## Warning in system("timedatectl", intern = TRUE): running command 'timedatectl'
## had status 1
library(here)
library(dplyr)
library(ggplot2)
library(colorout)
library(extrafont)
library(reticulate)
#library(scales)
library(stringr)
library(grid)
library(flextable)
library(devtools)
library(readr)
library(purrr)
library(ggtext)
library(ggvenn)
#library(data.table)
library(RColorBrewer)
library(ggrepel)
Check your Plink version.
module spider plink
#Versions on the cluster:
#LINK/1.9b_6.21-x86_64
#LINK/2_avx2_20221024
module load PLINK/2_avx2_20221024
plink2 --version
#PLINK v2.00a3.7LM AVX2 Intel (24 Oct 2022)
Check your BCFtools version.
ls data/europe/* # we use * to truncate the name of the file showing all files
cd /gpfs/gibbs/pi/caccone/mkc54/albo
## data/europe/albo_euro_global_1Dec2023.log
## data/europe/albo_euro_global_1Dec2023.vcf
## data/europe/albo_europe_11Sep2023.log
## data/europe/albo_europe_11Sep2023.vcf
## data/europe/euro_asia_8america_4africa_28Nov2023.log
## data/europe/euro_asia_8america_4africa_28Nov2023.vcf
## data/europe/europe_native_11Sep2023.log
## data/europe/europe_native_11Sep2023.vcf
We can check how many sample names we have in our vcf
cd /gpfs/gibbs/pi/caccone/mkc54/albo
plink2 \
--allow-extra-chr \
--vcf data/europe/albo_euro_global_1Dec2023.vcf \
--const-fid \
--make-bed \
--exclude europe/output/files/albopictus_SNPs_fail_segregation.txt \
--fa /gpfs/gibbs/project/caccone/mkc54/albo/genome/albo.fasta.gz \
--ref-from-fa 'force' `# sets REF alleles when it can be done unambiguously, we use force to change the alleles` \
--out euro_global/output/file1 \
--silent;
# --keep-allele-order \ if you use Plink 1.9
grep "variants" euro_global/output/file1.log; # to get the number of variants from the log file.
–vcf: 113823 variants scanned. 113823 variants loaded from euro_global/output/file1-temporary.pvar.zst. –exclude: 112349 variants remaining. 112349 variants remaining after main filters. –ref-from-fa force: 0 variants changed, 112349 validated.
Check the fam file
## OKI 1001 0 0 2 -9
## OKI 1002 0 0 2 -9
## OKI 1003 0 0 2 -9
## OKI 1004 0 0 2 -9
## OKI 1005 0 0 2 -9
## OKI 1006 0 0 1 -9
## OKI 1007 0 0 1 -9
## OKI 1008 0 0 1 -9
## OKI 1009 0 0 1 -9
## OKI 1010 0 0 1 -9
## Sample Filename Family_ID Individual_ID Father_ID Mother_ID Sex Affection Status
## 1_LabCross_KF2.CEL LAB 1 0 0 2 -9
## 2_LabCross_MF81.CEL LAB 2 0 0 2 -9
## 3_LabCross_MF71.CEL LAB 3 0 0 2 -9
## 4_LabCross_KF42.CEL LAB 4 0 0 2 -9
Import the fam file we use with Axiom Suite
# the order of the rows in this file does not matter
samples <-
read.delim(
file = here("scripts", "RMarkdowns", "sample_ped_info_ALLPOPS_fixed.txt"
),
header = TRUE
)
head(samples)
## Sample.Filename Family_ID Individual_ID Father_ID Mother_ID Sex
## 1 8_MAN_Brazil.CEL MAU 8 0 0 0
## 2 9_MAN_Brazil.CEL MAU 9 0 0 0
## 3 16_MAN_Brazil.CEL MAU 16 0 0 0
## 4 17_MAN_Brazil.CEL MAU 17 0 0 0
## 5 18_MAN_Brazil.CEL MAU 18 0 0 0
## 6 60_MAN_Brazil.CEL MAU 60 0 0 0
## Affection.Status
## 1 -9
## 2 -9
## 3 -9
## 4 -9
## 5 -9
## 6 -9
Import .fam file we created once we created the bed file using Plink2
#The fam file is the same for both data sets with the default or new priors
fam1 <-
read.delim(
file = here("euro_global/output/file1.fam"),
header = FALSE,
)
head(fam1)
## V1 V2 V3 V4 V5 V6
## 1 OKI 1001 0 0 2 -9
## 2 OKI 1002 0 0 2 -9
## 3 OKI 1003 0 0 2 -9
## 4 OKI 1004 0 0 2 -9
## 5 OKI 1005 0 0 2 -9
## 6 OKI 1006 0 0 1 -9
We can merge the tibbles.
# Extract the number part from the columns
fam1_temp <- fam1 |>
mutate(num_id = as.numeric(str_extract(V2, "^\\d+")))
samples_temp <- samples |>
mutate(num_id = as.numeric(str_extract(Sample.Filename, "^\\d+")))
# Perform the left join using the num_id columns and keep the order of fam1
df <- fam1_temp |>
dplyr::left_join(samples_temp, by = "num_id") |>
dplyr::select(-num_id) |>
dplyr::select(8:13)
# check the data frame
head(df)
## Family_ID Individual_ID Father_ID Mother_ID Sex Affection.Status
## 1 OKI 1001 0 0 2 -9
## 2 OKI 1002 0 0 2 -9
## 3 OKI 1003 0 0 2 -9
## 4 OKI 1004 0 0 2 -9
## 5 OKI 1005 0 0 2 -9
## 6 OKI 1006 0 0 1 -9
We can check how many samples we have in our file
## [1] 712
Before you save the new fam file, you can change the original file to a different name, to compare the order later. If you want to repeat the steps above after you saving the new file1.fam, you will need to import the vcf again.
# Save and override the .fam file for dp
write.table(
df,
file = here("euro_global/output/file1.fam"),
sep = "\t",
row.names = FALSE,
col.names = FALSE,
quote = FALSE
)
Check the new .fam file to see if has the order and the sample attributes we want.
# you can open the file on a text editor and double check the sample order and information.
head -n 5 euro_global/output/file1.fam
## OKI 1001 0 0 2 -9
## OKI 1002 0 0 2 -9
## OKI 1003 0 0 2 -9
## OKI 1004 0 0 2 -9
## OKI 1005 0 0 2 -9
We have 4 samples genotyped 3 times each. We can keep only one of them
We can check for the triplicates in our dataset
To subset the data we need to create a list of samples with family id and individual ids
grep "b\|c" euro_global/output/file1.fam | awk '{print $1, $2}' > euro_global/output/files/duplicates_to_remove.txt;
head euro_global/output/files/duplicates_to_remove.txt
Create a new bed removing the duplicated samples. We can also make sure the reference alleles match the reference genome
# I created a fam file with the information about each sample, but first we import the data and create a bed file setting the family id constant
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file1 \
--make-bed \
--fa /gpfs/gibbs/project/caccone/mkc54/albo/genome/albo.fasta.gz \
--ref-from-fa 'force' `# sets REF alleles when it can be done unambiguously, we use force to change the alleles` \
--exclude europe/output/files/albopictus_SNPs_fail_segregation.txt \
--remove euro_global/output/files/duplicates_to_remove.txt \
--out euro_global/output/file1b \
--silent;
# --keep-allele-order \ if you use Plink 1.9
grep "samples\|variants" euro_global/output/file1b.log # to get the number of variants from the log file.
712 samples (85 females, 70 males, 557 ambiguous; 712 founders) loaded from 112349 variants loaded from euro_global/output/file1.bim. –exclude: 112349 variants remaining. –remove: 708 samples remaining. 708 samples (85 females, 70 males, 553 ambiguous; 708 founders) remaining after 112349 variants remaining after main filters. –ref-from-fa force: 0 variants changed, 112349 validated.
Check the headings of the the files we will work on.
## OKI 1001 0 0 2 -9
## OKI 1002 0 0 2 -9
## OKI 1003 0 0 2 -9
## OKI 1004 0 0 2 -9
## OKI 1005 0 0 2 -9
Check how many samples are in the .fam file
## 708 euro_global/output/file1b.fam
This part is very important. Make sure there are no NAs or something that is not what you would expect. For example, the number of mosquitoes per population.
## ALD 10
## ALU 12
## ALV 12
## ARM 10
## BAR 12
## BEN 12
## BER 12
## BRE 13
## BUL 10
## CAM 12
## CES 14
## CHA 12
## CRO 12
## DES 17
## FRS 12
## GEL 2
## GES 12
## GRA 12
## GRC 10
## GRV 12
## HAI 12
## HAN 4
## HOC 7
## HUN 12
## IMP 4
## INJ 11
## INW 4
## ITB 6
## ITP 10
## ITR 12
## JAF 2
## KAC 6
## KAG 12
## KAN 12
## KAT 10
## KER 12
## KLP 4
## KRA 12
## KUN 4
## LAM 9
## MAL 12
## MAT 12
## OKI 12
## PAL 11
## POL 2
## POP 12
## QNC 12
## RAR 12
## REC 12
## ROM 4
## ROS 12
## SER 4
## SEV 12
## SIC 12
## SLO 12
## SOC 12
## SON 3
## SPB 8
## SPC 6
## SPM 6
## SPS 9
## SSK 12
## STS 12
## SUF 6
## SUU 6
## TAI 7
## TIK 12
## TIR 4
## TRE 12
## TUA 12
## TUH 12
## UTS 12
## YUN 9
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file1b \
--geno 0.1 `# we set genotype missiningness to 10% with this option` \
--make-bed \
--out euro_global/output/file2 \
--silent \
--missing; # --missing produces sample-based and variant-based missing data reports. If run with --within/--family, the variant-based report is stratified by cluster.
grep "variants" euro_global/output/file2.log
112349 variants loaded from euro_global/output/file1b.bim. –geno: 8526 variants removed due to missing genotype data. 103823 variants remaining after main filters.
Make plot
# ____________________________________________________________________________
# import individual missingness ####
indmiss <- # name of the data frame we are creating
read.delim( # use function read table
file = here(
"euro_global/output/file2.smiss"
), # we use library here to import file2.imiss from data/QC
header = TRUE # we do have headers in our file
)
# ____________________________________________________________________________
# import SNP missingness ####
snpmiss <-
read.delim(
file = here(
"euro_global/output/file2.vmiss"
),
header = TRUE
)
#
Plot individual missingness
# load plotting theme
source(
here("scripts", "RMarkdowns", "my_theme2.R"
)
)
ggplot( # Start a ggplot object with the data and aesthetic mappings
indmiss,
aes(
x = F_MISS
)
) +
geom_histogram( # Add a histogram layer
color = "black",
fill = "lightgray",
bins = 6
) +
geom_text(
# Add text labels for bin counts
stat = "bin",
aes(
label = after_stat(count)
),
vjust = -0.5,
color = "black",
size = 3,
bins = 6
) +
geom_vline(
# Add a vertical line at the mean of F_MISS
aes(
xintercept = mean(F_MISS)),
color = "red",
linetype = "dotted",
linewidth = .5
) +
geom_text(
# Add a text label for the mean of F_MISS
aes(
x = mean(F_MISS),
y = 75,
label = paste0(
"Mean \n",
scales::percent(mean(F_MISS),
accuracy = 0.01
)
)
),
size = 3,
color = "red",
hjust = -.1
) +
labs( # Add axis labels
x = "Individual Missingness (%)",
y = "Count (n)"
) +
my_theme() +
scale_x_continuous( # Scale the x-axis to display percentages
labels = scales::percent,
n.breaks = 6
)
## Warning in geom_text(aes(x = mean(F_MISS), y = 75, label = paste0("Mean \n", : All aesthetics have length 1, but the data has 708 rows.
## ℹ Please consider using `annotate()` or provide this layer with data containing
## a single row.
#
# save the plot
ggsave(
here("scripts", "RMarkdowns", "output", "euro_global", "figures" , "individual_missingness10_euro_global.pdf"
),
width = 7,
height = 5,
units = "in"
)
# Define a function to customize the theme
my_theme <- function() {
theme_minimal(base_size = 12, base_family = "") +
theme(
panel.grid.major = element_line(
linetype = "dashed",
linewidth = 0.2,
color = "gray"
),
panel.grid.minor = element_line(
linetype = "dashed",
linewidth = 0.2,
color = "gray"
),
# Customize the x-axis label
axis.title.x = element_text(
angle = 0,
hjust = 1,
face = "bold"
),
# Customize the y-axis label
axis.title.y = element_text(
angle = 90,
hjust = 1,
face = "bold"
)
)
}
# we can save the function to source it later
dump( # check ?dump for more information
"my_theme", # the object we want to save
here("scripts", "RMarkdowns",
"my_theme2.R") # use here to save it our function as .R
)
Plot variant missingness
# This plot takes a while to compute
# This code creates a histogram from the snpmiss data set using the F_MISS column.
# ggplot builds a histogram of individual missingness data
ggplot(
snpmiss,
aes(
x = F_MISS
)
) +
geom_histogram(
color = "black",
fill = "lightgray",
bins = 6
) +
stat_bin(
geom = "text",
aes(
label = format(
after_stat(count),
big.mark = ",",
scientific = FALSE
)
),
vjust = -0.5,
color = "black",
size = 2,
bins = 6
) +
geom_vline(
aes(
xintercept = mean(F_MISS)
),
color = "red",
linetype = "dotted",
linewidth = 0.5
) +
geom_text(
aes(
x = mean(F_MISS),
y = 16000,
label = paste0(
"Mean \n",
scales::percent(mean(F_MISS),
accuracy = 0.01
)
)
),
size = 3,
color = "red",
# hjust = 1.5,
vjust = -.2
) +
labs(
x = "Variant Missingness (%)",
y = "Count (n)"
) +
# theme_minimal(
# base_size = 12,
# base_family = "Roboto Condensed"
# ) +
scale_x_continuous(
labels = scales::percent,
n.breaks = 6
) +
scale_y_continuous(
labels = scales::label_comma(),
n.breaks = 5
) +
my_theme()
## Warning in geom_text(aes(x = mean(F_MISS), y = 16000, label = paste0("Mean \n", : All aesthetics have length 1, but the data has 112349 rows.
## ℹ Please consider using `annotate()` or provide this layer with data containing
## a single row.
# save the plot
ggsave(
here("scripts", "RMarkdowns", "output", "euro_global", "figures", "SNPs_missingness10_euro_global.pdf"
),
width = 7,
height = 5,
units = "in"
)
Remove individuals missing more than 20% of SNPs. You can use the threshold you want, change the flag –mind
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file2 \
--mind 0.2 `# here we set the individual missingness threshold of 20%`\
--make-bed \
--out euro_global/output/file3 \
--silent;
grep "samples\|variants" euro_global/output/file3.log
708 samples (85 females, 70 males, 553 ambiguous; 708 founders) loaded from 103823 variants loaded from euro_global/output/file2.bim. 0 samples removed due to missing genotype data (–mind). 708 samples (85 females, 70 males, 553 ambiguous; 708 founders) remaining after
First, we estimate the allele frequency with Plink.
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file3 \
--freq \
--out euro_global/output/MAF_check \
--silent
Now we apply the MAF filter.
# We will use MAF of 10%
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file3 \
--maf 0.1 \
--make-bed \
--out euro_global/output/file4 \
--silent;
grep "variants" euro_global/output/file4.log
103823 variants loaded from euro_global/output/file3.bim. 16640 variants removed due to allele frequency threshold(s) 87183 variants remaining after main filters.
Then we plot it with ggplot.
# Import MAF data ####
maf_freq <-
read.delim(
here(
"euro_global/output/MAF_check.afreq"
),
header = TRUE
)
Make MAF plot
# make the plot ####
ggplot(
maf_freq,
aes(ALT_FREQS)
) +
geom_histogram(
colour = "black",
fill = "lightgray",
bins = 40
) +
labs(
x = "Minor Allele Frequency (MAF)",
y = "Count (n)",
caption = "<span style='color:red;'><i>Red</i></span> <span style='color:black;'><i>line at</i></span><span style='color:red;'><i> MAF 10%</i></span><span style='color:black;'><i> threshold</i></span>."
