0 0 0 1 0 0 0 0 0 0 0 5 0 0 0 0 0
## ESPP 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4 1 0 0 0 0
## ESPT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
## ESSL 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2
## ESSV 1 0 0 0 0 0 6 1 0 0 0 0 2 0 2 0 0 0 1 0
## ESTM 0 0 0 0 0 0 1 0 0 0 0 0 1 0 12 0 1 0 0 0
## ESTS 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0
## ESVN 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## GRA 0 0 0 0 0 0 22 0 0 0 0 0 0 0 8 0 0 0 0 0
## GRC 0 0 0 0 0 0 21 0 0 0 0 0 0 0 8 0 0 0 0 0
## GRKV 0 0 0 0 0 0 4 0 0 0 0 0 0 0 25 0 0 0 0 0
## GRPA 0 5 0 0 0 0 9 0 5 0 0 0 0 0 9 0 0 0 1 0
## GRTA 0 0 0 0 0 0 4 0 0 0 0 0 0 0 26 0 0 0 0 0
## ITB 1 0 0 0 0 0 16 0 0 0 0 0 1 0 9 0 0 0 3 0
## ITP 0 0 0 6 0 0 1 0 0 0 0 0 0 0 1 2 20 0 0 0
## ITRO 1 0 0 0 0 0 6 0 0 0 0 0 7 0 16 0 0 0 0 0
## MAL 3 0 0 0 0 0 11 0 0 0 0 0 12 0 2 1 0 0 0 0
## POL 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 10 0 0
## POP 0 0 0 0 0 0 2 0 0 1 14 0 0 3 0 0 0 4 36 0
## SLO 1 0 0 0 0 0 10 0 0 0 0 0 1 0 15 1 0 0 2 0
## SPB 0 0 0 0 0 0 2 0 0 0 0 0 6 0 0 0 0 0 3 0
## SPC 0 0 0 0 0 0 2 0 0 0 0 0 11 1 0 0 0 0 6 0
## SPM 0 1 0 0 0 0 0 0 0 0 0 0 6 1 1 0 0 0 10 0
## SPS 0 0 0 0 0 0 3 0 0 0 0 0 5 0 2 0 0 0 0 0
Save the genind object
Load the genind object
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.data.frame(x = as.data.frame(x), grp = ..1)
##
## $n.pca: 150 first PCs of PCA used
## $n.da: 19 discriminant functions saved
## $var (proportion of conserved variance): 0.984
##
## $eig (eigenvalues): 296200 92430 15200 5787 2530 ...
##
## vector length content
## 1 $eig 19 eigenvalues
## 2 $grp 782 prior group assignment
## 3 $prior 20 prior group probabilities
## 4 $assign 782 posterior group assignment
## 5 $pca.cent 179 centring vector of PCA
## 6 $pca.norm 179 scaling vector of PCA
## 7 $pca.eig 163 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 782 150 retained PCs of PCA
## 2 $means 20 150 group means
## 3 $loadings 150 19 loadings of variables
## 4 $ind.coord 782 19 coordinates of individuals (principal components)
## 5 $grp.coord 20 19 coordinates of groups
## 6 $posterior 782 20 posterior membership probabilities
## 7 $pca.loadings 179 150 PCA loadings of original variables
## 8 $var.contr 179 19 contribution of original variables
Cross-validation: The Discriminant Analysis of Principal Components (DAPC) relies on dimension reduction of the data using PCA followed by a linear discriminant analysis. How many PCA axes to retain is often a non-trivial question. Cross validation provides an objective way to decide how many axes to retain: different numbers are tried and the quality of the corresponding DAPC is assessed by cross- validation: DAPC is performed on a training set, typically made of 90% of the observations (comprising 90% of the observations in each subpopulation) , and then used to predict the groups of the 10% of remaining observations. The current method uses the average prediction success per group (result=“groupMean”), or the overall prediction success (result=“overall”). The number of PCs associated with the lowest Mean Squared Error is then retained in the DAPC.
xvalDapc(microsat_pop_southern, populations, n.pca.max = 200, n.da = NULL,
training.set = 0.9, result = c("groupMean", "overall"),
center = TRUE, scale = FALSE,
n.pca=NULL, n.rep = 30, xval.plot = TRUE)
60 first PCs of PCA used 53 discriminant functions saved proportion of conserved variance: 0.617
Run DAPC with object using x-val recommendations
dapc_southern_1 <- dapc(microsat_pop_southern, n.pca = 60, n.da = 53, grp = populations)
dapc_southern_1
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.genind(x = microsat_pop_southern, n.pca = 60, n.da = 53,
## grp = populations)
##
## $n.pca: 60 first PCs of PCA used
## $n.da: 53 discriminant functions saved
## $var (proportion of conserved variance): 0.919
##
## $eig (eigenvalues): 67.04 54.64 32.48 24.74 20.46 ...
##
## vector length content
## 1 $eig 53 eigenvalues
## 2 $grp 782 prior group assignment
## 3 $prior 54 prior group probabilities
## 4 $assign 782 posterior group assignment
## 5 $pca.cent 179 centring vector of PCA
## 6 $pca.norm 179 scaling vector of PCA
## 7 $pca.eig 161 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 782 60 retained PCs of PCA
## 2 $means 54 60 group means
## 3 $loadings 60 53 loadings of variables
## 4 $ind.coord 782 53 coordinates of individuals (principal components)
## 5 $grp.coord 54 53 coordinates of groups
## 6 $posterior 782 54 posterior membership probabilities
## 7 $pca.loadings 179 60 PCA loadings of original variables
## 8 $var.contr 179 53 contribution of original variables
dapc with optimal # of PCs recommended
dapc_southern_2 <- dapc(microsat_pop_southern, n.pca = 25, n.da = 19, grp = populations)
dapc_southern_2
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.genind(x = microsat_pop_southern, n.pca = 25, n.da = 19,
## grp = populations)
##
## $n.pca: 25 first PCs of PCA used
## $n.da: 19 discriminant functions saved
## $var (proportion of conserved variance): 0.684
##
## $eig (eigenvalues): 39.76 17.26 14.35 13.66 9.425 ...
##
## vector length content
## 1 $eig 25 eigenvalues
## 2 $grp 782 prior group assignment
## 3 $prior 54 prior group probabilities
## 4 $assign 782 posterior group assignment
## 5 $pca.cent 179 centring vector of PCA
## 6 $pca.norm 179 scaling vector of PCA
## 7 $pca.eig 161 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 782 25 retained PCs of PCA
## 2 $means 54 25 group means
## 3 $loadings 25 19 loadings of variables
## 4 $ind.coord 782 19 coordinates of individuals (principal components)
## 5 $grp.coord 54 19 coordinates of groups
## 6 $posterior 782 54 posterior membership probabilities
## 7 $pca.loadings 179 25 PCA loadings of original variables
## 8 $var.contr 179 19 contribution of original variables
colors for each pop
myCol8 <- c("#51f310", "#146c45","yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "yellow3", "#a41415", "#a41415", "#a41415", "#a41415", "#a41415", "#2524f9", "#2524f9", "#2524f9", "purple", "#FF7F00", "#FF7F00", "#75d5e1", "yellow3", "yellow3", "yellow3", "yellow3"
)
Plot using different discriminant functions 1 & 2
pdf(file = "output/europe/dapc/microsats/southern/dapc1_microsats_all_southern_PC1_2.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_southern_1, pch = good.shapes, cstar = 0, col=myCol8, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_southern_1, pch = good.shapes, cstar = 0, col=myCol8, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
1 & 3
pdf(file = "output/europe/dapc/microsats/southern/dapc1_microsats_all_southern_PC1_3.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_southern_1, pch = good.shapes, cstar = 0, col=myCol8, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=3)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_southern_1, pch = good.shapes, cstar = 0, col=myCol8, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=3)
1 & 4
pdf(file = "output/europe/dapc/microsats/southern/dapc1_microsats_all_southern_PC1_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_southern_1, pch = good.shapes, cstar = 0, col=myCol8, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=4)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_southern_1, pch = good.shapes, cstar = 0, col=myCol8, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=4)
2 & 4
pdf(file = "output/europe/dapc/microsats/southern/dapc1_microsats_all_southern_PC2_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_southern_1, pch = good.shapes, cstar = 0, col=myCol8, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax=2, yax=4)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_southern_1, pch = good.shapes, cstar = 0, col=myCol8, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax=2, yax=4)
2 & 3
pdf(file = "output/europe/dapc/microsats/southern/dapc1_microsats_all_southern_PC2_3.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_southern_1, pch = good.shapes, cstar = 0, col=myCol8, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax=2, yax=3)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_southern_1, pch = good.shapes, cstar = 0, col=myCol8, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax=2, yax=3)
3 & 4
pdf(file = "output/europe/dapc/microsats/southern/dapc1_microsats_all_southern_PC3_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.5)
scatter(dapc_southern_1, pch = good.shapes, cstar = 0, col=myCol8, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax=3, yax=4)
dev.off()
op <- par(cex = 0.5)
scatter(dapc_southern_1, pch = good.shapes, cstar = 0, col=myCol8, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax=3, yax=4)
Load .gen file with microsat data from all individuals
europe_over <- read.genepop("output/europe/dapc/microsats/overlap/for_fst_albo_microsat_overlap.gen", ncode=3L)