) +
geom_text(
aes(
x = .1,
y = 8000,
label = paste0("16,640 SNPs")
),
size = 3,
color = "red",
vjust = -.2
) +
geom_vline(xintercept = 0.1, color = "red") +
my_theme() +
theme(plot.caption = element_markdown()) +
scale_y_continuous(label = scales::number_format(big.mark = ",")) +
scale_x_continuous(breaks = c(0, 0.1, 0.2, 0.4, 0.6, 0.8, 1))
## Warning in geom_text(aes(x = 0.1, y = 8000, label = paste0("16,640 SNPs")), : All aesthetics have length 1, but the data has 103823 rows.
## ℹ Please consider using `annotate()` or provide this layer with data containing
## a single row.
# save the plot
ggsave(
here("scripts", "RMarkdowns",
"output", "euro_global", "figures", "MAF_freq_plot_euro_global.pdf"
),
width = 7,
height = 5,
units = "in"
)
We removed 16,640 variants due to the MAF filter. Next we will excludes markers which deviate from Hardy–Weinberg equilibrium (HWE). It is a common indicator of genotyping error, but may also indicate evolutionary selection. We have to do it for each population individually. We cannot do it for all populations at once. Therefore, the first step is create a new bed file with Plink keeping only one population. I like to create a new directory and name it “hardy”, and copy the “file4” there.
Now we can run the HWE test. However, we will need to apply the SNP missingness again for each population. If we do not, the HWE will vary widely. With the bash script below, we will create a new file for each population, run the HWE test with HWE p value <1e‐6 (HWE p value <1e‐6). Then, we ask Plink to generate a list of SNPs that passed the test for each population.
for fam in $(awk '{print $1}' euro_global/output/files/hardy/file4.fam | sort | uniq);
do
echo $fam | \
plink2 \
--allow-extra-chr \
--silent \
--keep-allele-order \
--bfile euro_global/output/files/hardy/file4 \
--keep-fam /dev/stdin \
--make-bed \
--out euro_global/output/files/hardy/$fam \
--hwe 0.000001 \
--geno 0.1 \
--write-snplist; \
done
Next, we use “cat” and “awk” to concatenate the SNP list from all populations, and remove duplicates. Once we have a list of SNPs that passed the test for each population, we can use Plink to create a new bed file keeping only the SNPs that passed the test in each population. First, lets get the list of SNPs, and count how many passed:
cd /gpfs/gibbs/pi/caccone/mkc54/albo
cat euro_global/output/files/hardy/*.snplist | awk '!a[$0]++' > euro_global/output/files/passed_hwe.txt;
wc -l euro_global/output/files/passed_hwe.txt
## 87183 euro_global/output/files/passed_hwe.txt
All variants passed HWE test. If some failed, next time we could remove the variants that did not pass HWE test, using the –extract flag, extracting only those that passed HWE.
We can analyse the LD patterns for each populations using different approaches. If we want to look at general patterns we can get an estimate for each population, for example, the half of the distance of the r2 max. We can use Plink2 to estimates some statistics for us. One important consideration to is how good is our genome assembly. Does it matter if we use the 574 scaffolds or assign each scaffold to a chromosome or not. So, if you want to know if it matters, you would need to create a new chromosomal scale and perform the calculations. Since, we want to get only an general approximate estimate of the linkage levels, we can look at the largest scaffolds. Since chromosome 1 has the M locus, we will get the largest scaffold of chromosome 2 and 3. We create a new chromosomal scale when we want to plot the data. For now, we can import a file that LC created with the size of each scaffold (data/genome/scaffold_sizes.txt). The code below imports the file and get the 3 largest scaffolds from each chromosome.
# import the file with the scaffold sizes ####
scaffold_bps <-
read_delim(
here("scripts", "RMarkdowns",
"scaffold_sizes.txt"
),
col_names = FALSE,
show_col_types = FALSE,
col_types = "cn"
)
#
# set column names
colnames(
scaffold_bps
) <- c(
"Scaffold", "Size"
)
# ____________________________________________________________________________
# create new column with the chromosome number ####
sizes <-
scaffold_bps |>
mutate(
Chromosome = case_when( # we use mutate to create a new column called Chromosome
startsWith(
Scaffold, "1"
) ~ "1", # use startsWith to get Scaffold rows starting with 1 and output 1 on Chromosome column
startsWith(
Scaffold, "2"
) ~ "2",
startsWith(
Scaffold, "3"
) ~ "3"
)
)
#
# group by Chromosome and get row with highest Size value
df_max <-
sizes |>
group_by(
Chromosome
) |>
slice_max(
Size
)
#
# print result
df_max |>
mutate(
Size_Mb = Size/1e6
)
## # A tibble: 3 × 4
## # Groups: Chromosome [3]
## Scaffold Size Chromosome Size_Mb
## <chr> <dbl> <chr> <dbl>
## 1 1.85 28902815 1 28.9
## 2 2.17 43762705 2 43.8
## 3 3.75 25123842 3 25.1
The largest scaffolds of chromosome 2 is 43Mb, and chromosome 3 is 25Mb. We can also take a look at the size distribution of the scaffolds using ggplot2.
##
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
##
## discard
## The following object is masked from 'package:readr':
##
## col_factor
ggplot(
sizes,
aes(
x = Size
)
) +
geom_histogram(
binwidth = 1e6,
aes(fill = factor(
Chromosome
)),
color = "lightgray"
) +
labs(
title = "Scaffold sizes per chromosome",
x = "Scaffold Size (Mb)",
y = "Count (n)"
) +
# xlab("Scaffold Size (Mb)") +
# ylab("Count (n)") +
my_theme() +
scale_x_continuous(
labels = comma_format(
scale = 1e-6
)
) +
facet_wrap(
~Chromosome,
ncol = 3,
scales = "free_x"
) +
scale_fill_manual(
values = c(
"pink", "green", "orange"
)
) +
guides(fill = "none")
Now, we can create a list of SNPs from these two large scaffolds. We hope they will give us an average LD statistic that represents the entire genome. We can import the .bim file and get the list of variants from scaffolds 2.17 (43Mb) and 3.75 (25Mb)
Import the .bim file with the SNPs
# import the bim file with the SNP data ####
snps <-
read_delim( # to learn about the options use here, run ?read_delim on the console.
here(
"euro_global/output/file4.bim" #output/populations/file4.bim
), # use library here to load it
col_names = FALSE, # we don't have header in the input file
show_col_types = FALSE, # suppress message from read_delim
col_types = "ccidcc" # set the class of each column
)
#
# set column names
colnames(
snps
) <- # to add a header in our tibble
c(
"Scaffold", "SNP", "Cm", "Position", "Allele1", "Allele2"
)
#
# check the tibble
head(snps)
## # A tibble: 6 × 6
## Scaffold SNP Cm Position Allele1 Allele2
## <chr> <chr> <int> <dbl> <chr> <chr>
## 1 1.1 AX-583035163 0 315386 A G
## 2 1.1 AX-583033356 0 315674 C T
## 3 1.1 AX-583033370 0 330057 G A
## 4 1.1 AX-583035194 0 330265 A G
## 5 1.1 AX-583033387 0 331288 C T
## 6 1.10 AX-583035257 0 91677 T C
We can write a function to import the bim files.
# function to import bim files ####
#
import_bim <- function(file) {
# import as a tibble and set columns as integers
bim <-
read_delim(
file,
col_names = FALSE,
show_col_types = FALSE,
col_types = "ccidcc"
)
# rename the columns by index
bim <- bim |>
rename(
Scaffold = 1,
SNP = 2,
Cm = 3,
Position = 4,
Allele1 = 5,
Allele2 = 6
)
return(bim)
}
# we can save the function to source it later
dump( # check ?dump for more information
"import_bim", # the object we want to save
here("scripts", "RMarkdowns",
"analyses", "import_bim.R") # use here to save it our function as .R
)
Now we can create the list of SNPs we want to use for the general linkage analysis.
snps_4ld <-
snps |>
filter( # scaffolds 2.17 (43Mb) and 3.75 (25Mb)
Scaffold == "2.17" | Scaffold == "3.75"
) |>
select(
"Scaffold",
"SNP"
)
nrow(snps_4ld)
## [1] 5898
We have 5916 SNPs to estimate LD that are located in the two largest scaffolds of chromosome 2 and 3.
# save calculation to load later ####
write.table(
snps_4ld,
file = here(
"euro_global/output/files/ld/snps_4ld.txt"
),
sep = "\t",
row.names = FALSE,
col.names = FALSE,
quote = FALSE
)
Now we have to select the populations for which we want to estimate the LD statistic. Let only estimate LD for populations that we have 12 or more individuals.
awk '{print $1}' euro_global/output/file4.fam | sort | uniq -c | awk '{print $2, $1}' | awk '$2 >= 12 {print}'
## ALU 12
## ALV 12
## BAR 12
## BEN 12
## BER 12
## BRE 13
## CAM 12
## CES 14
## CHA 12
## CRO 12
## DES 17
## FRS 12
## GES 12
## GRA 12
## GRV 12
## HAI 12
## HUN 12
## ITR 12
## KAG 12
## KAN 12
## KER 12
## KRA 12
## MAL 12
## MAT 12
## OKI 12
## POP 12
## QNC 12
## RAR 12
## REC 12
## ROS 12
## SEV 12
## SIC 12
## SLO 12
## SOC 12
## SSK 12
## STS 12
## TIK 12
## TRE 12
## TUA 12
## TUH 12
## UTS 12
Now we can create a list of populations that have 12 or more individuals. We can use the command above but only print the list of families. We can create a new directory for the LD analysis.
Create list of populations
awk '{print $1}' euro_global/output/file4.fam | sort | uniq -c | awk '{print $2, $1}' | awk '$2 >= 12 {print}' | awk '{print $1}' > euro_global/output/files/ld/pops_4ld.txt
Now we can use Plink1.9 to estimate LD and then bin the data
#load plink 1.9
module load PLINK/1.9b_6.21-x86_64
plink --version
#PLINK v1.90b6.21 64-bit (19 Oct 2020)
for fam in $(awk '{print $1}' euro_global/output/files/ld/pops_4ld.txt | sort | uniq);
do
echo $fam | \
plink \
--allow-extra-chr \
--keep-allele-order \
--extract euro_global/output/files/ld/snps_4ld.txt \
--bfile euro_global/output/file4 \
--keep-fam /dev/stdin \
--maf 0.1 \
--r2 \
--out euro_global/output/files/ld/$fam \
--geno 0.2 \
--write-snplist \
--silent
done;
#
rm euro_global/output/files/ld/*.nosex
Once we subset the bed files per population, we set a MAF and genotype missingness of 10% as before but now we have smaller sample size and not all populations will have all the variants.
import os
# Replace with the directory containing the .snplist files
directory = "euro_global/output/files/ld"
# Get a list of all .snplist files in the directory
file_list = [filename for filename in os.listdir(directory) if filename.endswith(".snplist")]
# Create a set to store the unique variants
unique_variants = set()
# Loop over each file and add the variants to the set
for filename in file_list:
with open(os.path.join(directory, filename), "r") as file:
for line in file:
unique_variants.add(line.strip())
# Create a dictionary to store the number of files each variant appears in
variant_counts = {variant: 0 for variant in unique_variants}
# Loop over each file again and count the variants
for filename in file_list:
with open(os.path.join(directory, filename), "r") as file:
for line in file:
variant = line.strip()
variant_counts[variant] += 1
# Calculate the threshold for the number of files a variant must appear in
threshold = int(len(file_list) * 0.50)
# Get the list of unique variants that appear in at least 80% of files
all_variants = [variant for variant, count in variant_counts.items() if count >= threshold]
# Save the list of variants to a new file
with open("euro_global/output/files/ld/all_unique_variants_50pct.txt", "w") as file:
file.write("\n".join(all_variants))
#64297
## 64297
Check how many SNPs
cat euro_global/output/files/ld/all_unique_variants_50pct.txt | sort | awk '!seen[gensub(/^[[:space:]]+|[[:space:]]+$/, "", "g")]++' | wc -l
## 4946
Now we can estimate LD again using the 4,946 variants that are present in at least 50% of the populations.
Now we can use Plink1.9 to estimate LD
for fam in $(awk '{print $1}' euro_global/output/files/ld/pops_4ld.txt | sort | uniq);
do
echo $fam | \
plink \
--allow-extra-chr \
--keep-allele-order \
--extract euro_global/output/files/ld/all_unique_variants_50pct.txt \
--bfile euro_global/output/file4 \
--keep-fam /dev/stdin \
--maf 0.1 \
--r2 \
--out euro_global/output/files/ld/$fam \
--geno 0.2 \
--write-snplist \
--silent
done;
#
rm euro_global/output/files/ld/*.nosex
Lets check one of the files
## CHR_A BP_A SNP_A CHR_B BP_B SNP_B R2
## 2.17 56405 AX-584670672 2.17 70977 AX-584670684 0.571429
## 2.17 56405 AX-584670672 2.17 71211 AX-585179355 0.308571
## 2.17 56405 AX-584670672 2.17 72138 AX-584670713 0.326531
## 2.17 56405 AX-584670672 2.17 107547 AX-585179519 0.204082
## 2.17 56405 AX-584670672 2.17 115267 AX-585179548 0.344234
## 2.17 56405 AX-584670672 2.17 124491 AX-585179568 0.232126
## 2.17 56405 AX-584670672 2.17 146817 AX-584670926 0.205882
## 2.17 70977 AX-584670684 2.17 71211 AX-585179355 0.24
## 2.17 70977 AX-584670684 2.17 72138 AX-584670713 0.223214
Clean the LD files from Plink
ld_files <- list.files(path = "euro_global/output/files/ld", pattern = "\\.ld$", full.names = TRUE)
for (file in ld_files) {
system(paste("awk -i inplace '{gsub(/[[:blank:]]+/, \" \")}1'", file))
}
Lets check one of the files
## CHR_A BP_A SNP_A CHR_B BP_B SNP_B R2
## 2.17 56405 AX-584670672 2.17 70977 AX-584670684 0.571429
## 2.17 56405 AX-584670672 2.17 71211 AX-585179355 0.308571
## 2.17 56405 AX-584670672 2.17 72138 AX-584670713 0.326531
## 2.17 56405 AX-584670672 2.17 107547 AX-585179519 0.204082
## 2.17 56405 AX-584670672 2.17 115267 AX-585179548 0.344234
## 2.17 56405 AX-584670672 2.17 124491 AX-585179568 0.232126
## 2.17 56405 AX-584670672 2.17 146817 AX-584670926 0.205882
## 2.17 70977 AX-584670684 2.17 71211 AX-585179355 0.24
## 2.17 70977 AX-584670684 2.17 72138 AX-584670713 0.223214
Function to import LD data
import_ld_files <- function(directory) {
ld_files <-
list.files(
path = directory,
pattern = "\\.ld$",
full.names = TRUE
)
ld_tibbles <- list()
for (file in ld_files) {
ld_name <- gsub(".ld", "", basename(file))
ld_data <- read_delim(
file,
col_names = TRUE,
delim = " ",
show_col_types = FALSE
) %>%
select(c("CHR_A", "BP_A", "SNP_A", "CHR_B", "BP_B", "SNP_B", "R2"))
ld_tibbles[[ld_name]] <- ld_data
}
return(ld_tibbles)
}
# we can save the function to source it later
dump( # check ?dump for more information
"import_ld_files", # the object we want to save
here("scripts", "RMarkdowns",
"analyses", "import_ld_files.R") # use here to save it our function as .R
)
Import the LD data
## # A tibble: 6 × 7
## CHR_A BP_A SNP_A CHR_B BP_B SNP_B R2
## <dbl> <dbl> <chr> <dbl> <dbl> <chr> <dbl>
## 1 2.17 70977 AX-584670684 2.17 161344 AX-584670951 0.424
## 2 2.17 70977 AX-584670684 2.17 193047 AX-584670995 0.257
## 3 2.17 70977 AX-584670684 2.17 201334 AX-585179663 0.490
## 4 2.17 70977 AX-584670684 2.17 213672 AX-584671067 0.5
## 5 2.17 70977 AX-584670684 2.17 213933 AX-585179740 1
## 6 2.17 70977 AX-584670684 2.17 217433 AX-584671128 0.5
Estimate half distance of maximum R2 value.
Since we have several populations, it is better to write a function
get_half_pop <- function(ld_tibble) {
# Split the tibble into sub-tibbles by scaffold
ld_split <- split(ld_tibble, ld_tibble[, 1])
# Remove rows with missing data
ld_no_nan <- lapply(ld_split, function(x) {
x[complete.cases(x), ]
})
# Calculate the distance between SNPs
ld_dist <-
lapply(ld_no_nan, function(x) {
cbind(x, x[, 5] - x[, 2])
})
# Sort the sub-tibbles by distance
ld_dist_order <- lapply(ld_dist, function(x) {
x[order(x[, 8]), ]
})
# Combine the sub-tibbles into one tibble
ld_proc <- do.call(rbind, ld_dist_order)
# Sort the tibble by distance
ld_sorted <- ld_proc[order(ld_proc[, 8]), ]
# Bin the data by distance
bin.1000 <-
cut(ld_sorted[, 8], (c(0:1000) * 1000), include.lowest = TRUE)
# Calculate the mean R2 for each bin
ld_bin_1000_sorted <-
tapply(ld_sorted[, 7], bin.1000, function(x) {
mean(x)
})
# Fit a LOESS curve to the binned data
lo.1000.ld <- loess(ld_bin_1000_sorted ~ c(1:1000))
# Find the value of the binned R2 that corresponds to half the maximum R2 value
d.pop <- max(ld_bin_1000_sorted, na.rm = TRUE)
half.pop <- which(ld_bin_1000_sorted <= (d.pop / 2))[1]
return(half.pop)
}
# we can save the function to source it later
dump(
"get_half_pop",
here("scripts", "RMarkdowns",
"analyses", "get_half_pop.R")
)
Test the function, it should return the same value as we got above
# for one population, you can change the population name to see other populations
half_alv <- get_half_pop(my_ld_tibbles$ALV)
half_alv
## [0,1e+03]
## 1
Estimates for all populations
# Create an empty data.frame to store the results
half_pops_df <-
data.frame(
row.names = names(my_ld_tibbles),
half_distance = numeric(length(my_ld_tibbles)),
stringsAsFactors = FALSE
)
# Calculate the hald distance of max r^2 value for each tibble and store in the data.frame
for (tib_name in names(my_ld_tibbles)) {
tib_half <- get_half_pop(my_ld_tibbles[[tib_name]])
half_pops_df[tib_name, "half_distance"] <- tib_half
}
# Print the resulting data.frame
half_pops_df
## half_distance
## ALU 1
## ALV 1
## BAR 1
## BEN 1
## BER 3
## BRE 3
## CAM 1
## CES 2
## CHA 1
## CRO 4
## DES 2
## FRS 1
## GES 2
## GRA 8
## GRV 2
## HAI 1
## HUN 1
## ITR 1
## KAG 8
## KAN 5
## KER 1
## KRA 1
## MAL 2
## MAT 1
## OKI 1
## POP 1
## QNC 1
## RAR 2
## REC 1
## ROS 5
## SEV 3
## SIC 1
## SLO 5
## SOC 5
## SSK 1
## STS 3
## TIK 3
## TRE 1
## TUA 1
## TUH 1
## UTS 61
The half distance of the maximum r^2 for all populations vary from 1 to 8kb* when we bin the data. We do see larger blocks but most of the ld blocks are small. You can use the entire genome to estimate LD instead of the larger scaffolds, but the result will be almost the same. I have done it, but I included only the larger scaffolds to make it easier for anyone to repeat the analysis. Once we start using the entire genome, we need to set a LD window, otherwise we will have billions of estimates since we would have to estimate r^2 for all pairs of SNPs on each chromosome. Let’s say we would have 500 SNPs on chromosome 1, we would have 2^500, which is 3.273391e+150 pairwise estimates.
Make a plot for all populations
# Calculate half distances for each population
populations <- names(my_ld_tibbles)
half_distances <- sapply(populations, function(population) {
ld_tibble <- my_ld_tibbles[[population]]
half_pop <- get_half_pop(ld_tibble)
return(half_pop)
})
# Create a tibble to store the half distances
half_distance_tibble <- data.frame(
population = populations,
half_distance = half_distances
)
# set the order of populations, you can change it on Excel then use it as a vector name pop_order
pop_order <-
c(
unique(
half_distance_tibble$population
)
)
# set the order by continent (Africa, Americas, Asia, Europe) - check Excel spreadsheet named Pops_ld_order.xlxs or make your own. For example, range or continent.
half_distance_tibble$population <-
factor(half_distance_tibble$population, levels = pop_order)
# Plot the half distances for each population
ggplot(half_distance_tibble, aes(x = population, y = half_distance)) +
geom_bar(
stat = "identity",
fill = "lightgray",
alpha = 0.8
) +
geom_text(
aes(label = round(half_distance, 2)),
vjust = -0.5,
size = 4,
color = "red"
) +
labs(x = "Population", y = expression(bold("Half Distance of Max " ~ r^
2 ~ " (kb)"))) +
my_theme() +
my_theme() +
theme(
axis.text.x = element_text(
angle = 90,
hjust = 1,
size = 14
),
axis.text.y = element_text(size = 14),
axis.title.x = element_text(size = 16, face = "bold"),
axis.title.y = element_text(size = 16, face = "bold")
)
# save the plot
ggsave(
here("scripts", "RMarkdowns",
"output", "euro_global", "figures", "linkage_half_distance_LONG_scaffolds_euro_global.pdf"
),
width = 12,
height = 6,
units = "in"
)
We can also plot the distribution of LD blocks across all scaffolds. Later we will create a new chromosomal scale, but for now lets estimate LD blocks using the genome as it is.
We can use Plink1.9 to estimate LD blocks for the populations with more than 12 individuals. We will use the entire genome for this part instead of the larger scaffolds only. We will set max distance of LD blocks of 200kb. We found out that the average half distance of r^2 max is relatively small
for fam in $(awk '{print $1}' euro_global/output/files/ld/pops_4ld.txt | sort | uniq);
do
echo $fam | \
plink \
--allow-extra-chr \
--keep-allele-order \
--bfile euro_global/output/file4 \
--keep-fam /dev/stdin \
--maf 0.1 \
--blocks no-pheno-req \
--blocks-max-kb 200 \
--out euro_global/output/files/ld/blocks/$fam \
--geno 0.1 \
--silent
done;
#
rm euro_global/output/files/ld/blocks/*.nosex
Now we can get some data from our .log files
echo "Population,n,nVariants,geno,maf,passQC" > euro_global/output/files/ld/blocks/table_ld_stats.csv
for file in euro_global/output/files/ld/blocks/*.log
do
variants=$(grep -oE '([0-9]+) variants loaded from \.bim file' $file | grep -oE '[0-9]+')
geno=$(grep -oE '([0-9]+) variants removed due to missing genotype data \(--geno\)' $file | grep -oE '[0-9]+')
maf=$(grep -oE '([0-9]+) variants removed due to minor allele threshold\(s\)' $file | grep -oE '[0-9]+')
pass=$(grep -oE '([0-9]+) variants and [0-9]+ people pass filters and QC\.' $file | grep -oE '[0-9]+' | head -1)
n=$(grep -oE '([0-9]+) variants and [0-9]+ people pass filters and QC\.' $file | grep -oE '[0-9]+' | tail -1)
filename=$(basename $file .log)
echo "$filename,$n,$variants,$geno,$maf,$pass" >> euro_global/output/files/ld/blocks/table_ld_stats.csv
done;
head -n 5 euro_global/output/files/ld/blocks/table_ld_stats.csv
## Population,n,nVariants,geno,maf,passQC
## ALU,12,87183,5005,23240,58938
## ALV,12,87183,4439,21462,61282
## BAR,12,87183,5935,24298,56950
## BEN,12,87183,6361,31062,49760
We can check the it out
# Load data from the table_ld_stats.csv file
ld_blocks <- read.csv(
here(
"euro_global/output/files/ld/blocks/table_ld_stats.csv"
),
header = TRUE,
sep = ","
)
# Create the flextable
ft <- flextable(ld_blocks)
# Apply zebra theme
ft <- theme_zebra(ft)
# Add a caption to the table
ft <- flextable::add_header_lines(ft, "Table 1: Summary of quality control for population data.")
ft
Table 1: Summary of quality control for population data. | |||||
---|---|---|---|---|---|
Population | n | nVariants | geno | maf | passQC |
ALU | 12 | 87,183 | 5,005 | 23,240 | 58,938 |
ALV | 12 | 87,183 | 4,439 | 21,462 | 61,282 |
BAR | 12 | 87,183 | 5,935 | 24,298 | 56,950 |
BEN | 12 | 87,183 | 6,361 | 31,062 | 49,760 |
BER | 12 | 87,183 | 5,104 | 18,622 | 63,457 |
BRE | 13 | 87,183 | 10,298 | 22,602 | 54,283 |
CAM | 12 | 87,183 | 7,616 | 26,142 | 53,425 |
CES | 14 | 87,183 | 15,824 | 24,485 | 46,874 |
CHA | 12 | 87,183 | 4,781 | 29,232 | 53,170 |
CRO | 12 | 87,183 | 4,642 | 21,290 | 61,251 |
DES | 17 | 87,183 | 18,316 | 19,093 | 49,774 |
FRS | 12 | 87,183 | 3,649 | 18,716 | 64,818 |
GES | 12 | 87,183 | 4,226 | 25,586 | 57,371 |
GRA | 12 | 87,183 | 5,390 | 19,319 | 62,474 |
GRV | 12 | 87,183 | 5,810 | 26,958 | 54,415 |
HAI | 12 | 87,183 | 4,275 | 19,967 | 62,941 |
HUN | 12 | 87,183 | 3,875 | 17,296 | 66,012 |
ITR | 12 | 87,183 | 3,606 | 19,021 | 64,556 |
KAG | 12 | 87,183 | 5,168 | 22,008 | 60,007 |
KAN | 12 | 87,183 | 5,191 | 27,265 | 54,727 |
KER | 12 | 87,183 | 3,940 | 22,189 | 61,054 |
KRA | 12 | 87,183 | 6,336 | 21,330 | 59,517 |
MAL | 12 | 87,183 | 3,844 | 18,044 | 65,295 |
MAT | 12 | 87,183 | 5,074 | 29,941 | 52,168 |
OKI | 12 | 87,183 | 5,933 | 25,350 | 55,900 |
POP | 12 | 87,183 | 3,925 | 16,703 | 66,555 |
QNC | 12 | 87,183 | 6,640 | 35,691 | 44,852 |
RAR | 12 | 87,183 | 4,111 | 26,637 | 56,435 |
REC | 12 | 87,183 | 9,288 | 22,616 | 55,279 |
ROS | 12 | 87,183 | 6,222 | 22,260 | 58,701 |
SEV | 12 | 87,183 | 4,472 | 27,759 | 54,952 |
SIC | 12 | 87,183 | 8,942 | 22,788 | 55,453 |
SLO | 12 | 87,183 | 7,077 | 16,189 | 63,917 |
SOC | 12 | 87,183 | 4,258 | 25,187 | 57,738 |
SSK | 12 | 87,183 | 4,939 | 29,439 | 52,805 |
STS | 12 | 87,183 | 4,558 | 18,918 | 63,707 |
TIK | 12 | 87,183 | 4,234 | 27,668 | 55,281 |
TRE | 12 | 87,183 | 3,667 | 15,455 | 68,061 |
TUA | 12 | 87,183 | 5,116 | 21,645 | 60,422 |
TUH | 12 | 87,183 | 4,677 | 19,546 | 62,960 |
UTS | 12 | 87,183 | 4,226 | 21,764 | 61,193 |
# Save it to a Word document
officer::read_docx() |>
body_add_flextable(ft) |>
print(target = here::here("scripts", "RMarkdowns", "output", "euro_global", "summary_maf_geno_filter_population_euro_global.docx"))
cd euro_global/output/files/ld/blocks
wc -l *.blocks | \
awk '{population = gensub(/\.blocks/, "", "g", $2); print population "\t" $1}' | \
sed 's#/##' | \
sed '$d' > populations_block_counts.csv;
head -n 30 populations_block_counts.csv
## ALU 83
## ALV 99
## BAR 114
## BEN 8
## BER 105
## BRE 307
## CAM 8
## CES 421
## CHA 7
## CRO 107
## DES 545
## FRS 68
## GES 186
## GRA 35
## GRV 170
## HAI 62
## HUN 48
## ITR 88
## KAG 127
## KAN 318
## KER 135
## KRA 98
## MAL 79
## MAT 13
## OKI 142
## POP 81
## QNC 36
## RAR 161
## REC 120
## ROS 86
Now we can add the number of blocks to the table we made
# Load data from the table_ld_stats.csv file
ld_blocks <- read.csv(
"euro_global/output/files/ld/blocks/table_ld_stats.csv"
,
header = TRUE,
sep = ","
)
# Load the population counts data from the CSV file
pop_counts <-
read.delim(
"euro_global/output/files/ld/blocks/populations_block_counts.csv"
,
header = F,
sep = "\t"
) |>
rename(
Population = 1,
nBlocks = 2
)
# Merge the population counts with the table data
ld_blocks <- merge(ld_blocks, pop_counts, by = "Population")
# Create the flextable
ft <- flextable(ld_blocks)
# Apply zebra theme
ft <- theme_zebra(ft)
# Add a caption to the table
ft <- flextable::add_header_lines(ft, "Table 2: Number of linkage blocks detected with Plink for populations with at least 12 individuals.")