##
## Converting data from a Genepop .gen file to a genind object...
##
##
## File description: ARBOMONITOR_Aedes_albopictus
##
## ...done.
## /// GENIND OBJECT /////////
##
## // 637 individuals; 11 loci; 163 alleles; size: 486.7 Kb
##
## // Basic content
## @tab: 637 x 163 matrix of allele counts
## @loc.n.all: number of alleles per locus (range: 6-22)
## @loc.fac: locus factor for the 163 columns of @tab
## @all.names: list of allele names for each locus
## @ploidy: ploidy of each individual (range: 2-2)
## @type: codom
## @call: read.genepop(file = "output/europe/dapc/microsats/overlap/for_fst_albo_microsat_overlap.gen",
## ncode = 3L)
##
## // Optional content
## @pop: population of each individual (group size range: 5-60)
## [1] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [7] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [13] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [19] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [25] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [31] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [37] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [43] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [49] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [55] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## [61] SPB-ESBD11 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11
## [67] SPB-ESBD11 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11 SPB-ESBD11 BUL-BULO34
## [73] BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34
## [79] BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34
## [85] BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34
## [91] BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34
## [97] BUL-BULO34 BUL-BULO34 BUL-BULO34 BUL-BULO34 ROS-ROSM30 ROS-ROSM30
## [103] ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30
## [109] ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30
## [115] ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30
## [121] ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30
## [127] ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 ROS-ROSM30 SOC-RUSO10 SOC-RUSO10
## [133] SOC-RUSO10 SOC-RUSO10 SOC-RUSO10 SOC-RUSO10 SOC-RUSO10 SOC-RUSO10
## [139] SOC-RUSO10 SOC-RUSO10 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30
## [145] SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30
## [151] SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30
## [157] SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30
## [163] SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30 SER-SRNO30
## [169] SER-SRNO30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30
## [175] TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30
## [181] TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30
## [187] TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30
## [193] TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30 TUA-TRLG30
## [199] TUA-TRLG30 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29
## [205] TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29
## [211] TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29
## [217] TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29
## [223] TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29 TUH-TRHO29
## [229] ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30
## [235] ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30
## [241] ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30
## [247] ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30
## [253] ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 ALD-ALDU30 CRO-CRPL30
## [259] CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30
## [265] CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30
## [271] CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30
## [277] CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30
## [283] CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 CRO-CRPL30 GRC-GRCC25
## [289] GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25
## [295] GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25
## [301] GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25
## [307] GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25
## [313] GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRC-GRCC25 GRA-GRAN08 GRA-GRAN08
## [319] GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08
## [325] GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08
## [331] GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08
## [337] GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08
## [343] GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 GRA-GRAN08 ITP-ITVL09 ITP-ITVL09
## [349] ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09
## [355] ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09
## [361] ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09
## [367] ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09
## [373] ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITP-ITVL09 ITR-ITRO17 ITR-ITRO17
## [379] ITR-ITRO17 ITR-ITRO17 ITR-ITRO17 ITR-ITRO17 ITR-ITRO17 ITR-ITRO17
## [385] ITR-ITRO17 ITR-ITRO17 ITR-ITRO17 ITR-ITRO17 ITR-ITRO17 ITR-ITRO17
## [391] ITR-ITRO17 ITR-ITRO17 ITR-ITRO17 ITR-ITRO17 ITR-ITRO17 ITR-ITRO17
## [397] ITR-ITRO17 ITR-ITRO17 ITR-ITRO17 ITR-ITRO17 ITR-ITRO17 ITR-ITRO17
## [403] ITR-ITRO17 ITR-ITRO17 ITR-ITRO17 ITR-ITRO17 ITB-ITBO15 ITB-ITBO15
## [409] ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15
## [415] ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15
## [421] ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15
## [427] ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15
## [433] ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 ITB-ITBO15 MAL-MTLU39 MAL-MTLU39
## [439] MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39
## [445] MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39
## [451] MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39
## [457] MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 MAL-MTLU39
## [463] MAL-MTLU39 MAL-MTLU39 MAL-MTLU39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39
## [469] SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39
## [475] SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39
## [481] SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39
## [487] SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SLO-SLGO39
## [493] SLO-SLGO39 SLO-SLGO39 SLO-SLGO39 SPS-ESUP10 SPS-ESUP10 SPS-ESUP10
## [499] SPS-ESUP10 SPS-ESUP10 SPS-ESUP10 SPS-ESUP10 SPS-ESUP10 SPS-ESUP10
## [505] SPS-ESUP10 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20
## [511] SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20
## [517] SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPC-ESVL20
## [523] SPC-ESVL20 SPC-ESVL20 SPC-ESVL20 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19
## [529] SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19
## [535] SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19
## [541] SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 SPM-ESMG19 FRS-FRMH45 FRS-FRMH45
## [547] FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45
## [553] FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45
## [559] FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45
## [565] FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45
## [571] FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 FRS-FRMH45 STS-FRST30 STS-FRST30
## [577] STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30
## [583] STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30
## [589] STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30
## [595] STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30
## [601] STS-FRST30 STS-FRST30 STS-FRST30 STS-FRST30 GES-ABSU05 GES-ABSU05
## [607] GES-ABSU05 GES-ABSU05 GES-ABSU05 BAR-ESBA28 BAR-ESBA28 BAR-ESBA28
## [613] BAR-ESBA28 BAR-ESBA28 BAR-ESBA28 BAR-ESBA28 BAR-ESBA28 BAR-ESBA28
## [619] BAR-ESBA28 BAR-ESBA28 BAR-ESBA28 BAR-ESBA28 BAR-ESBA28 BAR-ESBA28
## [625] BAR-ESBA28 BAR-ESBA28 BAR-ESBA28 BAR-ESBA28 BAR-ESBA28 BAR-ESBA28
## [631] BAR-ESBA28 BAR-ESBA28 BAR-ESBA28 BAR-ESBA28 BAR-ESBA28 BAR-ESBA28
## [637] BAR-ESBA28
## 24 Levels: POP-PTPN60 SPB-ESBD11 BUL-BULO34 ROS-ROSM30 ... BAR-ESBA28
covert it to genind format