ft
Table 2: Number of linkage blocks detected with Plink for populations with at least 12 individuals. | ||||||
---|---|---|---|---|---|---|
Population | n | nVariants | geno | maf | passQC | nBlocks |
ALU | 12 | 87,183 | 5,005 | 23,240 | 58,938 | 83 |
ALV | 12 | 87,183 | 4,439 | 21,462 | 61,282 | 99 |
BAR | 12 | 87,183 | 5,935 | 24,298 | 56,950 | 114 |
BEN | 12 | 87,183 | 6,361 | 31,062 | 49,760 | 8 |
BER | 12 | 87,183 | 5,104 | 18,622 | 63,457 | 105 |
BRE | 13 | 87,183 | 10,298 | 22,602 | 54,283 | 307 |
CAM | 12 | 87,183 | 7,616 | 26,142 | 53,425 | 8 |
CES | 14 | 87,183 | 15,824 | 24,485 | 46,874 | 421 |
CHA | 12 | 87,183 | 4,781 | 29,232 | 53,170 | 7 |
CRO | 12 | 87,183 | 4,642 | 21,290 | 61,251 | 107 |
DES | 17 | 87,183 | 18,316 | 19,093 | 49,774 | 545 |
FRS | 12 | 87,183 | 3,649 | 18,716 | 64,818 | 68 |
GES | 12 | 87,183 | 4,226 | 25,586 | 57,371 | 186 |
GRA | 12 | 87,183 | 5,390 | 19,319 | 62,474 | 35 |
GRV | 12 | 87,183 | 5,810 | 26,958 | 54,415 | 170 |
HAI | 12 | 87,183 | 4,275 | 19,967 | 62,941 | 62 |
HUN | 12 | 87,183 | 3,875 | 17,296 | 66,012 | 48 |
ITR | 12 | 87,183 | 3,606 | 19,021 | 64,556 | 88 |
KAG | 12 | 87,183 | 5,168 | 22,008 | 60,007 | 127 |
KAN | 12 | 87,183 | 5,191 | 27,265 | 54,727 | 318 |
KER | 12 | 87,183 | 3,940 | 22,189 | 61,054 | 135 |
KRA | 12 | 87,183 | 6,336 | 21,330 | 59,517 | 98 |
MAL | 12 | 87,183 | 3,844 | 18,044 | 65,295 | 79 |
MAT | 12 | 87,183 | 5,074 | 29,941 | 52,168 | 13 |
OKI | 12 | 87,183 | 5,933 | 25,350 | 55,900 | 142 |
POP | 12 | 87,183 | 3,925 | 16,703 | 66,555 | 81 |
QNC | 12 | 87,183 | 6,640 | 35,691 | 44,852 | 36 |
RAR | 12 | 87,183 | 4,111 | 26,637 | 56,435 | 161 |
REC | 12 | 87,183 | 9,288 | 22,616 | 55,279 | 120 |
ROS | 12 | 87,183 | 6,222 | 22,260 | 58,701 | 86 |
SEV | 12 | 87,183 | 4,472 | 27,759 | 54,952 | 217 |
SIC | 12 | 87,183 | 8,942 | 22,788 | 55,453 | 165 |
SLO | 12 | 87,183 | 7,077 | 16,189 | 63,917 | 43 |
SOC | 12 | 87,183 | 4,258 | 25,187 | 57,738 | 139 |
SSK | 12 | 87,183 | 4,939 | 29,439 | 52,805 | 8 |
STS | 12 | 87,183 | 4,558 | 18,918 | 63,707 | 121 |
TIK | 12 | 87,183 | 4,234 | 27,668 | 55,281 | 203 |
TRE | 12 | 87,183 | 3,667 | 15,455 | 68,061 | 75 |
TUA | 12 | 87,183 | 5,116 | 21,645 | 60,422 | 137 |
TUH | 12 | 87,183 | 4,677 | 19,546 | 62,960 | 125 |
UTS | 12 | 87,183 | 4,226 | 21,764 | 61,193 | 143 |
# Save it to a Word document
officer::read_docx() |>
body_add_flextable(ft) |>
print(target = here::here("scripts", "RMarkdowns", "output", "euro_global", "summary_ld_blocks_euro_global.docx"))
Get the size of each block from the .block.det files
get_kb_column <- function(dir_path) {
# obtain the list of files with extension .blocks.det
file_names <- list.files(path = dir_path, pattern = "\\.blocks\\.det$", full.names = TRUE)
# create an empty list to hold the data frames
block_list <- list()
# loop through the files and read the data into the list
for (file in file_names) {
df <- read.table(file, header = TRUE, check.names = FALSE, stringsAsFactors = FALSE)
# select only the KB column and add it to the block_list with the file name
block_list[[file]] <- df %>% select(KB) %>% add_column(file = file, .before = 1)
}
# combine the data frames in the block_list into a single data frame
blocks <- bind_rows(block_list)
# clean up the file name column
blocks$file <- str_remove(blocks$file, "^.*\\/ld\\/blocks\\/")
return(blocks)
}
# example usage: replace dir_path with your directory path
dir_path <- here("euro_global/output/files/ld/blocks")
blocks<-
get_kb_column(dir_path) |>
mutate(file = str_remove(file, ".blocks.det")) |>
as_tibble() |>
rename(
Population = 1
)
Create density plot of the size of the LD blocks Plink found
# define the color palette with 38 color blind colors
library(RColorBrewer)
n <- 50
qual_col_pals = brewer.pal.info[brewer.pal.info$category == 'qual',]
col_vector = unlist(mapply(brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals)))
pie(rep(1,n), col=sample(col_vector, n))
## [1] "#7FC97F" "#BEAED4" "#FDC086" "#FFFF99" "#386CB0" "#F0027F" "#BF5B17"
## [8] "#666666" "#1B9E77" "#D95F02" "#7570B3" "#E7298A" "#66A61E" "#E6AB02"
## [15] "#A6761D" "#666666" "#A6CEE3" "#1F78B4" "#B2DF8A" "#33A02C" "#FB9A99"
## [22] "#E31A1C" "#FDBF6F" "#FF7F00" "#CAB2D6" "#6A3D9A" "#FFFF99" "#B15928"
## [29] "#FBB4AE" "#B3CDE3" "#CCEBC5" "#DECBE4" "#FED9A6" "#FFFFCC" "#E5D8BD"
## [36] "#FDDAEC" "#F2F2F2" "#B3E2CD" "#FDCDAC" "#CBD5E8" "#F4CAE4" "#E6F5C9"
## [43] "#FFF2AE" "#F1E2CC" "#CCCCCC" "#E41A1C" "#377EB8" "#4DAF4A" "#984EA3"
## [50] "#FF7F00" "#FFFF33" "#A65628" "#F781BF" "#999999" "#66C2A5" "#FC8D62"
## [57] "#8DA0CB" "#E78AC3" "#A6D854" "#FFD92F" "#E5C494" "#B3B3B3" "#8DD3C7"
## [64] "#FFFFB3" "#BEBADA" "#FB8072" "#80B1D3" "#FDB462" "#B3DE69" "#FCCDE5"
## [71] "#D9D9D9" "#BC80BD" "#CCEBC5" "#FFED6F"
# make plot using the sample y scale for all populations
ggplot(blocks, aes(x = KB)) +
stat_density(
aes(y = after_stat(count), fill = factor(Population)),
linewidth = .5,
alpha = .4,
position = "identity"
) +
scale_fill_manual(values = col_vector) +
scale_x_continuous(name = "Block length (kb)") +
scale_y_continuous(name = "Count") +
theme(
plot.title = element_text(hjust = 0.5, size = 18, face = "bold"),
axis.text = element_text(size = 12),
axis.title = element_text(size = 16, face = "bold"),
strip.text = element_text(size = 14, face = "bold"),
plot.background = element_rect(fill = "white"),
panel.background = element_rect(fill = 'white', colour = 'black')
) +
guides(fill = "none") +
facet_wrap( ~ Population, ncol = 3) + my_theme()
# save the plot as a PDF using ggsave
ggsave(
here("scripts",
"RMarkdowns",
"output",
"euro_global",
"figures",
"block_density_y_scale_fixed_euro_global.pdf"
),
width = 10,
height = 10,
units = "in"
)
Make plot allowing the y axis scale free
ggplot(blocks, aes(x = KB)) +
stat_density(
aes(y = after_stat(count), fill = factor(Population)),
linewidth = .5,
alpha = .4,
position = "identity"
) +
scale_fill_manual(values = col_vector) +
scale_x_continuous(name = "Block length (kb)") +
scale_y_continuous(name = "Count") +
theme(
plot.title = element_text(hjust = 0.5, size = 18, face = "bold"),
axis.text = element_text(size = 12),
axis.title = element_text(size = 16, face = "bold"),
strip.text = element_text(size = 14, face = "bold"),
plot.background = element_rect(fill = "white"),
panel.background = element_rect(fill = 'white', colour = 'black')
) +
guides(fill = "none") +
facet_wrap( ~ Population, ncol = 3, scales = "free_y") +
my_theme()
Since we do not have to remove any SNPs due to deviation from HWE, we
can proceed with heterozygosity estimates. The first step is to “prune”
our data set. We will check the pairwise linkage estimates for all SNPs.
We can work with file4. We will use “indep-pairwise
” to
check if there are SNPs above a certain linkage disequilibrium (LD)
threshold. Check Plink documentation for more details https://www.cog-genomics.org/plink/1.9/ld I used
“--indep-pairwise 5 1 0.1
” , which indicates according to
the documentation:
--indep-pairphase <window size>['kb'] <step size (variant ct)> <r^2 threshold>
We will check in a window of 5kb if there is any pair of SNPs with r2
estimates above 0.1, then we will move our window 1 SNP and check again
for SNPs above the threshold. We will repeat this procedure until we
check the entire genome.
Need to switch back to plink2
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file4 \
--extract euro_global/output/files/passed_hwe.txt \
--indep-pairwise 5 1 0.1 \
--out euro_global/output/indepSNP \
--silent;
grep 'pairwise\|variants\|samples' euro_global/output/indepSNP.log
–indep-pairwise 5 1 0.1 708 samples (85 females, 70 males, 553 ambiguous; 708 founders) loaded from 87183 variants loaded from euro_global/output/file4.bim. –extract: 87183 variants remaining. 87183 variants remaining after main filters. –indep-pairwise (28 compute threads): 30726/87183 variants removed.
Remember, the SNPs are not removed from our data set. Plink created 3 files when we ran the code above. One is the “indepSNP.log” file, and the other two are: “indepSNP.prune.in” -> list of SNPs with squared correlation smaller than our r2 threshold of 0.1. “indepSNP.prune.out” -> list of SNPs with squared correlation greater than our r2 threshold of 0.1. For our heterozygosity estimates, we want to use the set of SNPs that are below our r2 threshold of 0.1. We consider that they are randomly associated. We can use Plink to estimate the heterozygosity using the “indepSNP.prune.in” file.
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file4 \
--extract euro_global/output/indepSNP.prune.in \
--het \
--out euro_global/output/R_check \
--silent;
grep 'variants' euro_global/output/R_check.log
87183 variants loaded from euro_global/output/file4.bim. –extract: 56457 variants remaining. 56457 variants remaining after main filters.
# find individuals with high heterozygosity ####
# import the data from Plink
het <- read.delim(
here(
"euro_global/output/R_check.het"
),
head = TRUE
)
#
# check head of the file
colnames(het)
## [1] "X.FID" "IID" "O.HOM." "E.HOM." "OBS_CT" "F"
Estimate heterozygosity
# create a column named HET_RATE and calculate the heterozygosity rate
het$HET_RATE <- (het$"OBS_CT" - het$"O.HOM") / het$"OBS_CT"
#
# use subset function to get values deviating from 4sd of the mean heterozygosity rate.
het_fail <-
subset(
het, (het$HET_RATE < mean(
het$HET_RATE
) - 4 * sd(
het$HET_RATE
)) |
(het$HET_RATE > mean(
het$HET_RATE
) + 4 * sd(
het$HET_RATE
))
)
#
# get the list of individuals that failed our threshold of 4sd from the mean.
het_fail$HET_DST <-
(het_fail$HET_RATE - mean(
het$HET_RATE
)) / sd(
het$HET_RATE
)
Save the files to use with Plink
# save the data to use with Plink2 ####
#
write.table(
het_fail,
here(
"euro_global/output/fail-het-qc.txt"
),
row.names = FALSE
)
Make plot
# make a heterozygosity plot ####
#
ggplot(
het,
aes(
HET_RATE
)
) +
geom_histogram(
colour = "black",
fill = "lightgray",
bins = 40
) +
labs(
x = "Heterozygosity Rate",
y = "Number of Individuals"
) +
geom_vline(
aes(
xintercept = mean(
HET_RATE
)
),
col = "red",
linewidth = 1.5
) +
geom_vline(
aes(
xintercept = mean(
HET_RATE
) + 4 * sd(
HET_RATE
)
),
col = "#BFB9B9",
linewidth = 1
) +
geom_vline(
aes(
xintercept = mean(
HET_RATE
) - 4 * sd(
HET_RATE
)
),
col = "#BFB9B9",
linewidth = 1
) +
my_theme() +
scale_y_continuous(
)
# save the heterozygosity plot ####
ggsave(
here("scripts", "RMarkdowns",
"output", "euro_global", "figures", "Heterozygosity_euro_global.pdf"
),
width = 5,
height = 4,
units = "in"
)
The red line in the plot above indicates the mean, and the gray lines indicate 4 standard deviation from the mean. We can see that some mosquitoes do have excess heterozygous sites. We will remove them. We can get their ID from the file “fail-het-qc.txt”. We can use the bash script below to parse the file to use with Plink
sed 's/"// g' euro_global/output/fail-het-qc.txt | awk '{print$1, $2}'> euro_global/output/het_fail_ind.txt;
echo 'How many mosquitoes we need to remove from our data set:';
cat euro_global/output/het_fail_ind.txt | tail -n +2 | wc -l;
echo 'Which mosquitoes we have to remove:';
tail -n +2 euro_global/output/het_fail_ind.txt
## How many mosquitoes we need to remove from our data set:
## 9
## Which mosquitoes we have to remove:
## QNC 1248
## KAT 601
## KAT 605
## KAT 606
## KAT 608
## GRA 734
## TUA 783
## ITP 832
## ROS 858
Heterozygosity is outside the SD threshold in 4 KAT individuals (601, 605, 606, 608), 1 QNC (1248), 1 COL (471), 1 GRA (734), 1 TUA (783), 1 ITP (832), and 1 ROS (858). We will remove these 10 individuals.
Next, we will remove these mosquitoes from our data set using Plink:
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file4 \
--remove euro_global/output/het_fail_ind.txt \
--make-bed \
--out euro_global/output/file5 \
--silent;
grep 'variants\|samples' euro_global/output/file5.log
708 samples (85 females, 70 males, 553 ambiguous; 708 founders) loaded from 87183 variants loaded from euro_global/output/file4.bim. –remove: 699 samples remaining. 699 samples (85 females, 65 males, 549 ambiguous; 699 founders) remaining after
Import the .bim file with the SNPs to create a new chromosomal scale.
# ____________________________________________________________________________
# import the bim file with the SNP data ####
snps <-
read_delim( # to learn about the options use here, run ?read_delim on the console.
here(
"euro_global/output/file7.bim"
), # use library here to load it
col_names = FALSE, # we don't have header in the input file
show_col_types = FALSE, # suppress message from read_delim
col_types = "ccidcc" # set the class of each column
)
#
# set column names
colnames(
snps
) <- # to add a header in our tibble
c(
"Scaffold", "SNP", "Cm", "Position", "Allele1", "Allele2"
)
#
# check the tibble
head(snps)
## # A tibble: 6 × 6
## Scaffold SNP Cm Position Allele1 Allele2
## <chr> <chr> <int> <dbl> <chr> <chr>
## 1 1 AX-583035163 0 315386 A G
## 2 1 AX-583033356 0 315674 C T
## 3 1 AX-583033370 0 330057 G A
## 4 1 AX-583035194 0 330265 A G
## 5 1 AX-583033387 0 331288 C T
## 6 1 AX-583035257 0 442875 T C
Separate the tibbles into each chromosome
# separate the SNP data per chromosome
# chr1
chr1_snps <-
snps |>
filter(
str_detect(
Scaffold, "^1."
)
) |> # here we get only Scaffold rows starting with 1
as_tibble() # save as tibble
#
# chr2
chr2_snps <-
snps |>
filter(
str_detect(
Scaffold, "^2."
)
) |>
as_tibble()
#
# chr3
chr3_snps <-
snps |>
filter(
str_detect(
Scaffold, "^3."
)
) |>
as_tibble()
Import the file with sizes of each scaffold.
# import the file with the scaffold sizes ####
sizes <-
read_delim(
here(
"/gpfs/gibbs/project/caccone/mkc54/albo/genome/scaffold_sizes.txt"
),
col_names = FALSE,
show_col_types = FALSE,
col_types = "cd"
)
#
# set column names
colnames(
sizes
) <- c(
"Scaffold", "Size"
)
# ____________________________________________________________________________
# create new column with the chromosome number ####
sizes <-
sizes |>
mutate(
Chromosome = case_when( # we use mutate to create a new column called Chromosome
startsWith(
Scaffold, "1"
) ~ "1", # use startsWith to get Scaffold rows starting with 1 and output 1 on Chromosome column
startsWith(
Scaffold, "2"
) ~ "2",
startsWith(
Scaffold, "3"
) ~ "3"
)
) |>
arrange(
Scaffold
) # to sort the order of the scaffolds, fixing the problem we have with scaffold 1.86
# check it
head(sizes)
## # A tibble: 6 × 3
## Scaffold Size Chromosome
## <chr> <dbl> <chr>
## 1 1.1 351198 1
## 2 1.10 11939576 1
## 3 1.100 3389100 1
## 4 1.101 470438 1
## 5 1.102 2525157 1
## 6 1.103 150026 1
Create new scale. Get the scaffolds for each chromosome.
# separate the scaffold sizes tibble per chromosome ####
# chr1
chr1_scaffolds <-
sizes |>
filter(
str_detect(
Scaffold, "^1" # we use library stringr to get scaffolds starting with 1 (chromosome 1)
)
) |>
as_tibble()
#
# chr2
chr2_scaffolds <-
sizes |>
filter(
str_detect(
Scaffold, "^2" # we use library stringr to get scaffolds starting with 2 (chromosome 2)
)
) |>
as_tibble()
#
# # chr3
chr3_scaffolds <-
sizes |>
filter(
str_detect(
Scaffold, "^3" # we use library stringr to get scaffolds starting with 3 (chromosome 3)
)
) |>
as_tibble()
Create a scale for each chromosome.
# create a new scale for each chromosome ####
# chr1
chr1_scaffolds$overall_size_before_bp <-
0 # we create a new column with zeros
for (i in 2:nrow(
chr1_scaffolds
)
) { # loop to start on second line
chr1_scaffolds$overall_size_before_bp[i] <- # set position on the scale
chr1_scaffolds$overall_size_before_bp[i - 1] + chr1_scaffolds$Size[i - # add the scaffold size and the location to get position on new scale
1]
}
#
# chr2
chr2_scaffolds$overall_size_before_bp <- 0
for (i in 2:nrow(
chr2_scaffolds
)
) {
chr2_scaffolds$overall_size_before_bp[i] <-
chr2_scaffolds$overall_size_before_bp[i - 1] + chr2_scaffolds$Size[i -
1]
}
#
# chr3
chr3_scaffolds$overall_size_before_bp <- 0
for (i in 2:nrow(
chr3_scaffolds
)
) {
chr3_scaffolds$overall_size_before_bp[i] <-
chr3_scaffolds$overall_size_before_bp[i - 1] + chr3_scaffolds$Size[i -
1]
}
Merge the data frames scaffolds and SNPs.
# merge the data sets using the tidyverse function left_join ####
# chr1
chr1_scale <-
chr1_snps |> # create data frame for each chromosome, get chr1_snps
left_join( # use lef_join function to merge it with chr1_scaffolds
chr1_scaffolds,
by = "Scaffold"
) |> # set column to use for merging (Scaffold in this case)
na.omit() |> # remove NAs, we don't have SNPs in every scaffold
mutate(
midPos_fullseq = as.numeric(
Position
) + # make new columns numeric
as.numeric(
overall_size_before_bp
)
)
#
# chr2
chr2_scale <-
chr2_snps |>
left_join(
chr2_scaffolds,
by = "Scaffold"
) |>
na.omit() |>
mutate(
midPos_fullseq = as.numeric(
Position
) +
as.numeric(
overall_size_before_bp
)
)
#
# chr3
chr3_scale <-
chr3_snps |>
left_join(
chr3_scaffolds,
by = "Scaffold"
) |>
na.omit() |>
mutate(
midPos_fullseq = as.numeric(
Position
) +
as.numeric(
overall_size_before_bp
)
)
Merge all chromosome scales.
# merge the data sets, and select only the columns we need ####
chroms <- rbind(
chr1_scale, chr2_scale, chr3_scale
) |>
dplyr::select(
Chromosome, SNP, Cm, midPos_fullseq, Allele1, Allele2
)
# check it
head(chroms)
## # A tibble: 0 × 6
## # ℹ 6 variables: Chromosome <chr>, SNP <chr>, Cm <int>, midPos_fullseq <dbl>,
## # Allele1 <chr>, Allele2 <chr>
Save the new .bim file
# ____________________________________________________________________________
# save the new bim file with a new name, I added "B" ####
write.table(
chroms,
file = here(
"euro_global/output/file7C.bim"
),
sep = "\t",
row.names = FALSE,
col.names = FALSE,
quote = FALSE
)
Rename the .bim files
# change the name of the first .bim file, for example, append _backup.bim, and then replace the original file
mv euro_global/output/file7.bim euro_global/output/file7_backup.bim;
# than change the new bim we create to the original name (do it only once, otherwise it will mess up)
mv euro_global/output/file7C.bim euro_global/output/file7.bim
Create a new bed file with Plink2 to see if it works. For example, to see if the variants are in the right order. Plink2 will give us a warning.
plink2 \
--bfile euro_global/output/file7 \
--make-bed \
--out euro_global/output/test01;
# then we remove the files
rm euro_global/output/test01.*
PLINK v2.00a3.7LM AVX2 Intel (24 Oct 2022) www.cog-genomics.org/plink/2.0/ (C) 2005-2022 Shaun Purcell, Christopher Chang GNU General Public License v3 Logging to euro_global/output/test01.log. Options in effect: –bfile euro_global/output/file7 –make-bed –out euro_global/output/test01 Start time: Mon Dec 4 10:44:22 2023 257256 MiB RAM detected; reserving 128628 MiB for main workspace. Using up to 32 threads (change this with –threads). 688 samples (82 females, 64 males, 542 ambiguous; 688 founders) loaded from euro_global/output/file7.fam. 87183 variants loaded from euro_global/output/file7.bim. Note: No phenotype data present. Writing euro_global/output/test01.fam … done. Writing euro_global/output/test01.bim … done. Writing euro_global/output/test01.bed … done. End time: Mon Dec 4 10:44:23 2023
We can use Plink1.9 to estimate LD blocks for the populations with more than 12 individuals. We will use the entire genome for this part instead of the larger scaffolds only. We will set max distance of LD blocks of 500kb. We found out that the average half distance of r^2 max is small, from 1 to 5kb
for fam in $(awk '{print $1}' euro_global/output/files/ld/pops_4ld.txt | sort | uniq);
do
echo $fam | \
plink \
--allow-extra-chr \
--keep-allele-order \
--bfile euro_global/output/file7 \
--keep-fam /dev/stdin \
--maf 0.1 \
--blocks no-pheno-req \
--blocks-max-kb 200 \
--out euro_global/output/files/ld/blocks_chr/$fam \
--geno 0.1 \
--silent
done;
#
rm euro_global/output/files/ld/blocks_chr/*.nosex
Now we can get some data from our .log files
echo "Population,n,nVariants,geno,maf,passQC" > euro_global/output/files/ld/blocks_chr/table_ld_stats.csv
for file in euro_global/output/files/ld/blocks_chr/*.log
do
variants=$(grep -oE '([0-9]+) variants loaded from \.bim file' $file | grep -oE '[0-9]+')
geno=$(grep -oE '([0-9]+) variants removed due to missing genotype data \(--geno\)' $file | grep -oE '[0-9]+')
maf=$(grep -oE '([0-9]+) variants removed due to minor allele threshold\(s\)' $file | grep -oE '[0-9]+')
pass=$(grep -oE '([0-9]+) variants and [0-9]+ people pass filters and QC\.' $file | grep -oE '[0-9]+' | head -1)
n=$(grep -oE '([0-9]+) variants and [0-9]+ people pass filters and QC\.' $file | grep -oE '[0-9]+' | tail -1)
filename=$(basename $file .log)
echo "$filename,$n,$variants,$geno,$maf,$pass" >> euro_global/output/files/ld/blocks_chr/table_ld_stats.csv
done;
head -n 5 euro_global/output/files/ld/blocks_chr/table_ld_stats.csv
## Population,n,nVariants,geno,maf,passQC
## ALU,12,87183,5005,23240,58938
## ALV,12,87183,4439,21462,61282
## BAR,12,87183,5935,24298,56950
## BEN,12,87183,6361,31062,49760
Check it
# Load data from the table_ld_stats.csv file
ld_blocks <- read.csv(
here(
"euro_global/output/files/ld/blocks_chr/table_ld_stats.csv"
),
header = TRUE,
sep = ","
)
# Create the flextable
ft <- flextable(ld_blocks)
# Apply zebra theme
ft <- theme_zebra(ft)
# Add a caption to the table
ft <- flextable::add_header_lines(ft, "Table 1: Summary of quality control for Euro_global dataset.")
ft
Table 1: Summary of quality control for Euro_global dataset. | |||||
---|---|---|---|---|---|
Population | n | nVariants | geno | maf | passQC |
ALU | 12 | 87,183 | 5,005 | 23,240 | 58,938 |
ALV | 12 | 87,183 | 4,439 | 21,462 | 61,282 |
BAR | 12 | 87,183 | 5,935 | 24,298 | 56,950 |
BEN | 12 | 87,183 | 6,361 | 31,062 | 49,760 |
BER | 12 | 87,183 | 5,104 | 18,622 | 63,457 |
BRE | 13 | 87,183 | 10,298 | 22,602 | 54,283 |
CAM | 12 | 87,183 | 7,616 | 26,142 | 53,425 |
CES | 14 | 87,183 | 15,824 | 24,485 | 46,874 |
CHA | 12 | 87,183 | 4,781 | 29,232 | 53,170 |
CRO | 12 | 87,183 | 4,642 | 21,290 | 61,251 |
DES | 16 | 87,183 | 17,861 | 19,029 | 50,293 |
FRS | 12 | 87,183 | 3,649 | 18,716 | 64,818 |
GES | 12 | 87,183 | 4,226 | 25,586 | 57,371 |
GRA | 11 | 87,183 | 4,402 | 20,482 | 62,299 |
GRV | 12 | 87,183 | 5,810 | 26,958 | 54,415 |
HAI | 12 | 87,183 | 4,275 | 19,967 | 62,941 |
HUN | 12 | 87,183 | 3,875 | 17,296 | 66,012 |
ITR | 12 | 87,183 | 3,606 | 19,021 | 64,556 |
KAG | 12 | 87,183 | 5,168 | 22,008 | 60,007 |
KAN | 11 | 87,183 | 4,630 | 28,705 | 53,848 |
KER | 12 | 87,183 | 3,940 | 22,189 | 61,054 |
KRA | 12 | 87,183 | 6,336 | 21,330 | 59,517 |
MAL | 12 | 87,183 | 3,844 | 18,044 | 65,295 |
MAT | 12 | 87,183 | 5,074 | 29,941 | 52,168 |
OKI | 12 | 87,183 | 5,933 | 25,350 | 55,900 |
POP | 12 | 87,183 | 3,925 | 16,703 | 66,555 |
QNC | 11 | 87,183 | 5,595 | 36,809 | 44,779 |
RAR | 12 | 87,183 | 4,111 | 26,637 | 56,435 |
REC | 11 | 87,183 | 8,469 | 23,358 | 55,356 |
ROS | 11 | 87,183 | 5,105 | 23,286 | 58,792 |
SEV | 12 | 87,183 | 4,472 | 27,759 | 54,952 |
SIC | 9 | 87,183 | 19,392 | 14,832 | 52,959 |
SLO | 12 | 87,183 | 7,077 | 16,189 | 63,917 |
SOC | 12 | 87,183 | 4,258 | 25,187 | 57,738 |
SSK | 12 | 87,183 | 4,939 | 29,439 | 52,805 |
STS | 12 | 87,183 | 4,558 | 18,918 | 63,707 |
TIK | 12 | 87,183 | 4,234 | 27,668 | 55,281 |
TRE | 12 | 87,183 | 3,667 | 15,455 | 68,061 |
TUA | 9 | 87,183 | 12,585 | 17,780 | 56,818 |
TUH | 12 | 87,183 | 4,677 | 19,546 | 62,960 |
UTS | 12 | 87,183 | 4,226 | 21,764 | 61,193 |
# Save it to a Word document
officer::read_docx() |>
body_add_flextable(ft) |>
print(target = here::here("euro_global/output/summary_blocks_chr.docx"))
Count how many blocks we found in each population
cd euro_global/output/files/ld/blocks_chr
wc -l *.blocks | \
awk '{population = gensub(/\.blocks_chr/, "", "g", $2); print population "\t" $1}' | \
sed 's#euro_global/output/files/ld/blocks_chr/##' | \
sed 's/.blocks//' | \
sed '$d' > populations_block_counts.csv;
head -n 79 populations_block_counts.csv
## ALU 83
## ALV 99
## BAR 114
## BEN 8
## BER 105
## BRE 307
## CAM 8
## CES 421
## CHA 7
## CRO 107
## DES 413
## FRS 68
## GES 186
## GRA 31
## GRV 170
## HAI 62
## HUN 48
## ITR 88
## KAG 127
## KAN 240
## KER 135
## KRA 98
## MAL 79
## MAT 13
## OKI 142
## POP 81
## QNC 24
## RAR 161
## REC 85
## ROS 74
## SEV 217
## SIC 0
## SLO 43
## SOC 139
## SSK 8
## STS 121
## TIK 203
## TRE 75
## TUA 3
## TUH 125
## UTS 143
Add the number of blocks to the table we made
# Load data from the table_ld_stats.csv file
ld_blocks <- read.csv(
here(
"euro_global/output/files/ld/blocks_chr/table_ld_stats.csv"
),
header = TRUE,
sep = ","
)
# Load the population counts data from the CSV file
pop_counts <-
read.delim(
here(
"euro_global/output/files/ld/blocks_chr/populations_block_counts.csv"
),
header = F,
sep = "\t"
) |>
rename(
Population = 1,
nBlocks = 2
)
# Merge the population counts with the table data
ld_blocks <- merge(ld_blocks, pop_counts, by = "Population")
# Create the flextable
ft <- flextable(ld_blocks)
# Apply zebra theme
ft <- theme_zebra(ft)
# Add a caption to the table
ft <- flextable::add_header_lines(ft, "Table 2: Number of linkage blocks detected with Plink for populations with at least 10 individuals.")