## [1] 637
## [1] 11
## [1] 24
## [1] "POP-PTPN01" "POP-PTPN02" "POP-PTPN03" "POP-PTPN04" "POP-PTPN05"
## [6] "POP-PTPN06" "POP-PTPN07" "POP-PTPN08" "POP-PTPN09" "POP-PTPN10"
## [11] "POP-PTPN11" "POP-PTPN12" "POP-PTPN13" "POP-PTPN14" "POP-PTPN15"
## [16] "POP-PTPN16" "POP-PTPN17" "POP-PTPN18" "POP-PTPN19" "POP-PTPN20"
## [21] "POP-PTPN21" "POP-PTPN22" "POP-PTPN23" "POP-PTPN24" "POP-PTPN25"
## [26] "POP-PTPN26" "POP-PTPN27" "POP-PTPN28" "POP-PTPN29" "POP-PTPN30"
## [31] "POP-PTPN31" "POP-PTPN32" "POP-PTPN33" "POP-PTPN34" "POP-PTPN35"
## [36] "POP-PTPN36" "POP-PTPN37" "POP-PTPN38" "POP-PTPN39" "POP-PTPN40"
## [41] "POP-PTPN41" "POP-PTPN42" "POP-PTPN43" "POP-PTPN44" "POP-PTPN45"
## [46] "POP-PTPN46" "POP-PTPN47" "POP-PTPN48" "POP-PTPN49" "POP-PTPN50"
## [51] "POP-PTPN51" "POP-PTPN52" "POP-PTPN53" "POP-PTPN54" "POP-PTPN55"
## [56] "POP-PTPN56" "POP-PTPN57" "POP-PTPN58" "POP-PTPN59" "POP-PTPN60"
## [61] "SPB-ESBD01" "SPB-ESBD02" "SPB-ESBD03" "SPB-ESBD04" "SPB-ESBD05"
## [66] "SPB-ESBD06" "SPB-ESBD07" "SPB-ESBD08" "SPB-ESBD09" "SPB-ESBD10"
## [71] "SPB-ESBD11" "BUL-BULO01" "BUL-BULO02" "BUL-BULO03" "BUL-BULO04"
## [76] "BUL-BULO05" "BUL-BULO06" "BUL-BULO07" "BUL-BULO08" "BUL-BULO09"
## [81] "BUL-BULO10" "BUL-BULO11" "BUL-BULO12" "BUL-BULO13" "BUL-BULO14"
## [86] "BUL-BULO15" "BUL-BULO16" "BUL-BULO17" "BUL-BULO18" "BUL-BULO20"
## [91] "BUL-BULO25" "BUL-BULO26" "BUL-BULO27" "BUL-BULO28" "BUL-BULO29"
## [96] "BUL-BULO30" "BUL-BULO31" "BUL-BULO32" "BUL-BULO33" "BUL-BULO34"
## [101] "ROS-ROSM01" "ROS-ROSM02" "ROS-ROSM03" "ROS-ROSM04" "ROS-ROSM05"
## [106] "ROS-ROSM06" "ROS-ROSM07" "ROS-ROSM08" "ROS-ROSM09" "ROS-ROSM10"
## [111] "ROS-ROSM11" "ROS-ROSM12" "ROS-ROSM13" "ROS-ROSM14" "ROS-ROSM15"
## [116] "ROS-ROSM16" "ROS-ROSM17" "ROS-ROSM18" "ROS-ROSM19" "ROS-ROSM20"
## [121] "ROS-ROSM21" "ROS-ROSM22" "ROS-ROSM23" "ROS-ROSM24" "ROS-ROSM25"
## [126] "ROS-ROSM26" "ROS-ROSM27" "ROS-ROSM28" "ROS-ROSM29" "ROS-ROSM30"
## [131] "SOC-RUSO01" "SOC-RUSO02" "SOC-RUSO03" "SOC-RUSO04" "SOC-RUSO05"
## [136] "SOC-RUSO06" "SOC-RUSO07" "SOC-RUSO08" "SOC-RUSO09" "SOC-RUSO10"
## [141] "SER-SRNO01" "SER-SRNO02" "SER-SRNO03" "SER-SRNO04" "SER-SRNO05"
## [146] "SER-SRNO06" "SER-SRNO07" "SER-SRNO08" "SER-SRNO09" "SER-SRNO10"
## [151] "SER-SRNO11" "SER-SRNO12" "SER-SRNO14" "SER-SRNO15" "SER-SRNO16"
## [156] "SER-SRNO17" "SER-SRNO18" "SER-SRNO19" "SER-SRNO20" "SER-SRNO21"
## [161] "SER-SRNO22" "SER-SRNO23" "SER-SRNO24" "SER-SRNO25" "SER-SRNO26"
## [166] "SER-SRNO27" "SER-SRNO28" "SER-SRNO29" "SER-SRNO30" "TUA-TRLG01"
## [171] "TUA-TRLG02" "TUA-TRLG03" "TUA-TRLG04" "TUA-TRLG05" "TUA-TRLG06"
## [176] "TUA-TRLG07" "TUA-TRLG08" "TUA-TRLG09" "TUA-TRLG10" "TUA-TRLG11"
## [181] "TUA-TRLG12" "TUA-TRLG13" "TUA-TRLG14" "TUA-TRLG15" "TUA-TRLG16"
## [186] "TUA-TRLG17" "TUA-TRLG18" "TUA-TRLG19" "TUA-TRLG20" "TUA-TRLG21"
## [191] "TUA-TRLG22" "TUA-TRLG23" "TUA-TRLG24" "TUA-TRLG25" "TUA-TRLG26"
## [196] "TUA-TRLG27" "TUA-TRLG28" "TUA-TRLG29" "TUA-TRLG30" "TUH-TRHO01"
## [201] "TUH-TRHO02" "TUH-TRHO03" "TUH-TRHO04" "TUH-TRHO05" "TUH-TRHO06"
## [206] "TUH-TRHO07" "TUH-TRHO08" "TUH-TRHO09" "TUH-TRHO10" "TUH-TRHO11"
## [211] "TUH-TRHO12" "TUH-TRHO13" "TUH-TRHO14" "TUH-TRHO15" "TUH-TRHO16"
## [216] "TUH-TRHO17" "TUH-TRHO18" "TUH-TRHO19" "TUH-TRHO20" "TUH-TRHO21"
## [221] "TUH-TRHO22" "TUH-TRHO23" "TUH-TRHO24" "TUH-TRHO25" "TUH-TRHO26"
## [226] "TUH-TRHO27" "TUH-TRHO28" "TUH-TRHO29" "ALD-ALDU01" "ALD-ALDU02"
## [231] "ALD-ALDU03" "ALD-ALDU04" "ALD-ALDU05" "ALD-ALDU06" "ALD-ALDU07"
## [236] "ALD-ALDU08" "ALD-ALDU09" "ALD-ALDU10" "ALD-ALDU11" "ALD-ALDU12"
## [241] "ALD-ALDU13" "ALD-ALDU14" "ALD-ALDU15" "ALD-ALDU16" "ALD-ALDU17"
## [246] "ALD-ALDU18" "ALD-ALDU19" "ALD-ALDU20" "ALD-ALDU21" "ALD-ALDU22"
## [251] "ALD-ALDU23" "ALD-ALDU25" "ALD-ALDU26" "ALD-ALDU27" "ALD-ALDU28"
## [256] "ALD-ALDU29" "ALD-ALDU30" "CRO-CRPL01" "CRO-CRPL02" "CRO-CRPL03"
## [261] "CRO-CRPL04" "CRO-CRPL05" "CRO-CRPL06" "CRO-CRPL07" "CRO-CRPL08"
## [266] "CRO-CRPL09" "CRO-CRPL10" "CRO-CRPL11" "CRO-CRPL12" "CRO-CRPL13"
## [271] "CRO-CRPL14" "CRO-CRPL15" "CRO-CRPL16" "CRO-CRPL17" "CRO-CRPL18"
## [276] "CRO-CRPL19" "CRO-CRPL20" "CRO-CRPL21" "CRO-CRPL22" "CRO-CRPL23"
## [281] "CRO-CRPL24" "CRO-CRPL25" "CRO-CRPL26" "CRO-CRPL27" "CRO-CRPL28"
## [286] "CRO-CRPL29" "CRO-CRPL30" "GRC-GRCA01" "GRC-GRCA02" "GRC-GRCA03"
## [291] "GRC-GRCA04" "GRC-GRCA05" "GRC-GRCC01" "GRC-GRCC02" "GRC-GRCC03"
## [296] "GRC-GRCC04" "GRC-GRCC05" "GRC-GRCC06" "GRC-GRCC08" "GRC-GRCC09"
## [301] "GRC-GRCC10" "GRC-GRCC11" "GRC-GRCC12" "GRC-GRCC13" "GRC-GRCC14"
## [306] "GRC-GRCC15" "GRC-GRCC16" "GRC-GRCC17" "GRC-GRCC18" "GRC-GRCC19"
## [311] "GRC-GRCC20" "GRC-GRCC21" "GRC-GRCC22" "GRC-GRCC23" "GRC-GRCC24"
## [316] "GRC-GRCC25" "GRA-GRAA01" "GRA-GRAA02" "GRA-GRAA03" "GRA-GRAA04"
## [321] "GRA-GRAA05" "GRA-GRAA06" "GRA-GRAA07" "GRA-GRAA08" "GRA-GRAE01"
## [326] "GRA-GRAE02" "GRA-GRAE03" "GRA-GRAE04" "GRA-GRAE05" "GRA-GRAE06"
## [331] "GRA-GRAE07" "GRA-GRAE08" "GRA-GRAH01" "GRA-GRAH02" "GRA-GRAH05"
## [336] "GRA-GRAH06" "GRA-GRAH07" "GRA-GRAI01" "GRA-GRAN01" "GRA-GRAN02"
## [341] "GRA-GRAN03" "GRA-GRAN04" "GRA-GRAN05" "GRA-GRAN06" "GRA-GRAN07"
## [346] "GRA-GRAN08" "ITP-ITBR01" "ITP-ITBR02" "ITP-ITBR03" "ITP-ITBR04"
## [351] "ITP-ITBR05" "ITP-ITBR06" "ITP-ITBR07" "ITP-ITBR08" "ITP-ITBR09"
## [356] "ITP-ITBR10" "ITP-ITBR11" "ITP-ITBR12" "ITP-ITBR13" "ITP-ITBR14"
## [361] "ITP-ITBR15" "ITP-ITBR16" "ITP-ITBR17" "ITP-ITBR18" "ITP-ITBR19"
## [366] "ITP-ITBR20" "ITP-ITBR21" "ITP-ITVL01" "ITP-ITVL02" "ITP-ITVL03"
## [371] "ITP-ITVL04" "ITP-ITVL05" "ITP-ITVL06" "ITP-ITVL07" "ITP-ITVL08"
## [376] "ITP-ITVL09" "ITR-ITRM01" "ITR-ITRM02" "ITR-ITRM03" "ITR-ITRM04"
## [381] "ITR-ITRM05" "ITR-ITRM06" "ITR-ITRM07" "ITR-ITRM08" "ITR-ITRM09"
## [386] "ITR-ITRM10" "ITR-ITRM11" "ITR-ITRM12" "ITR-ITRM13" "ITR-ITRO01"
## [391] "ITR-ITRO02" "ITR-ITRO03" "ITR-ITRO04" "ITR-ITRO05" "ITR-ITRO06"
## [396] "ITR-ITRO07" "ITR-ITRO08" "ITR-ITRO09" "ITR-ITRO10" "ITR-ITRO11"
## [401] "ITR-ITRO12" "ITR-ITRO13" "ITR-ITRO14" "ITR-ITRO15" "ITR-ITRO16"
## [406] "ITR-ITRO17" "ITB-ITBL01" "ITB-ITBL02" "ITB-ITBL03" "ITB-ITBL04"
## [411] "ITB-ITBL05" "ITB-ITBL06" "ITB-ITBL07" "ITB-ITBL08" "ITB-ITBL09"
## [416] "ITB-ITBL10" "ITB-ITBL11" "ITB-ITBL12" "ITB-ITBL13" "ITB-ITBL14"
## [421] "ITB-ITBL15" "ITB-ITBO01" "ITB-ITBO02" "ITB-ITBO03" "ITB-ITBO04"
## [426] "ITB-ITBO05" "ITB-ITBO06" "ITB-ITBO07" "ITB-ITBO08" "ITB-ITBO09"
## [431] "ITB-ITBO10" "ITB-ITBO11" "ITB-ITBO12" "ITB-ITBO13" "ITB-ITBO14"
## [436] "ITB-ITBO15" "MAL-MTLU01" "MAL-MTLU02" "MAL-MTLU03" "MAL-MTLU04"
## [441] "MAL-MTLU05" "MAL-MTLU06" "MAL-MTLU07" "MAL-MTLU08" "MAL-MTLU09"
## [446] "MAL-MTLU10" "MAL-MTLU11" "MAL-MTLU12" "MAL-MTLU13" "MAL-MTLU14"
## [451] "MAL-MTLU15" "MAL-MTLU16" "MAL-MTLU17" "MAL-MTLU18" "MAL-MTLU19"
## [456] "MAL-MTLU20" "MAL-MTLU31" "MAL-MTLU32" "MAL-MTLU33" "MAL-MTLU34"
## [461] "MAL-MTLU35" "MAL-MTLU36" "MAL-MTLU37" "MAL-MTLU38" "MAL-MTLU39"
## [466] "SLO-SLGO01" "SLO-SLGO02" "SLO-SLGO03" "SLO-SLGO04" "SLO-SLGO05"
## [471] "SLO-SLGO06" "SLO-SLGO07" "SLO-SLGO08" "SLO-SLGO09" "SLO-SLGO10"
## [476] "SLO-SLGO11" "SLO-SLGO12" "SLO-SLGO13" "SLO-SLGO14" "SLO-SLGO15"
## [481] "SLO-SLGO25" "SLO-SLGO26" "SLO-SLGO27" "SLO-SLGO28" "SLO-SLGO29"
## [486] "SLO-SLGO30" "SLO-SLGO31" "SLO-SLGO32" "SLO-SLGO33" "SLO-SLGO34"
## [491] "SLO-SLGO35" "SLO-SLGO36" "SLO-SLGO37" "SLO-SLGO38" "SLO-SLGO39"
## [496] "SPS-ESUP01" "SPS-ESUP02" "SPS-ESUP03" "SPS-ESUP04" "SPS-ESUP05"
## [501] "SPS-ESUP06" "SPS-ESUP07" "SPS-ESUP08" "SPS-ESUP09" "SPS-ESUP10"
## [506] "SPC-ESVL01" "SPC-ESVL02" "SPC-ESVL03" "SPC-ESVL04" "SPC-ESVL05"
## [511] "SPC-ESVL06" "SPC-ESVL07" "SPC-ESVL08" "SPC-ESVL09" "SPC-ESVL10"
## [516] "SPC-ESVL11" "SPC-ESVL12" "SPC-ESVL13" "SPC-ESVL14" "SPC-ESVL15"
## [521] "SPC-ESVL16" "SPC-ESVL17" "SPC-ESVL18" "SPC-ESVL19" "SPC-ESVL20"
## [526] "SPM-ESMG01" "SPM-ESMG02" "SPM-ESMG03" "SPM-ESMG04" "SPM-ESMG05"
## [531] "SPM-ESMG06" "SPM-ESMG07" "SPM-ESMG08" "SPM-ESMG09" "SPM-ESMG10"
## [536] "SPM-ESMG11" "SPM-ESMG12" "SPM-ESMG13" "SPM-ESMG14" "SPM-ESMG15"
## [541] "SPM-ESMG16" "SPM-ESMG17" "SPM-ESMG18" "SPM-ESMG19" "FRS-FRMH01"
## [546] "FRS-FRMH02" "FRS-FRMH03" "FRS-FRMH04" "FRS-FRMH05" "FRS-FRMH06"
## [551] "FRS-FRMH07" "FRS-FRMH08" "FRS-FRMH09" "FRS-FRMH10" "FRS-FRMH11"
## [556] "FRS-FRMH12" "FRS-FRMH13" "FRS-FRMH14" "FRS-FRMH15" "FRS-FRMH16"
## [561] "FRS-FRMH17" "FRS-FRMH18" "FRS-FRMH19" "FRS-FRMH20" "FRS-FRMH36"
## [566] "FRS-FRMH37" "FRS-FRMH38" "FRS-FRMH39" "FRS-FRMH40" "FRS-FRMH41"
## [571] "FRS-FRMH42" "FRS-FRMH43" "FRS-FRMH44" "FRS-FRMH45" "STS-FRST01"
## [576] "STS-FRST02" "STS-FRST03" "STS-FRST04" "STS-FRST05" "STS-FRST06"
## [581] "STS-FRST07" "STS-FRST08" "STS-FRST09" "STS-FRST10" "STS-FRST11"
## [586] "STS-FRST12" "STS-FRST13" "STS-FRST14" "STS-FRST15" "STS-FRST16"
## [591] "STS-FRST17" "STS-FRST18" "STS-FRST19" "STS-FRST20" "STS-FRST21"
## [596] "STS-FRST22" "STS-FRST23" "STS-FRST24" "STS-FRST25" "STS-FRST26"
## [601] "STS-FRST27" "STS-FRST28" "STS-FRST29" "STS-FRST30" "GES-ABSU01"
## [606] "GES-ABSU02" "GES-ABSU03" "GES-ABSU04" "GES-ABSU05" "BAR-ESBA01"
## [611] "BAR-ESBA02" "BAR-ESBA03" "BAR-ESBA04" "BAR-ESBA05" "BAR-ESBA06"
## [616] "BAR-ESBA07" "BAR-ESBA08" "BAR-ESBA09" "BAR-ESBA10" "BAR-ESBA11"
## [621] "BAR-ESBA12" "BAR-ESBA13" "BAR-ESBA14" "BAR-ESBA15" "BAR-ESBA16"
## [626] "BAR-ESBA17" "BAR-ESBA18" "BAR-ESBA19" "BAR-ESBA20" "BAR-ESBA21"
## [631] "BAR-ESBA22" "BAR-ESBA23" "BAR-ESBA24" "BAR-ESBA25" "BAR-ESBA26"
## [636] "BAR-ESBA27" "BAR-ESBA28"
Save it as rds