ft
Table 2: Number of linkage blocks detected with Plink for populations with at least 10 individuals. | ||||||
---|---|---|---|---|---|---|
Population | n | nVariants | geno | maf | passQC | nBlocks |
ALU | 12 | 87,183 | 5,005 | 23,240 | 58,938 | 83 |
ALV | 12 | 87,183 | 4,439 | 21,462 | 61,282 | 99 |
BAR | 12 | 87,183 | 5,935 | 24,298 | 56,950 | 114 |
BEN | 12 | 87,183 | 6,361 | 31,062 | 49,760 | 8 |
BER | 12 | 87,183 | 5,104 | 18,622 | 63,457 | 105 |
BRE | 13 | 87,183 | 10,298 | 22,602 | 54,283 | 307 |
CAM | 12 | 87,183 | 7,616 | 26,142 | 53,425 | 8 |
CES | 14 | 87,183 | 15,824 | 24,485 | 46,874 | 421 |
CHA | 12 | 87,183 | 4,781 | 29,232 | 53,170 | 7 |
CRO | 12 | 87,183 | 4,642 | 21,290 | 61,251 | 107 |
DES | 16 | 87,183 | 17,861 | 19,029 | 50,293 | 413 |
FRS | 12 | 87,183 | 3,649 | 18,716 | 64,818 | 68 |
GES | 12 | 87,183 | 4,226 | 25,586 | 57,371 | 186 |
GRA | 11 | 87,183 | 4,402 | 20,482 | 62,299 | 31 |
GRV | 12 | 87,183 | 5,810 | 26,958 | 54,415 | 170 |
HAI | 12 | 87,183 | 4,275 | 19,967 | 62,941 | 62 |
HUN | 12 | 87,183 | 3,875 | 17,296 | 66,012 | 48 |
ITR | 12 | 87,183 | 3,606 | 19,021 | 64,556 | 88 |
KAG | 12 | 87,183 | 5,168 | 22,008 | 60,007 | 127 |
KAN | 11 | 87,183 | 4,630 | 28,705 | 53,848 | 240 |
KER | 12 | 87,183 | 3,940 | 22,189 | 61,054 | 135 |
KRA | 12 | 87,183 | 6,336 | 21,330 | 59,517 | 98 |
MAL | 12 | 87,183 | 3,844 | 18,044 | 65,295 | 79 |
MAT | 12 | 87,183 | 5,074 | 29,941 | 52,168 | 13 |
OKI | 12 | 87,183 | 5,933 | 25,350 | 55,900 | 142 |
POP | 12 | 87,183 | 3,925 | 16,703 | 66,555 | 81 |
QNC | 11 | 87,183 | 5,595 | 36,809 | 44,779 | 24 |
RAR | 12 | 87,183 | 4,111 | 26,637 | 56,435 | 161 |
REC | 11 | 87,183 | 8,469 | 23,358 | 55,356 | 85 |
ROS | 11 | 87,183 | 5,105 | 23,286 | 58,792 | 74 |
SEV | 12 | 87,183 | 4,472 | 27,759 | 54,952 | 217 |
SIC | 9 | 87,183 | 19,392 | 14,832 | 52,959 | 0 |
SLO | 12 | 87,183 | 7,077 | 16,189 | 63,917 | 43 |
SOC | 12 | 87,183 | 4,258 | 25,187 | 57,738 | 139 |
SSK | 12 | 87,183 | 4,939 | 29,439 | 52,805 | 8 |
STS | 12 | 87,183 | 4,558 | 18,918 | 63,707 | 121 |
TIK | 12 | 87,183 | 4,234 | 27,668 | 55,281 | 203 |
TRE | 12 | 87,183 | 3,667 | 15,455 | 68,061 | 75 |
TUA | 9 | 87,183 | 12,585 | 17,780 | 56,818 | 3 |
TUH | 12 | 87,183 | 4,677 | 19,546 | 62,960 | 125 |
UTS | 12 | 87,183 | 4,226 | 21,764 | 61,193 | 143 |
# Save it to a Word document
officer::read_docx() |>
body_add_flextable(ft) |>
print(target = here::here("scripts/RMarkdowns/euro_global/output/summary_ld_blocks_chr.docx"))
Get the size of each block from the .block.det files
get_kb_column <- function(dir_path) {
# obtain the list of files with extension .blocks.det
file_names <- list.files(path = dir_path, pattern = "\\.blocks\\.det$", full.names = TRUE)
# create an empty list to hold the data frames
block_list <- list()
# loop through the files and read the data into the list
for (file in file_names) {
df <- read.table(file, header = TRUE, check.names = FALSE, stringsAsFactors = FALSE)
# select only the KB column and add it to the block_list with the file name
block_list[[file]] <- df %>% dplyr::select(KB) %>% add_column(file = file, .before = 1)
}
# combine the data frames in the block_list into a single data frame
blocks <- bind_rows(block_list)
# clean up the file name column
blocks$file <- str_remove(blocks$file, "^.*\\/ld\\/blocks\\/")
return(blocks)
}
# example usage: replace dir_path with your directory path
dir_path <- here("/gpfs/gibbs/pi/caccone/mkc54/albo/euro_global/output/files/ld/blocks_chr")
blocks<-
get_kb_column(dir_path) |>
mutate(file = str_remove(file, "/gpfs/gibbs/pi/caccone/mkc54/albo/euro_global/output/files/ld/blocks_chr/")) |>
mutate(file = str_remove(file, ".blocks.det")) |>
as_tibble() |>
rename(
Population = 1
)
Create density plot of the size of the LD blocks Plink found
# to check how many colors we need
# n_distinct(blocks$Population) #24
source(
here("scripts", "RMarkdowns",
"my_theme2.R"
)
)
n <- 50
qual_col_pals = brewer.pal.info[brewer.pal.info$category == 'qual',]
col_vector = unlist(mapply(brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals)))
pie(rep(1,n), col=sample(col_vector, n))
## [1] "#7FC97F" "#BEAED4" "#FDC086" "#FFFF99" "#386CB0" "#F0027F" "#BF5B17"
## [8] "#666666" "#1B9E77" "#D95F02" "#7570B3" "#E7298A" "#66A61E" "#E6AB02"
## [15] "#A6761D" "#666666" "#A6CEE3" "#1F78B4" "#B2DF8A" "#33A02C" "#FB9A99"
## [22] "#E31A1C" "#FDBF6F" "#FF7F00" "#CAB2D6" "#6A3D9A" "#FFFF99" "#B15928"
## [29] "#FBB4AE" "#B3CDE3" "#CCEBC5" "#DECBE4" "#FED9A6" "#FFFFCC" "#E5D8BD"
## [36] "#FDDAEC" "#F2F2F2" "#B3E2CD" "#FDCDAC" "#CBD5E8" "#F4CAE4" "#E6F5C9"
## [43] "#FFF2AE" "#F1E2CC" "#CCCCCC" "#E41A1C" "#377EB8" "#4DAF4A" "#984EA3"
## [50] "#FF7F00" "#FFFF33" "#A65628" "#F781BF" "#999999" "#66C2A5" "#FC8D62"
## [57] "#8DA0CB" "#E78AC3" "#A6D854" "#FFD92F" "#E5C494" "#B3B3B3" "#8DD3C7"
## [64] "#FFFFB3" "#BEBADA" "#FB8072" "#80B1D3" "#FDB462" "#B3DE69" "#FCCDE5"
## [71] "#D9D9D9" "#BC80BD" "#CCEBC5" "#FFED6F"
# make plot using the sample y scale for all populations
ggplot(blocks, aes(x = KB)) +
stat_density(
aes(y = after_stat(count), fill = factor(Population)),
linewidth = .5,
alpha = .4,
position = "identity"
) +
scale_fill_manual(values = col_vector) +
scale_x_continuous(name = "Block length (kb)") +
scale_y_continuous(name = "Count") +
theme(
plot.title = element_text(hjust = 0.5, size = 18, face = "bold"),
axis.text = element_text(size = 12),
axis.title = element_text(size = 16, face = "bold"),
strip.text = element_text(size = 14, face = "bold"),
plot.background = element_rect(fill = "white"),
panel.background = element_rect(fill = 'white', colour = 'black')
) +
guides(fill = "none") +
facet_wrap( ~ Population, ncol = 3) + my_theme()
# save the plot as a PDF using ggsave
ggsave(
here("scripts", "RMarkdowns",
"output",
"euro_global",
"figures",
"block_density_y_scale_fixed_chr_euro_global.pdf"
),
width = 10,
height = 10,
units = "in"
)
Make plot allowing the y axis scale free
ggplot(blocks, aes(x = KB)) +
stat_density(
aes(y = after_stat(count), fill = factor(Population)),
linewidth = .5,
alpha = .4,
position = "identity"
) +
scale_fill_manual(values = col_vector) +
scale_x_continuous(name = "Block length (kb)") +
scale_y_continuous(name = "Count") +
theme(
plot.title = element_text(hjust = 0.5, size = 18, face = "bold"),
axis.text = element_text(size = 12),
axis.title = element_text(size = 16, face = "bold"),
strip.text = element_text(size = 14, face = "bold"),
plot.background = element_rect(fill = "white"),
panel.background = element_rect(fill = 'white', colour = 'black')
) +
guides(fill = "none") +
facet_wrap( ~ Population, ncol = 3, scales = "free_y") +
my_theme()
After quality control with approximately 85k SNPs
# load the function that we saved earlier
source(
here("scripts", "RMarkdowns",
"analyses", "import_bim.R"
),
local = knitr::knit_global()
)
# import the file
snp_den_qc <- import_bim(
here(
"euro_global/output/file7.bim"
)
)
Make plot of the SNP density
# ____________________________________________________________________________
# plot SNP density after QC ####
snp_den_qc |>
rename(
Chromosome = 1
) |>
mutate(
Position = as.numeric(
Position
)
) |>
ggplot(
aes(
x = Position
),
label = sprintf(
"%0.2f",
round(
a,
digits = 0
)
)
) +
geom_histogram(
aes(
y = after_stat(
count
)
),
binwidth = 1e6
) +
facet_wrap(
vars(
Chromosome
),
scales = "free_x"
) +
labs(
title = "SNP Density after QC",
x = expression(
"Position in the genome (Mb)"
),
y = expression(
"Number of SNPs"
)
) +
scale_x_continuous(
labels = function(x) {
format(
x / 1e6,
big.mark = ",",
scientific = FALSE
)
}
) +
geom_density(
aes(
y = 1e6 * after_stat(count)
),
color = "red",
linewidth = .75,
alpha = .4,
fill = "pink"
) +
theme(
panel.grid.major = element_line(
linetype = "dashed",
linewidth = 0.2
),
panel.grid.minor = element_line(
linetype = "dashed",
linewidth = 0.2
),
panel.spacing = unit(0.5, "lines"),
strip.text = element_text(
face = "bold", hjust = .5
),
strip.background.x = element_rect(
color = "gray"
)
)
ggsave(
here("scripts", "RMarkdowns",
"output", "euro_global","figures", "snp_density_after_qc_euro_global.pdf"
),
width = 10,
height = 6,
units = "in"
)
SNPs per chromosome
# we can use dplyr "count" to get the number of SNPs for each chromosome
# lets get the data we need
snps_per_chrm <-
snp_den_qc |>
count(
Scaffold) |>
rename(
Chromosome = 1,
"SNPs (N) " = 2
)
# Create the flextable
ft <- flextable::flextable(snps_per_chrm)
# Apply zebra theme
ft <- flextable::theme_zebra(ft)
# Add a caption to the table
ft <- flextable::add_header_lines(ft, "SNPs per chromosome after quality control")
ft
SNPs per chromosome after quality control | |
---|---|
Chromosome | SNPs (N) |
1 | 19,362 |
2 | 36,611 |
3 | 31,210 |
We can get the mean number of SNPs per chromosome for the entire genome
# we first use dplyr cut_width to get the number of SNPs per 1Mb window
albo_den <-
snp_den_qc |>
dplyr::select(
Scaffold, Position
) |>
group_by(
Scaffold,
windows = cut_width(
Position,
width = 1e6,
boundary = 0
)
) |>
summarise(
n = n(),
.groups = "keep"
) |>
group_by(
Scaffold
) |>
summarise(
mean = mean(n),
n = n(),
.groups = "keep"
) |>
rename(
Chromosome = 1,
"SNPs per 1Mb window" = 2,
"Number of windows" = 3
)
#
# check the results
snp_table <-
flextable(
albo_den
)
snp_table <- colformat_double(
x = snp_table,
big.mark = ",",
digits = 2,
na_str = "N/A"
)
snp_table
Chromosome | SNPs per 1Mb window | Number of windows |
---|---|---|
1 | 52.76 | 367 |
2 | 63.34 | 578 |
3 | 63.82 | 489 |
Merge objects
# we can merge the two data sets we created above into one table
after_qc <-
snps_per_chrm |>
left_join(
albo_den,
by = "Chromosome"
)
snp_table2 <- flextable(
after_qc)
snp_table2 <- colformat_double(
x = snp_table2,
big.mark = ",",
digits = 2,
na_str = "N/A"
)
snp_table2
Chromosome | SNPs (N) | SNPs per 1Mb window | Number of windows |
---|---|---|---|
1 | 19,362 | 52.76 | 367 |
2 | 36,611 | 63.34 | 578 |
3 | 31,210 | 63.82 | 489 |
# we set a window of variants of 5 and move the window 1 variant per time, removing 1 of the variants with lowest MAF from a pair above the threshold of r^2 > 0.1
# the mean distance is 203kb across the tested populations. Try --indep-pairwise 200kb 1 0.1
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file7 \
--indep-pairwise 5 1 0.1 \
--out euro_global/output/indepSNP_chr \
--silent;
grep 'pairwise\|variants\|samples' euro_global/output/indepSNP_chr.log
–indep-pairwise 5 1 0.1 688 samples (82 females, 64 males, 542 ambiguous; 688 founders) loaded from 87183 variants loaded from euro_global/output/file7.bim. –indep-pairwise (3 compute threads): 30799/87183 variants removed.
Lets do the scaffold again
First need to import same SNP list
Import the .bim file with the SNPs
# import the bim file with the SNP data ####
snps <-
read_delim( # to learn about the options use here, run ?read_delim on the console.
here(
"euro_global/output/file7_backup.bim" #output/populations/file4.bim
), # use library here to load it
col_names = FALSE, # we don't have header in the input file
show_col_types = FALSE, # suppress message from read_delim
col_types = "ccidcc" # set the class of each column
)
#
# set column names
colnames(
snps
) <- # to add a header in our tibble
c(
"Scaffold", "SNP", "Cm", "Position", "Allele1", "Allele2"
)
#
# check the tibble
head(snps)
## # A tibble: 6 × 6
## Scaffold SNP Cm Position Allele1 Allele2
## <chr> <chr> <int> <dbl> <chr> <chr>
## 1 1.1 AX-583035163 0 315386 A G
## 2 1.1 AX-583033356 0 315674 C T
## 3 1.1 AX-583033370 0 330057 G A
## 4 1.1 AX-583035194 0 330265 A G
## 5 1.1 AX-583033387 0 331288 C T
## 6 1.10 AX-583035257 0 91677 T C
write.table(
snps,
file = here(
"euro_global/output/snps_all_scaffolds_4ld.txt"
),
sep = "\t",
row.names = FALSE,
col.names = FALSE,
quote = FALSE
)
nrow(snps)
#87183
## [1] 87183
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file5 \
--king-cutoff euro_global/output/file6 0.354 \
--make-bed \
--out euro_global/output/file11a \
--silent;
grep 'samples\|variants\|remaining' euro_global/output/file11a.log
699 samples (85 females, 65 males, 549 ambiguous; 699 founders) loaded from 87183 variants loaded from euro_global/output/file5.bim. euro_global/output/file11a.king.cutoff.out.id , and 688 remaining sample IDs
# we set a window of variants of 5 and move the window 1 variant each time, removing 1 of the variants with lowest MAF from a pair above the threshold of r^2 > 0.1
# the mean distance is 203kb across the tested populations. We used --indep-pairwise 5 1 0.1 before. We can use the same values from the mean half distance max r2
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file11a \
--indep-pairwise 5 1 0.1 \
--out euro_global/output/indepSNP_scaffolds \
--silent;
grep 'pairwise\|variants\|samples' euro_global/output/indepSNP_scaffolds.log
–indep-pairwise 5 1 0.1 688 samples (82 females, 64 males, 542 ambiguous; 688 founders) loaded from 87183 variants loaded from euro_global/output/file11a.bim. –indep-pairwise (28 compute threads): 30787/87183 variants removed.
Now we can compare the two sets of SNPs using scaffolds or chromosomal scale
Create Venn diagram of SNPs removed due to LD
# Read in the two files as vectors
prunout_chr <-
read_delim(
here(
"euro_global/output/indepSNP_chr.prune.out"
),
delim = " ",
col_names = FALSE,
show_col_types = FALSE
)
prunout_scaffolds <-
read_delim(
here(
"euro_global/output/indepSNP_scaffolds.prune.out"
),
delim = " ",
col_names = FALSE,
show_col_types = FALSE
)
# Convert the list to vector
prunout_scaffolds <- unlist(prunout_scaffolds)
prunout_chr <- unlist(prunout_chr)
# Calculate shared values
prunout <- intersect(prunout_chr, prunout_scaffolds)
# Create Venn diagram
venn_data1 <- list(
"Chromosomal" = prunout_chr,
"Scaffolds" = prunout_scaffolds
)
# create plot
venn_plot1 <- ggvenn(venn_data1, fill_color = c("steelblue", "darkorange"), show_percentage = TRUE)
# Add a title
venn_plot1 <- venn_plot1 +
ggtitle("Comparison of genomic scales for linked SNPs") +
theme(plot.title = element_text(hjust = .5))
# Display the Venn diagram
print(venn_plot1)
We already have a dataset made using the chromosomal scale that pruned at 0.1 (made in step 9). If needed, can create it again using the code below
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file7 \
--indep-pairwise 5 1 0.1 \
--out euro_global/output/indepSNP_chr \
--silent;
grep 'pairwise\|variants\|samples' euro_global/output/indepSNP_chr.log
–indep-pairwise 5 1 0.1 688 samples (82 females, 64 males, 542 ambiguous; 688 founders) loaded from 87183 variants loaded from euro_global/output/file7.bim. –indep-pairwise (3 compute threads): 30799/87183 variants removed.