To load it
europe_over <- readRDS(
here(
"output/europe/dapc/microsats/overlap/microsats_europe_overlap.rds"
)
)
## [1] POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60 POP-PTPN60
## 24 Levels: POP-PTPN60 SPB-ESBD11 BUL-BULO34 ROS-ROSM30 ... BAR-ESBA28
Import sample data Load the csv
sampling_loc <- read.csv(here("output/europe/dapc/microsats/overlap/sampling_loc_euro_microsats_overlap.csv"))
sampling_loc <- as.data.frame(sampling_loc)
head(sampling_loc)
## Pop_City Country Latitude Longitude Continent Abbreviation Year
## 1 Saint-Martin-d'Heres France 45.18230 5.774900 Europe FRS 2019
## 2 Strasbourg France 48.59772 7.749702 Europe STS 2019
## 3 Penafiel Portugal 41.18555 -8.329371 Europe POP 2017
## 4 Loule Portugal 37.09084 -8.092465 Europe POL 2017
## 5 Badajoz Spain 38.86622 -6.974194 Europe SPB 2018
## 6 San Roque Spain 36.30058 -5.269380 Europe SPS 2017
## Region_old Subregion order order2 orderold order_microsat microsats
## 1 Western Europe West Europe 9 1 1 1 yes
## 2 Western Europe West Europe 10 2 2 2 yes
## 3 Southern Europe West Europe 11 3 3 3 yes
## 4 Southern Europe West Europe 12 4 4 4 yes
## 5 Southern Europe West Europe 13 5 5 6 yes
## 6 Southern Europe West Europe 14 6 6 10 yes
## microsat_code alt_code X Country.1 Region mean_fst SNP_data
## 1 FRS FRMH NA France Western Europe 0.13952119 Yes
## 2 STS FRST NA France Western Europe 0.09768391 Yes
## 3 POP PTPN NA Portugal Southern Europe 0.13113621 Yes
## 4 POL PTQT NA Portugal Southern Europe 0.30865389 Yes
## 5 SPB ESBD NA Spain Southern Europe 0.14455414 Yes
## 6 SPS ESUP NA Spain Southern Europe 0.16472052 Yes
Save it as rds
saveRDS(
sampling_loc, here(
"output/europe/dapc/microsats/overlap/sampling_loc_euro_microsats_overlap.rds"
)
)
To load it
sampling_loc <- readRDS(here("output/europe/dapc/microsats/overlap/sampling_loc_euro_microsats_overlap.rds"))
head(sampling_loc)
## Pop_City Country Latitude Longitude Continent Abbreviation Year
## 1 Saint-Martin-d'Heres France 45.18230 5.774900 Europe FRS 2019
## 2 Strasbourg France 48.59772 7.749702 Europe STS 2019
## 3 Penafiel Portugal 41.18555 -8.329371 Europe POP 2017
## 4 Loule Portugal 37.09084 -8.092465 Europe POL 2017
## 5 Badajoz Spain 38.86622 -6.974194 Europe SPB 2018
## 6 San Roque Spain 36.30058 -5.269380 Europe SPS 2017
## Region_old Subregion order order2 orderold order_microsat microsats
## 1 Western Europe West Europe 9 1 1 1 yes
## 2 Western Europe West Europe 10 2 2 2 yes
## 3 Southern Europe West Europe 11 3 3 3 yes
## 4 Southern Europe West Europe 12 4 4 4 yes
## 5 Southern Europe West Europe 13 5 5 6 yes
## 6 Southern Europe West Europe 14 6 6 10 yes
## microsat_code alt_code X Country.1 Region mean_fst SNP_data
## 1 FRS FRMH NA France Western Europe 0.13952119 Yes
## 2 STS FRST NA France Western Europe 0.09768391 Yes
## 3 POP PTPN NA Portugal Southern Europe 0.13113621 Yes
## 4 POL PTQT NA Portugal Southern Europe 0.30865389 Yes
## 5 SPB ESBD NA Spain Southern Europe 0.14455414 Yes
## 6 SPS ESUP NA Spain Southern Europe 0.16472052 Yes
Load the csv
countr <- read.csv(here("output/europe/dapc/microsats/overlap/DAPC_countries_microsats_overlap.csv"
))
df <- as.data.frame(countr)
head(df)
## pop country
## 1 POP Portugal
## 2 POP Portugal
## 3 POP Portugal
## 4 POP Portugal
## 5 POP Portugal
## 6 POP Portugal
## [1] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [9] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [17] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [25] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [33] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [41] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [49] Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [57] Portugal Portugal Portugal Portugal Spain Spain Spain Spain
## [65] Spain Spain Spain Spain Spain Spain Spain Spain
## [73] Spain Spain Spain Spain Spain Spain Spain Spain
## [81] Spain Spain Spain Spain Spain Spain Spain Spain
## [89] Spain Spain Spain Spain Spain Spain Spain Spain
## [97] Spain Spain Spain Spain Spain Spain Spain Spain
## [105] Spain Spain Spain Spain Spain Spain Spain Spain
## [113] Spain Spain Spain Spain Spain Spain Spain Spain
## [121] Spain Spain Spain Spain Spain Spain Spain Spain
## [129] Spain Spain Spain Spain Spain Spain Spain Spain
## [137] Spain Spain Spain Spain Spain Spain Spain Spain
## [145] Spain Spain Spain Spain France France France France
## [153] France France France France France France France France
## [161] France France France France France France France France
## [169] France France France France France France France France
## [177] France France France France France France France France
## [185] France France France France France France France France
## [193] France France France France France France France France
## [201] France France France France France France France France
## [209] Italy Italy Italy Italy Italy Italy Italy Italy
## [217] Italy Italy Italy Italy Italy Italy Italy Italy
## [225] Italy Italy Italy Italy Italy Italy Italy Italy
## [233] Italy Italy Italy Italy Italy Italy Italy Italy
## [241] Italy Italy Italy Italy Italy Italy Italy Italy
## [249] Italy Italy Italy Italy Italy Italy Italy Italy
## [257] Italy Italy Italy Italy Italy Italy Italy Italy
## [265] Italy Italy Italy Italy Slovenia Slovenia Slovenia Slovenia
## [273] Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia
## [281] Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia
## [289] Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia
## [297] Slovenia Slovenia Malta Malta Malta Malta Malta Malta
## [305] Malta Malta Malta Malta Malta Malta Malta Malta
## [313] Malta Malta Malta Malta Malta Malta Malta Malta
## [321] Malta Malta Malta Malta Malta Malta Malta Italy
## [329] Italy Italy Italy Italy Italy Italy Italy Italy
## [337] Italy Italy Italy Italy Italy Italy Italy Italy
## [345] Italy Italy Italy Italy Italy Italy Italy Italy
## [353] Italy Italy Italy Italy Italy Croatia Croatia Croatia
## [361] Croatia Croatia Croatia Croatia Croatia Croatia Croatia Croatia
## [369] Croatia Croatia Croatia Croatia Croatia Croatia Croatia Croatia
## [377] Croatia Croatia Croatia Croatia Croatia Croatia Croatia Croatia
## [385] Croatia Croatia Croatia Albania Albania Albania Albania Albania
## [393] Albania Albania Albania Albania Albania Albania Albania Albania
## [401] Albania Albania Albania Albania Albania Albania Albania Albania
## [409] Albania Albania Albania Albania Albania Albania Albania Albania
## [417] Serbia Serbia Serbia Serbia Serbia Serbia Serbia Serbia
## [425] Serbia Serbia Serbia Serbia Serbia Serbia Serbia Serbia
## [433] Serbia Serbia Serbia Serbia Serbia Serbia Serbia Serbia
## [441] Serbia Serbia Serbia Serbia Serbia Romania Romania Romania
## [449] Romania Romania Romania Romania Romania Romania Romania Romania
## [457] Romania Romania Romania Romania Romania Romania Romania Romania
## [465] Romania Romania Romania Romania Romania Romania Romania Romania
## [473] Romania Romania Romania Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria
## [481] Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria
## [489] Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria
## [497] Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria
## [505] Greece Greece Greece Greece Greece Greece Greece Greece
## [513] Greece Greece Greece Greece Greece Greece Greece Greece
## [521] Greece Greece Greece Greece Greece Greece Greece Greece
## [529] Greece Greece Greece Greece Greece Greece Greece Greece
## [537] Greece Greece Greece Greece Greece Greece Greece Greece
## [545] Greece Greece Greece Greece Greece Greece Greece Greece
## [553] Greece Greece Greece Greece Greece Greece Greece Greece
## [561] Greece Greece Greece Turkey Turkey Turkey Turkey Turkey
## [569] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [577] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [585] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [593] Turkey Russia Russia Russia Russia Russia Russia Russia
## [601] Russia Russia Russia Georgia Georgia Georgia Georgia Georgia
## [609] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [617] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [625] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [633] Turkey Turkey Turkey Turkey Turkey
## 15 Levels: Albania Bulgaria Croatia France Georgia Greece Italy ... Turkey
Save the genind object