The indepSNP_chr.prune.in file produced here = those SNPs < our 0.1 threshold, that we want to use
Now we need to make pruned dataset for 0.01.
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file7 \
--indep-pairwise 5 1 0.01 \
--out euro_global/output/indepSNP_chr_r01 \
--silent;
grep 'pairwise\|variants\|samples' euro_global/output/indepSNP_chr_r01.log
–indep-pairwise 5 1 0.01 688 samples (82 females, 64 males, 542 ambiguous; 688 founders) loaded from 87183 variants loaded from euro_global/output/file7.bim. –indep-pairwise (3 compute threads): 67865/87183 variants removed.
We can use the SNP set the LD pruning we just did and extract them from file7 to get SNP Set 1
plink2 \
--keep-allele-order \
--bfile euro_global/output/file7 \
--make-bed \
--export vcf \
--out euro_global/output/snps_sets/r2_0.01 \
--extract euro_global/output/indepSNP_chr_r01.prune.in \
--silent
grep "variants\|samples" euro_global/output/snps_sets/r2_0.01.log
688 samples (82 females, 64 males, 542 ambiguous; 688 founders) loaded from 87183 variants loaded from euro_global/output/file7.bim. –extract: 19318 variants remaining. 19318 variants remaining after main filters.
Repeat for 0.1 pruning (SNP Set 2)
plink2 \
--keep-allele-order \
--bfile euro_global/output/file7 \
--make-bed \
--export vcf \
--out euro_global/output/snps_sets/r2_0.1 \
--extract euro_global/output/indepSNP_chr.prune.in \
--silent
grep "variants\|samples" euro_global/output/snps_sets/r2_0.1.log
688 samples (82 females, 64 males, 542 ambiguous; 688 founders) loaded from 87183 variants loaded from euro_global/output/file7.bim. –extract: 56384 variants remaining. 56384 variants remaining after main filters.
These snp set can now be used for subsequent pop gen analyses.
plink2 \
--allow-extra-chr \
--bfile euro_global/output/snps_sets/r2_0.1 \
--pca allele-wts \
--freq \
--out euro_global/output/pca_pops_1 \
--silent;
grep 'samples\|variants' euro_global/output/pca_pops_1.log
688 samples (82 females, 64 males, 542 ambiguous; 688 founders) loaded from 56384 variants loaded from euro_global/output/snps_sets/r2_0.1.bim.
Check the files
## #FID IID PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
## OKI 1001 0.00349461 0.000118613 0.0208636 -0.00870585 0.00203497 -0.02869 -0.00142337 0.0155941 0.123031 0.0553878
## 39.5287
## 20.1036
## 13.397
## 10.4736
## 6.95265
## 6.3098
## 6.18528
## 5.69513
## 5.64839
## 5.33564
Import PCA data
# import the data from Plink
pca <- read.delim(
here(
"euro_global/output/pca_pops_1.eigenvec"
),
head = TRUE
)
# check head of the file
head(pca)
## X.FID IID PC1 PC2 PC3 PC4 PC5
## 1 OKI 1001 0.003494610 0.000118613 0.0208636 -0.00870585 0.00203497
## 2 OKI 1002 0.000384979 -0.000916926 0.0198715 -0.00580988 0.00924135
## 3 OKI 1003 0.001768030 -0.001275240 0.0250805 -0.00376816 0.00669142
## 4 OKI 1004 0.004099850 0.004415930 0.0185805 -0.00992829 0.01588560
## 5 OKI 1005 0.004148830 0.002128780 0.0199122 -0.01100970 0.01326390
## 6 OKI 1006 0.001563690 0.000750957 0.0224729 -0.00564903 0.00829270
## PC6 PC7 PC8 PC9 PC10
## 1 -0.0286900 -0.00142337 0.0155941 0.123031 0.0553878
## 2 -0.0174144 -0.00895626 0.0118358 0.114927 0.0541798
## 3 -0.0235837 -0.00728948 0.0289258 0.188506 0.0892375
## 4 -0.0297502 0.00484661 0.0229789 0.152901 0.0754698
## 5 -0.0311584 0.00671398 0.0231348 0.166893 0.0794183
## 6 -0.0267463 -0.00465223 0.0309340 0.198834 0.1030400
Import sample attributes
# import sample attributes
samples2 <- read.delim(
here("scripts", "RMarkdowns",
"Population_meta_data.txt"
),
head = TRUE
)
#
# check head of the file
head(samples2)
## geo range continent region country pop pop_city
## 1 4 Invasive Africa Central Africa Gabon GAB Franceville
## 2 5 Invasive Africa East Africa Madagascar ANT Antananarivo
## 3 5 Invasive Africa East Africa Madagascar MAD Morondava
## 4 5 Invasive Africa East Africa Madagascar DGV Diego ville
## 5 5 Invasive Africa East Africa Madagascar VOH Vohimasy
## 6 6 Invasive Africa Indian Ocean Mauritius DAU Dauguet
Check number of samples per population
pops_pca <-
pca |>
group_by(X.FID) |>
summarize(count_distinct = n_distinct(IID))
# check it
head(pops_pca)
## # A tibble: 6 × 2
## X.FID count_distinct
## <chr> <int>
## 1 ALD 10
## 2 ALU 12
## 3 ALV 12
## 4 ARM 10
## 5 BAR 12
## 6 BEN 12
Merge the data
## X.FID IID PC1 PC2 PC3 PC4 PC5 PC6
## 1 ALD 801 0.0159056 0.00857769 0.0621374 0.00954265 -0.133485 0.02282570
## 2 ALD 802 0.0141292 0.00749907 0.0672776 0.01092060 -0.153636 0.01851460
## 3 ALD 803 0.0145545 0.00648255 0.0789674 0.01383960 -0.119952 0.03130150
## 4 ALD 804 0.0143278 0.00543499 0.0712662 0.00800879 -0.136483 0.00989339
## 5 ALD 805 0.0145400 0.01064620 0.0567210 0.00721298 -0.123181 0.00497971
## 6 ALD 806 0.0120557 0.00572123 0.0706519 0.00906846 -0.141123 0.02840840
## PC7 PC8 PC9 PC10 geo range continent
## 1 0.0284547 0.02853680 -0.0258755 0.0168006 13 Invasive Europe
## 2 0.0383160 0.03317460 -0.0340364 0.0166647 13 Invasive Europe
## 3 0.0295233 0.04432740 -0.0409305 0.0239785 13 Invasive Europe
## 4 0.0441333 0.01870210 -0.0312714 0.0125413 13 Invasive Europe
## 5 0.0388875 0.00906818 -0.0175808 0.0115633 13 Invasive Europe
## 6 0.0453232 0.02585260 -0.0192321 0.0184307 13 Invasive Europe
## region country pop_city
## 1 Southern Europe Albania Durres
## 2 Southern Europe Albania Durres
## 3 Southern Europe Albania Durres
## 4 Southern Europe Albania Durres
## 5 Southern Europe Albania Durres
## 6 Southern Europe Albania Durres
Get some data for the PCA plot
## [1] 73
## [1] 32
## [1] 8
## [1] 3
Check the coutries
## [1] "Albania" "Ukraine" "Armenia" "Spain" "India" "USA"
## [7] "Italy" "Bulgaria" "Cambodia" "Thailand" "Croatia" "France"
## [13] "Bhutan" "Georgia" "Greece" "Brazil" "China" "Vietnam"
## [19] "Indonesia" "Sri Lanka" "Japan" "Nepal" "Malaysia" "Russia"
## [25] "Maldives" "Malta" "Portugal" "Romania" "Serbia" "Slovenia"
## [31] "Taiwan" "Turkey"
Check the regions
## [1] "Southern Europe" "Eastern Europe" "South Asia" "North America"
## [5] "Southeast Asia" "Western Europe" "South America" "East Asia"
Make plot1
# source the plotting function
source(here("scripts", "RMarkdowns", "my_theme2.R"))
# Shapes
N = 100
M = 1000
good.shapes = c(1:25, 33:127)
# Colors
palette1 <- brewer.pal(12, "Paired")
palette2 <- brewer.pal(11, "Set3")
palette23 <- c(palette1, palette2)
colors2 <-
c("#52ef99", "#146c45", "#75d5e1", "#FB8072", "#2c4a5e", "#6a8fe0", "#8c61cd", "#f365e7", "#871550", "#a113b2", "#BF5B17", "#1F78B4", "#cf749b", "#FF7F00","#2524f9", "#799d10", "#984EA3", "#754819", "#fda547", "#a41415", "#fd5917", "#fd4e8b", "#ead624", "#6A3D9A", "#21a708", "#332288", "#51f310", "#9d8d88", "#66C2A5", "#E41A1C", "#E7297A", "magenta")
# Compute the count for each country
country_count <- df4 |>
group_by(country) |>
summarize(count = n())
# Merge the count back to the main data
df4 <- df4 |>
left_join(country_count, by = "country")
# Create a custom label for the legend
df4$country_label <-
paste(df4$country, " (", df4$count, ")", sep = "")
# Define the color and shape manually
#palette23 <- c(palette1, palette2)
colors <- setNames(colors2, unique(df4$country_label))
shapes <-
setNames(good.shapes[c(1:25, 28:31, 55:57)], unique(df4$country_label))
# Compute the center of ellipses for each continent
ellipse_centers <- df4 |>
group_by(region) |>
summarise(PC1_center = mean(PC1), PC2_center = mean(PC2))
# # Calculate the number of samples per region
continent_count <- df4 |>
group_by(region) |>
summarise(count = n())
continent_labels <-
setNames(
paste(continent_count$region, " (", continent_count$count, ")", sep = ""),
continent_count$region
)
# Define the colors you want for each continent
#continent_colors <-
#c("yellow", "pink", "#6a8fe0", "gold3", "#FF6F90", "lightpink3", "lightblue","blue") # Adjust these colors to your preference
continent_colors <-
c("pink", "lightblue", "lightgreen", "lightgreen", "pink", "pink", "lightblue", "lightblue") # Adjust these colors to your preference
# Create the plot
ggplot(df4, aes(PC1, PC2)) +
geom_point(aes(shape = country_label, color = country_label)) +
stat_ellipse(
aes(fill = region, group = region),
geom = "polygon",
alpha = 0.2,
level = 0.8,
segments = 40,
color = "darkgray"
) +
stat_ellipse(
aes(group = region),
geom = "path",
level = 0.8,
segments = 40,
color = "darkgray"
) + # Line around the ellipse
geom_text_repel(
data = ellipse_centers,
aes(x = PC1_center, y = PC2_center, label = region),
color = "black"
) + # Add labels using ggrepel
xlab("PC1 (39.5% Variance)") +
ylab("PC2 (20.1% Variance)") +
labs(caption = "Principal Component Analysis with 56,384 SNPs \n of mosquitoes from 73 localities across 32 countries in Europe, Asia and the Americas.") +
guides(
color = guide_legend(
title = "Country",
order = 2,
ncol = 2
),
shape = guide_legend(
title = "Country",
order = 2,
ncol = 2
),
fill = guide_legend(
title = "Continent",
order = 1,
ncol = 1
)
) +
scale_fill_manual(values = continent_colors, labels = continent_labels) +
scale_color_manual(values = colors) +
scale_shape_manual(values = shapes) +
guides(fill=guide_legend(ncol=2)) +
my_theme() +
theme(
plot.caption = element_text(face = "italic"),
legend.position = "right",
legend.justification = "top",
legend.box.just = "center",
legend.box.background = element_blank(),
legend.text=element_text(size=6),
plot.margin = margin(5.5, 30, 5.5, 5.5, "points"),
legend.margin = margin(5, 5, 5, 40) # move the legend a bit up
)
First, we estimate the allele frequency with Plink.
cd /gpfs/gibbs/pi/caccone/mkc54/albo
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file3 \
--freq \
--out euro_global/output/MAF_check \
--silent
Now we apply the MAF filter for 0.01
# We will use MAF of 1%
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file3 \
--maf 0.01 \
--make-bed \
--out euro_global/output/file4b \
--silent;
grep "variants" euro_global/output/file4b.log
103823 variants loaded from euro_global/output/file3.bim. 3456 variants removed due to allele frequency threshold(s) 100367 variants remaining after main filters.
Then we plot it with ggplot.
# Import MAF data ####
maf_freq <-
read.delim(
here(
"euro_global/output/MAF_check.afreq"
),
header = TRUE
)
Make MAF plot
# make the plot ####
ggplot(
maf_freq,
aes(ALT_FREQS)
) +
geom_histogram(
colour = "black",
fill = "lightgray",
bins = 40
) +
labs(
x = "Minor Allele Frequency (MAF)",
y = "Frequency (n)",
caption = "<span style='color:red;'><i>Red</i></span> <span style='color:black;'><i>line at</i></span><span style='color:red;'><i> MAF 1%</i></span><span style='color:black;'><i> threshold</i></span>."
) +
geom_text(
aes(
x = .01,
y = 8000,
label = paste0("3,456 SNPs")
),
size = 3,
color = "red",
vjust = -.2
) +
geom_vline(xintercept = 0.01, color = "red") +
my_theme() +
theme(plot.caption = element_markdown()) +
scale_y_continuous(label = scales::number_format(big.mark = ",")) +
scale_x_continuous(breaks = c(0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0))
## Warning in geom_text(aes(x = 0.01, y = 8000, label = paste0("3,456 SNPs")), : All aesthetics have length 1, but the data has 103823 rows.
## ℹ Please consider using `annotate()` or provide this layer with data containing
## a single row.
# save the plot
ggsave(
here("scripts", "RMarkdowns",
"output", "euro_global", "figures", "MAF_0.01_freq_plot_euro_global.pdf"
),
width = 7,
height = 5,
units = "in"
)
We removed 3,456 variants due to the MAF filter.
Now we can run the HWE test. However, we will need to apply the SNP missingness again for each population. If we do not, the HWE will vary widely. With the bash script below, we will create a new file for each population, run the HWE test with HWE p value <1e‐6 (HWE p value <1e‐6). Then, we ask Plink to generate a list of SNPs that passed the test for each population.
mkdir -p euro_global/output/files/hardyb;
cp euro_global/output/file4b.* euro_global/output/files/hardyb/
for fam in $(awk '{print $1}' euro_global/output/files/hardyb/file4b.fam | sort | uniq);
do
echo $fam | \
plink2 \
--allow-extra-chr \
--silent \
--keep-allele-order \
--bfile euro_global/output/files/hardyb/file4b \
--keep-fam /dev/stdin \
--make-bed \
--out euro_global/output/files/hardyb/$fam \
--hwe 0.000001 \
--geno 0.1 \
--write-snplist; \
done
Next, we use “cat” and “awk” to concatenate the SNP list from all populations, and remove duplicates. Once we have a list of SNPs that passed the test for each population, we can use Plink to create a new bed file keeping only the SNPs that passed the test in each population. First, lets get the list of SNPs, and count how many passed:
cd /gpfs/gibbs/pi/caccone/mkc54/albo
cat euro_global/output/files/hardyb/*.snplist | awk '!a[$0]++' > euro_global/output/files/passed_hwe_b.txt;
wc -l euro_global/output/files/passed_hwe_b.txt
All 100367 variants passed HWE test. If any failed, we could remove the variants that did not pass HWE test, using the –extract flag, extracting only those that passed HWE.
Since we do not have to remove any SNPs due to deviation from HWE, we
can proceed with heterozygosity estimates. The first step is to “prune”
our data set. We will check the pairwise linkage estimates for all SNPs.