Load the genind object
## [1] "matrix" "array"
## [1] 637 163
## MIC2.180 MIC2.183 MIC2.186 MIC2.181 MIC2.184
## POP-PTPN01 5.4187592 6.2295646 -0.06927959 -1.057301 -1.475692
## POP-PTPN02 5.4187592 6.2295646 -0.06927959 -1.057301 -1.475692
## POP-PTPN03 5.4187592 6.2295646 -0.06927959 -1.057301 -1.475692
## POP-PTPN04 -0.1317364 12.5797014 -0.06927959 -1.057301 -1.475692
## POP-PTPN05 10.9692548 -0.1205722 -0.06927959 -1.057301 -1.475692
grp <- find.clusters(microsat_country, max.n.clust=20)
#retained 150
#Choose the number of clusters (>=2): 7
Save the genind object
Load the genind object
## [1] "Kstat" "stat" "grp" "size"
## [1] 1 257 34 80 178 7 80
##
## 1 2 3 4 5 6 7
## Albania 0 20 0 0 4 0 5
## Bulgaria 0 18 0 0 4 0 7
## Croatia 0 13 0 17 0 0 0
## France 0 3 0 14 24 0 19
## Georgia 0 5 0 0 0 0 0
## Greece 0 8 16 14 20 0 1
## Italy 0 47 0 24 11 0 8
## Malta 0 28 0 0 0 0 1
## Portugal 0 1 2 0 54 3 0
## Romania 0 17 0 0 5 0 8
## Russia 0 5 0 0 3 0 2
## Serbia 0 18 0 0 3 0 8
## Slovenia 0 28 0 0 1 0 1
## Spain 0 32 6 0 34 0 16
## Turkey 1 14 10 11 15 4 4
Save the genind object
Load the genind object
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.data.frame(x = as.data.frame(x), grp = ..1)
##
## $n.pca: 150 first PCs of PCA used
## $n.da: 6 discriminant functions saved
## $var (proportion of conserved variance): 1
##
## $eig (eigenvalues): 11240000 2627 1750 510.6 318.2 ...
##
## vector length content
## 1 $eig 6 eigenvalues
## 2 $grp 637 prior group assignment
## 3 $prior 7 prior group probabilities
## 4 $assign 637 posterior group assignment
## 5 $pca.cent 163 centring vector of PCA
## 6 $pca.norm 163 scaling vector of PCA
## 7 $pca.eig 150 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 637 150 retained PCs of PCA
## 2 $means 7 150 group means
## 3 $loadings 150 6 loadings of variables
## 4 $ind.coord 637 6 coordinates of individuals (principal components)
## 5 $grp.coord 7 6 coordinates of groups
## 6 $posterior 637 7 posterior membership probabilities
## 7 $pca.loadings 163 150 PCA loadings of original variables
## 8 $var.contr 163 6 contribution of original variables
Cross-validation: The Discriminant Analysis of Principal Components (DAPC) relies on dimension reduction of the data using PCA followed by a linear discriminant analysis. How many PCA axes to retain is often a non-trivial question. Cross validation provides an objective way to decide how many axes to retain: different numbers are tried and the quality of the corresponding DAPC is assessed by cross- validation: DAPC is performed on a training set, typically made of 90% of the observations (comprising 90% of the observations in each subpopulation) , and then used to predict the groups of the 10% of remaining observations. The current method uses the average prediction success per group (result=“groupMean”), or the overall prediction success (result=“overall”). The number of PCs associated with the lowest Mean Squared Error is then retained in the DAPC.
xvalDapc(microsat_country, populations, n.pca.max = 200, n.da = NULL,
training.set = 0.9, result = c("groupMean", "overall"),
center = TRUE, scale = FALSE,
n.pca=NULL, n.rep = 30, xval.plot = TRUE)
## $`Cross-Validation Results`
## n.pca success
## 1 20 0.3703704
## 2 20 0.2537037
## 3 20 0.3277778
## 4 20 0.3574074
## 5 20 0.3592593
## 6 20 0.3888889
## 7 20 0.3351852
## 8 20 0.4222222
## 9 20 0.2981481
## 10 20 0.3240741
## 11 20 0.2666667
## 12 20 0.3018519
## 13 20 0.3351852
## 14 20 0.2888889
## 15 20 0.4111111
## 16 20 0.3648148
## 17 20 0.3814815
## 18 20 0.3481481
## 19 20 0.3962963
## 20 20 0.3777778
## 21 20 0.3185185
## 22 20 0.3407407
## 23 20 0.3685185
## 24 20 0.4666667
## 25 20 0.3185185
## 26 20 0.3111111
## 27 20 0.4018519
## 28 20 0.3240741
## 29 20 0.3740741
## 30 20 0.3703704
## 31 40 0.4388889
## 32 40 0.4888889
## 33 40 0.3944444
## 34 40 0.3722222
## 35 40 0.5092593
## 36 40 0.4000000
## 37 40 0.3851852
## 38 40 0.4222222
## 39 40 0.4018519
## 40 40 0.4129630
## 41 40 0.4444444
## 42 40 0.4592593
## 43 40 0.3870370
## 44 40 0.3388889
## 45 40 0.4388889
## 46 40 0.2925926
## 47 40 0.3888889
## 48 40 0.3537037
## 49 40 0.3907407
## 50 40 0.4314815
## 51 40 0.3296296
## 52 40 0.4648148
## 53 40 0.3833333
## 54 40 0.4481481
## 55 40 0.4055556
## 56 40 0.3574074
## 57 40 0.4129630
## 58 40 0.3962963
## 59 40 0.4370370
## 60 40 0.3759259
## 61 60 0.4055556
## 62 60 0.4129630
## 63 60 0.5037037
## 64 60 0.3851852
## 65 60 0.4759259
## 66 60 0.5185185
## 67 60 0.4314815
## 68 60 0.4166667
## 69 60 0.4203704
## 70 60 0.3962963
## 71 60 0.4314815
## 72 60 0.4370370
## 73 60 0.4962963
## 74 60 0.4185185
## 75 60 0.4870370
## 76 60 0.4574074
## 77 60 0.4703704
## 78 60 0.4203704
## 79 60 0.4388889
## 80 60 0.4333333
## 81 60 0.3981481
## 82 60 0.3981481
## 83 60 0.5666667
## 84 60 0.4666667
## 85 60 0.4518519
## 86 60 0.4314815
## 87 60 0.3703704
## 88 60 0.4129630
## 89 60 0.4129630
## 90 60 0.4833333
## 91 80 0.3851852
## 92 80 0.5592593
## 93 80 0.5018519
## 94 80 0.4648148
## 95 80 0.4981481
## 96 80 0.3944444
## 97 80 0.4981481
## 98 80 0.3629630
## 99 80 0.3962963
## 100 80 0.4240741
## 101 80 0.4296296
## 102 80 0.4148148
## 103 80 0.3611111
## 104 80 0.3370370
## 105 80 0.4240741
## 106 80 0.3462963
## 107 80 0.3777778
## 108 80 0.4592593
## 109 80 0.4185185
## 110 80 0.3648148
## 111 80 0.3611111
## 112 80 0.3851852
## 113 80 0.3648148
## 114 80 0.4148148
## 115 80 0.4370370
## 116 80 0.3500000
## 117 80 0.4851852
## 118 80 0.4055556
## 119 80 0.5296296
## 120 80 0.3962963
## 121 100 0.5092593
## 122 100 0.5129630
## 123 100 0.4796296
## 124 100 0.4407407
## 125 100 0.3462963
## 126 100 0.4592593
## 127 100 0.5314815
## 128 100 0.4222222
## 129 100 0.4462963
## 130 100 0.4074074
## 131 100 0.3611111
## 132 100 0.4759259
## 133 100 0.4129630
## 134 100 0.3648148
## 135 100 0.4481481
## 136 100 0.3574074
## 137 100 0.5111111
## 138 100 0.5518519
## 139 100 0.5166667
## 140 100 0.4296296
## 141 100 0.4425926
## 142 100 0.3425926
## 143 100 0.4481481
## 144 100 0.3666667
## 145 100 0.4037037
## 146 100 0.3555556
## 147 100 0.5222222
## 148 100 0.3981481
## 149 100 0.4203704
## 150 100 0.4444444
## 151 120 0.4240741
## 152 120 0.4185185
## 153 120 0.4777778
## 154 120 0.5296296
## 155 120 0.4518519
## 156 120 0.4870370
## 157 120 0.3962963
## 158 120 0.3888889
## 159 120 0.3796296
## 160 120 0.3925926
## 161 120 0.5037037
## 162 120 0.4462963
## 163 120 0.4537037
## 164 120 0.4370370
## 165 120 0.3518519
## 166 120 0.3796296
## 167 120 0.4851852
## 168 120 0.4277778
## 169 120 0.4166667
## 170 120 0.5222222
## 171 120 0.4222222
## 172 120 0.4592593
## 173 120 0.3833333
## 174 120 0.4074074
## 175 120 0.4777778
## 176 120 0.4259259
## 177 120 0.4277778
## 178 120 0.4018519
## 179 120 0.3148148
## 180 120 0.5703704
## 181 140 0.3648148
## 182 140 0.4944444
## 183 140 0.4814815
## 184 140 0.4740741
## 185 140 0.4518519
## 186 140 0.3555556
## 187 140 0.4166667
## 188 140 0.4240741
## 189 140 0.4222222
## 190 140 0.4462963
## 191 140 0.4074074
## 192 140 0.4259259
## 193 140 0.4222222
## 194 140 0.4722222
## 195 140 0.4314815
## 196 140 0.3888889
## 197 140 0.4240741
## 198 140 0.4333333
## 199 140 0.4444444
## 200 140 0.4537037
## 201 140 0.3537037
## 202 140 0.3203704
## 203 140 0.4000000
## 204 140 0.4055556
## 205 140 0.4296296
## 206 140 0.3722222
## 207 140 0.4611111
## 208 140 0.3574074
## 209 140 0.3777778
## 210 140 0.4407407
##
## $`Median and Confidence Interval for Random Chance`
## 2.5% 50% 97.5%
## 0.05133884 0.06798331 0.08551598
##
## $`Mean Successful Assignment by Number of PCs of PCA`
## 20 40 60 80 100 120 140
## 0.3501235 0.4054321 0.4416667 0.4182716 0.4376543 0.4353704 0.4184568
##
## $`Number of PCs Achieving Highest Mean Success`
## [1] "60"
##
## $`Root Mean Squared Error by Number of PCs of PCA`
## 20 40 60 80 100 120 140
## 0.6515056 0.5963498 0.5599878 0.5845349 0.5655112 0.5672319 0.5830371
##
## $`Number of PCs Achieving Lowest MSE`
## [1] "60"
##
## $DAPC
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.data.frame(x = as.data.frame(x), grp = ..1, n.pca = ..2,
## n.da = ..3)
##
## $n.pca: 60 first PCs of PCA used
## $n.da: 14 discriminant functions saved
## $var (proportion of conserved variance): 0.644
##
## $eig (eigenvalues): 106.8 46.37 37.9 29.47 25.46 ...
##
## vector length content
## 1 $eig 14 eigenvalues
## 2 $grp 637 prior group assignment
## 3 $prior 15 prior group probabilities
## 4 $assign 637 posterior group assignment
## 5 $pca.cent 163 centring vector of PCA
## 6 $pca.norm 163 scaling vector of PCA
## 7 $pca.eig 150 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 637 60 retained PCs of PCA
## 2 $means 15 60 group means
## 3 $loadings 60 14 loadings of variables
## 4 $ind.coord 637 14 coordinates of individuals (principal components)
## 5 $grp.coord 15 14 coordinates of groups
## 6 $posterior 637 15 posterior membership probabilities
## 7 $pca.loadings 163 60 PCA loadings of original variables
## 8 $var.contr 163 14 contribution of original variables
$n.pca: 100 first PCs of PCA used $n.da: 14 discriminant functions saved $var (proportion of conserved variance): 0.863
Run DAPC with object using x-val recommendations
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.data.frame(x = as.data.frame(x), grp = ..3, n.pca = 100,
## n.da = 14)
##
## $n.pca: 100 first PCs of PCA used
## $n.da: 14 discriminant functions saved
## $var (proportion of conserved variance): 0.863
##
## $eig (eigenvalues): 129 63.98 48.15 41.99 36.22 ...
##
## vector length content
## 1 $eig 14 eigenvalues
## 2 $grp 637 prior group assignment
## 3 $prior 15 prior group probabilities
## 4 $assign 637 posterior group assignment
## 5 $pca.cent 163 centring vector of PCA
## 6 $pca.norm 163 scaling vector of PCA
## 7 $pca.eig 150 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 637 100 retained PCs of PCA
## 2 $means 15 100 group means
## 3 $loadings 100 14 loadings of variables
## 4 $ind.coord 637 14 coordinates of individuals (principal components)
## 5 $grp.coord 15 14 coordinates of groups
## 6 $posterior 637 15 posterior membership probabilities
## 7 $pca.loadings 163 100 PCA loadings of original variables
## 8 $var.contr 163 14 contribution of original variables
dapc with optimal # of PCs recommended
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.data.frame(x = as.data.frame(x), grp = ..3, n.pca = 24,
## n.da = 8)
##
## $n.pca: 24 first PCs of PCA used
## $n.da: 8 discriminant functions saved
## $var (proportion of conserved variance): 0.336
##
## $eig (eigenvalues): 81.32 32.56 19.86 17.27 16.26 ...
##
## vector length content
## 1 $eig 14 eigenvalues
## 2 $grp 637 prior group assignment
## 3 $prior 15 prior group probabilities
## 4 $assign 637 posterior group assignment
## 5 $pca.cent 163 centring vector of PCA
## 6 $pca.norm 163 scaling vector of PCA
## 7 $pca.eig 150 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 637 24 retained PCs of PCA
## 2 $means 15 24 group means
## 3 $loadings 24 8 loadings of variables
## 4 $ind.coord 637 8 coordinates of individuals (principal components)
## 5 $grp.coord 15 8 coordinates of groups
## 6 $posterior 637 15 posterior membership probabilities
## 7 $pca.loadings 163 24 PCA loadings of original variables
## 8 $var.contr 163 8 contribution of original variables
only 34% of variance retained with this one
Most contributing alleles
Check R symbols for plot
#to see all shapes -> plot shapes - para escolher os simbolos
N = 100; M = 1000
good.shapes = c(1:25,35:38,43,60,62:64)
foo = data.frame( x = rnorm(M), y = rnorm(M), s = factor( sample(1:N, M, replace = TRUE) ) )
ggplot(aes(x,y,shape=s ), data=foo ) +
scale_shape_manual(values=good.shapes[1:N]) +
geom_point()
## Warning: Removed 690 rows containing missing values or values outside the scale range
## (`geom_point()`).
myCol2 <- c("#51f310", "#146c45", "#75d5e1", "#FF7F00", "magenta", "red", "yellow3", "#52ef99", "#2524f9", "#1E90FF", "purple", "#fda547", "#cf749b", "#332288", "#a41415")
Plot using different discriminant functions
1 & 2
pdf(file = "output/europe/dapc/microsats/overlap/dapc_micro_overlap_PC1_2.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
1 & 3
pdf(file = "output/europe/dapc/microsats/overlap/dapc_micro_overlap_PC1_3.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=3)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=3)
1 & 4
pdf(file = "output/europe/dapc/microsats/overlap/dapc_micro_overlap_PC1_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=4)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=4)
2 & 3
pdf(file = "output/europe/dapc/microsats/overlap/dapc_micro_overlap_PC2_3.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=3)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=3)
2 & 4
pdf(file = "output/europe/dapc/microsats/overlap/dapc_micro_overlap_PC2_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=4)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=4)
3 & 4
pdf(file = "output/europe/dapc/microsats/overlap/dapc_micro_overlap_PC3_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =3, yax=4)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_micro_1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomleft", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =3, yax=4)
# import the data
albo <-
read.PLINK(
here("/gpfs/gibbs/pi/caccone/mkc54/albo/europe/output/fst/overlap/overlap.raw"),
quiet = FALSE,
chunkSize = 1000,
parallel = require("parallel"),
n.cores = 4
)
##
## Reading PLINK raw format into a genlight object...
## Loading required package: parallel
##
## Reading loci information...
##
## Reading and converting genotypes...
## .
## Building final object...
##
## ...done.
## Starting gl2gi
## Processing genlight object with SNP data
##
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 19%
|
|============== | 20%
|
|============== | 21%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================ | 24%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 60%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|=================================================== | 74%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 79%
|
|======================================================== | 80%
|
|======================================================== | 81%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 100%
## Matrix converted.. Prepare genind object...
## Completed: gl2gi
Import the data and covert it to genind format
# import the data
snp <-
read.PLINK(
here("/gpfs/gibbs/pi/caccone/mkc54/albo/europe/output/fst/overlap/overlap.raw"),
quiet = FALSE,
chunkSize = 1000,
parallel = require("parallel"),
n.cores = 4
)
##
## Reading PLINK raw format into a genlight object...
##
##
## Reading loci information...
##
## Reading and converting genotypes...
## .
## Building final object...
##
## ...done.
## [1] 242
## [1] 20968
## [1] 24
## [1] "1065" "1066" "1067" "1068" "1069" "1070" "1071" "1072" "1073" "1074"
## [11] "1075" "1076" "1109" "1110" "1111" "1112" "1113" "1114" "1115" "1116"
## [21] "1117" "1118" "1119" "1120" "1218" "1219" "1220" "1221" "1222" "1223"
## [31] "1224" "1225" "1426" "1427" "1428" "1429" "201" "202" "203" "204"
## [41] "2202" "279" "280" "281" "282" "283" "284" "285" "286" "287"
## [51] "289" "290" "291" "701" "702" "703" "704" "705" "706" "707"
## [61] "708" "709" "710" "711" "712" "713" "714" "715" "716" "717"
## [71] "718" "719" "720" "721" "722" "723" "724" "725" "726" "727"
## [81] "728" "729" "730" "731" "732" "733" "735" "736" "737" "741"
## [91] "742" "743" "744" "745" "746" "747" "749" "750" "751" "752"
## [101] "753" "754" "755" "756" "757" "758" "759" "760" "761" "762"
## [111] "763" "764" "765" "766" "767" "769" "770" "771" "772" "773"
## [121] "774" "775" "776" "777" "778" "781" "782" "784" "785" "786"
## [131] "787" "788" "789" "790" "791" "792" "793" "794" "795" "801"
## [141] "802" "803" "804" "805" "806" "807" "808" "809" "810" "811"
## [151] "812" "813" "814" "815" "816" "817" "818" "819" "820" "821"
## [161] "822" "824" "825" "826" "827" "830" "831" "833" "834" "835"
## [171] "836" "837" "838" "839" "840" "841" "842" "843" "844" "845"
## [181] "846" "849" "850" "851" "852" "853" "854" "855" "856" "857"
## [191] "859" "860" "861" "862" "863" "864" "865" "866" "867" "868"
## [201] "869" "870" "871" "872" "873" "874" "875" "876" "877" "878"
## [211] "879" "880" "881" "882" "883" "884" "885" "886" "887" "888"
## [221] "889" "890" "891" "892" "893" "894" "911" "912" "913" "915"
## [231] "928" "929" "930" "931" "932" "933" "934" "935" "936" "937"
## [241] "938" "939"
## Starting gl2gi
## Processing genlight object with SNP data
##
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 19%
|
|============== | 20%
|
|============== | 21%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================ | 24%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 60%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|=================================================== | 74%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 79%
|
|======================================================== | 80%
|
|======================================================== | 81%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 100%
## Matrix converted.. Prepare genind object...
## Completed: gl2gi
Save it
To load it
Import sample data
sampling_loc <- readRDS(here("output/europe/dapc/overlap/sampling_loc_overlap.rds"))
head(sampling_loc)
## # A tibble: 6 × 10
## Pop_City Country Latitude Longitude Continent Abbreviation Year Region Marker
## <chr> <chr> <dbl> <dbl> <chr> <chr> <dbl> <chr> <chr>
## 1 Saint-M… France 45.2 5.77 Europe FRS 2019 Weste… SNPs
## 2 Strasbo… France 48.6 7.75 Europe STS 2019 Weste… SNPs
## 3 Penafiel Portug… 41.2 -8.33 Europe POP 2017 South… SNPs
## 4 Badajoz Spain 38.9 -6.97 Europe SPB 2018 South… SNPs
## 5 San Roq… Spain 36.2 -5.37 Europe SPS 2017 South… SNPs
## 6 Catarro… Spain 39.4 -0.396 Europe SPC 2017 South… SNPs
## # ℹ 1 more variable: order <dbl>
## [1] SOC SOC SOC SOC SOC SOC
## 24 Levels: ALD BAR BUL CRO FRS GES GRA GRC ITB ITP ITR MAL POP ROS SER ... TUH
Load the csv
countr <- read.csv(here("/gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/dapc/overlap/DAPC_countries_SNP_overlap.csv"
))
countr$country[countr$country == 'country'] <- 'Portugal'
df <- as.data.frame(countr)
head(df)
## pop country
## 1 SOC Russia
## 2 SOC Russia
## 3 SOC Russia
## 4 SOC Russia
## 5 SOC Russia
## 6 SOC Russia
## [1] Russia Russia Russia Russia Russia Russia Russia Russia
## [9] Russia Russia Russia Russia Georgia Georgia Georgia Georgia
## [17] Georgia Georgia Georgia Georgia Georgia Georgia Georgia Georgia
## [25] France France France France France France France France
## [33] France France France France Italy Italy Italy Italy
## [41] Greece Spain Spain Spain Spain Spain Spain Spain
## [49] Spain Spain Spain Spain Spain Bulgaria Bulgaria Bulgaria
## [57] Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Bulgaria Croatia
## [65] Croatia Croatia Croatia Croatia Croatia Croatia Croatia Croatia
## [73] Croatia Croatia Croatia Greece Greece Greece Greece Greece
## [81] Greece Greece Greece Greece Greece Greece Greece Greece
## [89] Greece Greece Greece Greece Greece Greece Greece Italy
## [97] Italy Italy Italy Italy Malta Malta Malta Malta
## [105] Malta Malta Malta Malta Malta Malta Malta Malta
## [113] Spain Spain Spain Spain Spain Spain Turkey Turkey
## [121] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [129] Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey
## [137] Turkey Turkey Turkey Albania Albania Albania Albania Albania
## [145] Albania Albania Albania Albania Albania France France France
## [153] France France France France France France France France
## [161] France Italy Italy Italy Italy Italy Italy Italy
## [169] Italy Portugal Portugal Portugal Portugal Portugal Portugal Portugal
## [177] Portugal Portugal Portugal Portugal Portugal Romania Romania Romania
## [185] Romania Romania Romania Romania Romania Romania Romania Romania
## [193] Serbia Serbia Serbia Serbia Slovenia Slovenia Slovenia Slovenia
## [201] Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia Slovenia
## [209] Spain Spain Spain Spain Spain Spain Spain Spain
## [217] Spain Spain Spain Spain Spain Spain Spain Spain
## [225] Spain Spain Spain Spain Spain Spain Italy Italy
## [233] Italy Italy Italy Italy Italy Italy Italy Italy
## [241] Italy Italy
## 15 Levels: Albania Bulgaria Croatia France Georgia Greece Italy ... Turkey
Save the genind object
Load the genind object
Scale
## NULL
## /// GENIND OBJECT /////////
##
## // 5 individuals; 3 loci; 5 alleles; size: 11.5 Kb
##
## // Basic content
## @tab: 5 x 5 matrix of allele counts
## @loc.n.all: number of alleles per locus (range: 1-2)
## @loc.fac: locus factor for the 5 columns of @tab
## @all.names: list of allele names for each locus
## @ploidy: ploidy of each individual (range: 2-2)
## @type: codom
## @call: .local(x = x, i = i, j = j, drop = drop)
##
## // Optional content
## @pop: population of each individual (group size range: 5-5)
## @strata: a data frame with 4 columns ( sex, phenotype, pat, mat )
## @other: a list containing: sex phenotype pat mat
grp <- find.clusters(snp_country, max.n.clust=20)
#retained 250
#Choose the number of clusters (>=2): 7
Save the genind object
Load the genind object
## [1] "Kstat" "stat" "grp" "size"
## [1] 1 257 34 80 178 7 80
Load the genind object
## #################################################
## # Discriminant Analysis of Principal Components #
## #################################################
## class: dapc
## $call: dapc.data.frame(x = as.data.frame(x), grp = ..1)
##
## $n.pca: 241 first PCs of PCA used
## $n.da: 7 discriminant functions saved
## $var (proportion of conserved variance): 1
##
## $eig (eigenvalues): 1.9e+35 8.576e+33 3.181e+33 2.564e+33 8.317e+32 ...
##
## vector length content
## 1 $eig 7 eigenvalues
## 2 $grp 242 prior group assignment
## 3 $prior 7 prior group probabilities
## 4 $assign 242 posterior group assignment
## 5 $pca.cent 41926 centring vector of PCA
## 6 $pca.norm 41926 scaling vector of PCA
## 7 $pca.eig 241 eigenvalues of PCA
##
## data.frame nrow ncol content
## 1 $tab 242 241 retained PCs of PCA
## 2 $means 7 241 group means
## 3 $loadings 241 7 loadings of variables
## 4 $ind.coord 242 7 coordinates of individuals (principal components)
## 5 $grp.coord 7 7 coordinates of groups
## 6 $posterior 242 7 posterior membership probabilities
## 7 $pca.loadings 41926 241 PCA loadings of original variables
## 8 $var.contr 41926 7 contribution of original variables
Save the genind object
optim.a.score(dapc1, n.pca=1:ncol(dapc1$tab), smart=TRUE, n=10, plot=TRUE, n.sim=10) #calculating optimal number of PCs 13
## $pop.score
## $pop.score$`241`
## 1 2 3 4 5 6 7
## 0 0 0 0 0 0 0
##
## $pop.score$`1`
## 1 2 3 4 5 6
## 0.53846154 -0.01860465 0.00000000 1.00000000 0.94444444 1.00000000
## 7
## -0.06396396
##
## $pop.score$`20`
## 1 2 3 4 5 6 7
## 0.8000000 0.7976744 0.8333333 0.7750000 0.8555556 0.8875000 0.1540541
##
## $pop.score$`40`
## 1 2 3 4 5 6 7
## 0.7884615 0.6837209 0.6500000 0.5625000 0.6888889 0.6375000 0.2234234
##
## $pop.score$`60`
## 1 2 3 4 5 6 7
## 0.5230769 0.5441860 0.3916667 0.2500000 0.4722222 0.5291667 0.2261261
##
## $pop.score$`80`
## 1 2 3 4 5 6 7
## 0.4115385 0.4325581 0.3250000 0.0875000 0.3444444 0.3625000 0.2063063
##
## $pop.score$`100`
## 1 2 3 4 5 6 7
## 0.3115385 0.3418605 0.1583333 0.1250000 0.2111111 0.2875000 0.1747748
##
## $pop.score$`120`
## 1 2 3 4 5 6 7
## 0.1961538 0.2604651 0.1166667 0.0875000 0.1388889 0.2041667 0.1261261
##
## $pop.score$`140`
## 1 2 3 4 5 6 7
## 0.16538462 0.18837209 0.08333333 0.02500000 0.15000000 0.12500000 0.08738739
##
## $pop.score$`160`
## 1 2 3 4 5 6 7
## 0.12307692 0.10697674 0.08333333 0.05000000 0.12222222 0.10000000 0.05225225
##
## $pop.score$`180`
## 1 2 3 4 5 6 7
## 0.10384615 0.09069767 0.05833333 0.05000000 0.10000000 0.07500000 0.03603604
##
## $pop.score$`200`
## 1 2 3 4 5 6 7
## 0.06923077 0.06279070 0.09166667 0.02500000 0.07777778 0.06666667 0.02342342
##
## $pop.score$`220`
## 1 2 3 4 5 6
## 0.034615385 0.037209302 0.008333333 0.050000000 0.050000000 0.033333333
## 7
## 0.020720721
##
## $pop.score$`240`
## 1 2 3 4 5 6 7
## 0 0 0 0 0 0 0
##
##
## $mean
## 241 1 20 40 60 80 100
## 0.00000000 0.48576248 0.72901677 0.60492783 0.41949209 0.30997819 0.23001688
## 120 140 160 180 200 220 240
## 0.16142390 0.11778249 0.09112307 0.07341617 0.05950800 0.03345887 0.00000000
##
## $pred
## $pred$x
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## [91] 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
## [109] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
## [127] 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
## [145] 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
## [163] 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
## [181] 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
## [199] 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
## [217] 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
## [235] 235 236 237 238 239 240 241
##
## $pred$y
## [1] 4.857625e-01 5.032312e-01 5.206244e-01 5.378640e-01 5.548718e-01
## [6] 5.715696e-01 5.878792e-01 6.037225e-01 6.190214e-01 6.336976e-01
## [11] 6.476729e-01 6.608693e-01 6.732086e-01 6.846125e-01 6.950029e-01
## [16] 7.043016e-01 7.124306e-01 7.193115e-01 7.248663e-01 7.290168e-01
## [21] 7.317108e-01 7.330002e-01 7.329631e-01 7.316775e-01 7.292212e-01
## [26] 7.256723e-01 7.211088e-01 7.156086e-01 7.092497e-01 7.021101e-01
## [31] 6.942677e-01 6.858005e-01 6.767865e-01 6.673037e-01 6.574300e-01
## [36] 6.472434e-01 6.368220e-01 6.262436e-01 6.155862e-01 6.049278e-01
## [41] 5.943349e-01 5.838279e-01 5.734156e-01 5.631068e-01 5.529106e-01
## [46] 5.428356e-01 5.328909e-01 5.230852e-01 5.134274e-01 5.039265e-01
## [51] 4.945912e-01 4.854305e-01 4.764531e-01 4.676681e-01 4.590841e-01
## [56] 4.507102e-01 4.425552e-01 4.346279e-01 4.269373e-01 4.194921e-01
## [61] 4.122980e-01 4.053479e-01 3.986310e-01 3.921371e-01 3.858555e-01
## [66] 3.797758e-01 3.738874e-01 3.681799e-01 3.626429e-01 3.572657e-01
## [71] 3.520378e-01 3.469489e-01 3.419884e-01 3.371458e-01 3.324106e-01
## [76] 3.277723e-01 3.232204e-01 3.187444e-01 3.143338e-01 3.099782e-01
## [81] 3.056684e-01 3.014015e-01 2.971756e-01 2.929892e-01 2.888405e-01
## [86] 2.847280e-01 2.806500e-01 2.766047e-01 2.725906e-01 2.686060e-01
## [91] 2.646493e-01 2.607187e-01 2.568126e-01 2.529294e-01 2.490673e-01
## [96] 2.452248e-01 2.414002e-01 2.375917e-01 2.337979e-01 2.300169e-01
## [101] 2.262480e-01 2.224938e-01 2.187579e-01 2.150437e-01 2.113547e-01
## [106] 2.076945e-01 2.040664e-01 2.004741e-01 1.969209e-01 1.934105e-01
## [111] 1.899462e-01 1.865317e-01 1.831703e-01 1.798657e-01 1.766212e-01
## [116] 1.734404e-01 1.703268e-01 1.672838e-01 1.643150e-01 1.614239e-01
## [121] 1.586130e-01 1.558811e-01 1.532261e-01 1.506459e-01 1.481383e-01
## [126] 1.457011e-01 1.433323e-01 1.410296e-01 1.387910e-01 1.366144e-01
## [131] 1.344975e-01 1.324382e-01 1.304345e-01 1.284841e-01 1.265849e-01
## [136] 1.247348e-01 1.229316e-01 1.211733e-01 1.194576e-01 1.177825e-01
## [141] 1.161459e-01 1.145469e-01 1.129843e-01 1.114574e-01 1.099653e-01
## [146] 1.085069e-01 1.070814e-01 1.056878e-01 1.043253e-01 1.029929e-01
## [151] 1.016897e-01 1.004148e-01 9.916720e-02 9.794607e-02 9.675047e-02
## [156] 9.557946e-02 9.443214e-02 9.330758e-02 9.220486e-02 9.112307e-02
## [161] 9.006140e-02 8.901953e-02 8.799725e-02 8.699435e-02 8.601064e-02
## [166] 8.504589e-02 8.409992e-02 8.317250e-02 8.226344e-02 8.137253e-02
## [171] 8.049956e-02 7.964433e-02 7.880662e-02 7.798624e-02 7.718297e-02
## [176] 7.639662e-02 7.562697e-02 7.487381e-02 7.413695e-02 7.341617e-02
## [181] 7.271095e-02 7.201949e-02 7.133967e-02 7.066937e-02 7.000645e-02
## [186] 6.934882e-02 6.869433e-02 6.804088e-02 6.738635e-02 6.672860e-02
## [191] 6.606552e-02 6.539499e-02 6.471489e-02 6.402309e-02 6.331748e-02
## [196] 6.259594e-02 6.185634e-02 6.109657e-02 6.031449e-02 5.950800e-02
## [201] 5.867478e-02 5.781175e-02 5.691566e-02 5.598323e-02 5.501120e-02
## [206] 5.399631e-02 5.293529e-02 5.182488e-02 5.066181e-02 4.944281e-02
## [211] 4.816463e-02 4.682400e-02 4.541765e-02 4.394232e-02 4.239474e-02
## [216] 4.077165e-02 3.906978e-02 3.728587e-02 3.541665e-02 3.345887e-02
## [221] 3.141291e-02 2.929385e-02 2.712041e-02 2.491131e-02 2.268530e-02
## [226] 2.046109e-02 1.825742e-02 1.609302e-02 1.398661e-02 1.195692e-02
## [231] 1.002267e-02 8.202614e-03 6.515460e-03 4.979942e-03 3.614790e-03
## [236] 2.438730e-03 1.470493e-03 7.288065e-04 2.323993e-04 3.186139e-13
## [241] -2.988284e-13
##
##
## $best
## [1] 22
Cross-validation: The Discriminant Analysis of Principal Components (DAPC) relies on dimension reduction of the data using PCA followed by a linear discriminant analysis. How many PCA axes to retain is often a non-trivial question. Cross validation provides an objective way to decide how many axes to retain: different numbers are tried and the quality of the corresponding DAPC is assessed by cross- validation: DAPC is performed on a training set, typically made of 90% of the observations (comprising 90% of the observations in each subpopulation) , and then used to predict the groups of the 10% of remaining observations. The current method uses the average prediction success per group (result=“groupMean”), or the overall prediction success (result=“overall”). The number of PCs associated with the lowest Mean Squared Error is then retained in the DAPC.
xvalDapc(snp_country, populations, n.pca.max = 200, n.da = NULL,
training.set = 0.9, result = c("groupMean", "overall"),
center = TRUE, scale = FALSE,
n.pca=NULL, n.rep = 20, xval.plot = TRUE)
$n.pca: 80 first PCs of PCA used $n.da: 14 discriminant functions saved $var (proportion of conserved variance): 0.561
Run DAPC with object
Save it
saveRDS(
dapc_snp1, here("/gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/dapc/overlap/dapc_snp1_b.rds"
)
)
To load it
dapc_snp1 <- readRDS(
here("/gpfs/gibbs/pi/caccone/mkc54/albo/scripts/RMarkdowns/output/europe/dapc/overlap/dapc_snp1_b.rds"
)
)
Most contributing alleles
myCol2 <- c("#52ef99", "#146c45", "#75d5e1", "#FB8072", "#2c4a5e", "#6a8fe0", "#8c61cd", "#f365e7", "#871550", "#a113b2", "#BF5B17", "#1F78B4", "#cf749b", "#FF7F00","#2524f9", "#799d10", "#a7e831", "#984EA3", "#754819", "#fda547", "#a41415", "#fd5917", "#fd4e8b", "#ead624", "#6A3D9A", "#21a708", "#332288", "#51f310", "#9d8d88", "#66C2A5", "#E41A1C", "#BC80BD", "#E7297A", "darkgray", "orange", "aquamarine3", "magenta", "gold4", "purple")
Check R symbols for plot
#to see all shapes -> plot shapes - para escolher os simbolos
N = 100; M = 1000
good.shapes = c(1:25,35:38,43,60,62:64)
foo = data.frame( x = rnorm(M), y = rnorm(M), s = factor( sample(1:N, M, replace = TRUE) ) )
ggplot(aes(x,y,shape=s ), data=foo ) +
scale_shape_manual(values=good.shapes[1:N]) +
geom_point()
## Warning: Removed 692 rows containing missing values or values outside the scale range
## (`geom_point()`).
myCol2 <- c("#51f310", "#146c45", "#75d5e1", "#FF7F00", "magenta", "red", "yellow3", "#52ef99", "#2524f9", "#1E90FF", "purple", "#fda547", "#cf749b", "#332288", "#a41415")
Plot using different discriminant functions
1 & 2
pdf(file = "output/europe/dapc/overlap/dapc_SNP3_overlap_PC1_2.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_snp1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_snp1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=2)
1 & 3
pdf(file = "output/europe/dapc/overlap/dapc_SNP3_overlap_PC1_3.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_snp1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="topright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=3)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_snp1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="topright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=3)
1 & 4
pdf(file = "output/europe/dapc/overlap/dapc_SNP3_overlap_PC1_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_snp1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=4)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_snp1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =1, yax=4)
2 & 3
pdf(file = "output/europe/dapc/overlap/dapc_SNP3_overlap_PC2_3.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_snp1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=3)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_snp1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=3 )
2 & 4
pdf(file = "output/europe/dapc/overlap/dapc_SNP3_overlap_PC2_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_snp1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=4)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_snp1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =2, yax=4 )
3 & 4
pdf(file = "output/europe/dapc/overlap/dapc_SNP3_overlap_PC3_4.pdf", # The directory you want to save the file in
width = 7, # The width of the plot in inches
height = 7) # The height of the plot in inches
good.shapes = c(1:25,35:38,43,60,62:64)
op <- par(cex = 0.39)
scatter(dapc_snp1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =3, yax=4)
dev.off()
op <- par(cex = 0.39)
scatter(dapc_snp1, pch = good.shapes, cstar = 0, col=myCol2, label=NULL, mstree = FALSE, legend=TRUE, posi.da="bottomright", cex=1.0, cex.lab=0.5, cex.main=0.5, cellipse=TRUE, posi.leg="topleft", xax =3, yax=4 )