We can work with file4. We will use “indep-pairwise
” to
check if there are SNPs above a certain linkage disequilibrium (LD)
threshold. Check Plink documentation for more details https://www.cog-genomics.org/plink/1.9/ld I used
“--indep-pairwise 5 1 0.1
” , which indicates according to
the documentation:
--indep-pairphase <window size>['kb'] <step size (variant ct)> <r^2 threshold>
We will check in a window of 5kb if there is any pair of SNPs with r2
estimates above 0.1, then we will move our window 1 SNP and check again
for SNPs above the threshold. We will repeat this procedure until we
check the entire genome.
Need to switch back to plink2
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file4b \
--extract euro_global/output/files/passed_hwe_b.txt \
--indep-pairwise 5 1 0.1 \
--out euro_global/output/indepSNPb \
--silent;
grep 'pairwise\|variants\|samples' euro_global/output/indepSNPb.log
–indep-pairwise 5 1 0.1 708 samples (85 females, 70 males, 553 ambiguous; 708 founders) loaded from 100367 variants loaded from euro_global/output/file4b.bim. –extract: 100367 variants remaining. 100367 variants remaining after main filters. –indep-pairwise (27 compute threads): 34106/100367 variants removed.
Remember, the SNPs are not removed from our data set. Plink created 3 files when we ran the code above. One is the “indepSNP.log” file, and the other two are: “indepSNP.prune.in” -> list of SNPs with squared correlation smaller than our r2 threshold of 0.1. “indepSNP.prune.out” -> list of SNPs with squared correlation greater than our r2 threshold of 0.1. For our heterozygosity estimates, we want to use the set of SNPs that are below our r2 threshold of 0.1. We consider that they are randomly associated. We can use Plink to estimate the heterozygosity using the “indepSNP.prune.in” file.
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file4b \
--extract euro_global/output/indepSNPb.prune.in \
--het \
--out euro_global/output/R_checkb \
--silent;
grep 'variants' euro_global/output/R_checkb.log
100367 variants loaded from euro_global/output/file4b.bim. –extract: 66261 variants remaining. 66261 variants remaining after main filters.
# find individuals with high heterozygosity ####
# import the data from Plink
het <- read.delim(
here(
"euro_global/output/R_checkb.het"
),
head = TRUE
)
#
# check head of the file
colnames(het)
## [1] "X.FID" "IID" "O.HOM." "E.HOM." "OBS_CT" "F"
Estimate heterozygosity
# create a column named HET_RATE and calculate the heterozygosity rate
het$HET_RATE <- (het$"OBS_CT" - het$"O.HOM") / het$"OBS_CT"
#
# use subset function to get values deviating from 4sd of the mean heterozygosity rate.
het_fail <-
subset(
het, (het$HET_RATE < mean(
het$HET_RATE
) - 4 * sd(
het$HET_RATE
)) |
(het$HET_RATE > mean(
het$HET_RATE
) + 4 * sd(
het$HET_RATE
))
)
#
# get the list of individuals that failed our threshold of 4sd from the mean.
het_fail$HET_DST <-
(het_fail$HET_RATE - mean(
het$HET_RATE
)) / sd(
het$HET_RATE
)
Save the files to use with Plink
# save the data to use with Plink2 ####
#
write.table(
het_fail,
here(
"euro_global/output/fail-het-qc_b.txt"
),
row.names = FALSE
)
Make plot
# make a heterozygosity plot ####
#
ggplot(
het,
aes(
HET_RATE
)
) +
geom_histogram(
colour = "black",
fill = "lightgray",
bins = 40
) +
labs(
x = "Heterozygosity Rate",
y = "Number of Individuals"
) +
geom_vline(
aes(
xintercept = mean(
HET_RATE
)
),
col = "red",
linewidth = 1.5
) +
geom_vline(
aes(
xintercept = mean(
HET_RATE
) + 4 * sd(
HET_RATE
)
),
col = "#BFB9B9",
linewidth = 1
) +
geom_vline(
aes(
xintercept = mean(
HET_RATE
) - 4 * sd(
HET_RATE
)
),
col = "#BFB9B9",
linewidth = 1
) +
my_theme() +
scale_y_continuous(
)
# save the heterozygosity plot ####
ggsave(
here("scripts", "RMarkdowns",
"output", "euro_global", "figures", "Heterozygosity_euro_global_MAF_0.01.pdf"
),
width = 5,
height = 4,
units = "in"
)
The red line in the plot above indicates the mean, and the gray lines indicate 4 standard deviation from the mean. We can see that some mosquitoes do have excess heterozygous sites. We will remove them. We can get their ID from the file “fail-het-qc.txt”. We can use the bash script below to parse the file to use with Plink
sed 's/"// g' euro_global/output/fail-het-qc_b.txt | awk '{print$1, $2}'> euro_global/output/het_fail_ind_b.txt;
echo 'How many mosquitoes we need to remove from our data set:';
cat euro_global/output/het_fail_ind_b.txt | tail -n +2 | wc -l;
echo 'Which mosquitoes we have to remove:';
tail -n +2 euro_global/output/het_fail_ind_b.txt
## How many mosquitoes we need to remove from our data set:
## 9
## Which mosquitoes we have to remove:
## QNC 1248
## KAT 601
## KAT 605
## KAT 606
## KAT 608
## GRA 734
## TUA 783
## ITP 832
## ROS 858
Heterozygosity is outside the SD threshold in 4 KAT individuals (601, 605, 606, 608), 1 QNC (1248), 1 GRA (734), 1 TUA (783), 1 ITP (832), and 1 ROS (858). We will remove these individuals.
Next, we will remove these mosquitoes from our data set using Plink:
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file4b \
--remove euro_global/output/het_fail_ind_b.txt \
--make-bed \
--out euro_global/output/file5b \
--silent;
grep 'variants\|samples' euro_global/output/file5b.log
708 samples (85 females, 70 males, 553 ambiguous; 708 founders) loaded from 100367 variants loaded from euro_global/output/file4b.bim. –remove: 699 samples remaining. 699 samples (85 females, 65 males, 549 ambiguous; 699 founders) remaining after
Import the .bim file with the SNPs to create a new chromosomal scale.
# ____________________________________________________________________________
# import the bim file with the SNP data ####
snps <-
read_delim( # to learn about the options use here, run ?read_delim on the console.
here(
"euro_global/output/file7b.bim"
), # use library here to load it
col_names = FALSE, # we don't have header in the input file
show_col_types = FALSE, # suppress message from read_delim
col_types = "ccidcc" # set the class of each column
)
#
# set column names
colnames(
snps
) <- # to add a header in our tibble
c(
"Scaffold", "SNP", "Cm", "Position", "Allele1", "Allele2"
)
#
# check the tibble
head(snps)
## # A tibble: 6 × 6
## Scaffold SNP Cm Position Allele1 Allele2
## <chr> <chr> <int> <dbl> <chr> <chr>
## 1 1 AX-583033342 0 315059 C G
## 2 1 AX-583035163 0 315386 A G
## 3 1 AX-583033356 0 315674 C T
## 4 1 AX-583033370 0 330057 G A
## 5 1 AX-583035194 0 330265 A G
## 6 1 AX-583033387 0 331288 C T
Separate the tibbles into each chromosome
# separate the SNP data per chromosome
# chr1
chr1_snps <-
snps |>
filter(
str_detect(
Scaffold, "^1."
)
) |> # here we get only Scaffold rows starting with 1
as_tibble() # save as tibble
#
# chr2
chr2_snps <-
snps |>
filter(
str_detect(
Scaffold, "^2."
)
) |>
as_tibble()
#
# chr3
chr3_snps <-
snps |>
filter(
str_detect(
Scaffold, "^3."
)
) |>
as_tibble()
Import the file with sizes of each scaffold.
# import the file with the scaffold sizes ####
sizes <-
read_delim(
here(
"/gpfs/gibbs/project/caccone/mkc54/albo/genome/scaffold_sizes.txt"
),
col_names = FALSE,
show_col_types = FALSE,
col_types = "cd"
)
#
# set column names
colnames(
sizes
) <- c(
"Scaffold", "Size"
)
# ____________________________________________________________________________
# create new column with the chromosome number ####
sizes <-
sizes |>
mutate(
Chromosome = case_when( # we use mutate to create a new column called Chromosome
startsWith(
Scaffold, "1"
) ~ "1", # use startsWith to get Scaffold rows starting with 1 and output 1 on Chromosome column
startsWith(
Scaffold, "2"
) ~ "2",
startsWith(
Scaffold, "3"
) ~ "3"
)
) |>
arrange(
Scaffold
) # to sort the order of the scaffolds, fixing the problem we have with scaffold 1.86
# check it
head(sizes)
## # A tibble: 6 × 3
## Scaffold Size Chromosome
## <chr> <dbl> <chr>
## 1 1.1 351198 1
## 2 1.10 11939576 1
## 3 1.100 3389100 1
## 4 1.101 470438 1
## 5 1.102 2525157 1
## 6 1.103 150026 1
Create new scale. Get the scaffolds for each chromosome.
# separate the scaffold sizes tibble per chromosome ####
# chr1
chr1_scaffolds <-
sizes |>
filter(
str_detect(
Scaffold, "^1" # we use library stringr to get scaffolds starting with 1 (chromosome 1)
)
) |>
as_tibble()
#
# chr2
chr2_scaffolds <-
sizes |>
filter(
str_detect(
Scaffold, "^2" # we use library stringr to get scaffolds starting with 2 (chromosome 2)
)
) |>
as_tibble()
#
# # chr3
chr3_scaffolds <-
sizes |>
filter(
str_detect(
Scaffold, "^3" # we use library stringr to get scaffolds starting with 3 (chromosome 3)
)
) |>
as_tibble()
Create a scale for each chromosome.
# create a new scale for each chromosome ####
# chr1
chr1_scaffolds$overall_size_before_bp <-
0 # we create a new column with zeros
for (i in 2:nrow(
chr1_scaffolds
)
) { # loop to start on second line
chr1_scaffolds$overall_size_before_bp[i] <- # set position on the scale
chr1_scaffolds$overall_size_before_bp[i - 1] + chr1_scaffolds$Size[i - # add the scaffold size and the location to get position on new scale
1]
}
#
# chr2
chr2_scaffolds$overall_size_before_bp <- 0
for (i in 2:nrow(
chr2_scaffolds
)
) {
chr2_scaffolds$overall_size_before_bp[i] <-
chr2_scaffolds$overall_size_before_bp[i - 1] + chr2_scaffolds$Size[i -
1]
}
#
# chr3
chr3_scaffolds$overall_size_before_bp <- 0
for (i in 2:nrow(
chr3_scaffolds
)
) {
chr3_scaffolds$overall_size_before_bp[i] <-
chr3_scaffolds$overall_size_before_bp[i - 1] + chr3_scaffolds$Size[i -
1]
}
Merge the data frames scaffolds and SNPs.
# merge the data sets using the tidyverse function left_join ####
# chr1
chr1_scale <-
chr1_snps |> # create data frame for each chromosome, get chr1_snps
left_join( # use lef_join function to merge it with chr1_scaffolds
chr1_scaffolds,
by = "Scaffold"
) |> # set column to use for merging (Scaffold in this case)
na.omit() |> # remove NAs, we don't have SNPs in every scaffold
mutate(
midPos_fullseq = as.numeric(
Position
) + # make new columns numeric
as.numeric(
overall_size_before_bp
)
)
#
# chr2
chr2_scale <-
chr2_snps |>
left_join(
chr2_scaffolds,
by = "Scaffold"
) |>
na.omit() |>
mutate(
midPos_fullseq = as.numeric(
Position
) +
as.numeric(
overall_size_before_bp
)
)
#
# chr3
chr3_scale <-
chr3_snps |>
left_join(
chr3_scaffolds,
by = "Scaffold"
) |>
na.omit() |>
mutate(
midPos_fullseq = as.numeric(
Position
) +
as.numeric(
overall_size_before_bp
)
)
Merge all chromosome scales.
# merge the data sets, and select only the columns we need ####
chroms <- rbind(
chr1_scale, chr2_scale, chr3_scale
) |>
dplyr::select(
Chromosome, SNP, Cm, midPos_fullseq, Allele1, Allele2
)
# check it
head(chroms)
## # A tibble: 0 × 6
## # ℹ 6 variables: Chromosome <chr>, SNP <chr>, Cm <int>, midPos_fullseq <dbl>,
## # Allele1 <chr>, Allele2 <chr>
Save the new .bim file
# ____________________________________________________________________________
# save the new bim file with a new name, I added "B" ####
write.table(
chroms,
file = here(
"euro_global/output/file7C.bim"
),
sep = "\t",
row.names = FALSE,
col.names = FALSE,
quote = FALSE
)
Rename the .bim files
# change the name of the first .bim file, for example, append _backup.bim, and then replace the original file
mv euro_global/output/file7b.bim euro_global/output/file7b_backup.bim;
# than change the new bim we create to the original name (do it only once, otherwise it will mess up)
mv euro_global/output/file7C.bim euro_global/output/file7b.bim
Create a new bed file with Plink2 to see if it works. For example, to see if the variants are in the right order. Plink2 will give us a warning.
cd /gpfs/gibbs/pi/caccone/mkc54/albo
plink2 \
--bfile euro_global/output/file7b \
--make-bed \
--out euro_global/output/test01;
# then we remove the files
rm euro_global/output/test01.*
PLINK v2.00a3.7LM AVX2 Intel (24 Oct 2022) www.cog-genomics.org/plink/2.0/ (C) 2005-2022 Shaun Purcell, Christopher Chang GNU General Public License v3 Logging to euro_global/output/test01.log. Options in effect: –bfile euro_global/output/file7b –make-bed –out euro_global/output/test01 Start time: Wed Jan 24 12:48:03 2024 257256 MiB RAM detected; reserving 128628 MiB for main workspace. Using up to 32 threads (change this with –threads). 688 samples (82 females, 64 males, 542 ambiguous; 688 founders) loaded from euro_global/output/file7b.fam. 100367 variants loaded from euro_global/output/file7b.bim. Note: No phenotype data present. Writing euro_global/output/test01.fam … done. Writing euro_global/output/test01.bim … done. Writing euro_global/output/test01.bed … done. End time: Wed Jan 24 12:48:03 2024
We can use Plink1.9 to estimate LD blocks for the populations with more than 12 individuals. We will use the entire genome for this part instead of the larger scaffolds only. We will set max distance of LD blocks of 500kb. We found out that the average half distance of r^2 max is small, from 1 to 5kb
for fam in $(awk '{print $1}' euro_global/output/files/ld/pops_4ld.txt | sort | uniq);
do
echo $fam | \
plink \
--allow-extra-chr \
--keep-allele-order \
--bfile euro_global/output/file7b \
--keep-fam /dev/stdin \
--maf 0.01 \
--blocks no-pheno-req \
--blocks-max-kb 200 \
--out euro_global/output/files/ld/blocks_chr_b/$fam \
--geno 0.1 \
--silent
done;
#
rm euro_global/output/files/ld/blocks_chr_b/*.nosex
Now we can get some data from our .log files
echo "Population,n,nVariants,geno,maf,passQC" > euro_global/output/files/ld/blocks_chr_b/table_ld_statsb.csv
for file in euro_global/output/files/ld/blocks_chr_b/*.log
do
variants=$(grep -oE '([0-9]+) variants loaded from \.bim file' $file | grep -oE '[0-9]+')
geno=$(grep -oE '([0-9]+) variants removed due to missing genotype data \(--geno\)' $file | grep -oE '[0-9]+')
maf=$(grep -oE '([0-9]+) variants removed due to minor allele threshold\(s\)' $file | grep -oE '[0-9]+')
pass=$(grep -oE '([0-9]+) variants and [0-9]+ people pass filters and QC\.' $file | grep -oE '[0-9]+' | head -1)
n=$(grep -oE '([0-9]+) variants and [0-9]+ people pass filters and QC\.' $file | grep -oE '[0-9]+' | tail -1)
filename=$(basename $file .log)
echo "$filename,$n,$variants,$geno,$maf,$pass" >> euro_global/output/files/ld/blocks_chr_b/table_ld_statsb.csv
done;
head -n 5 euro_global/output/files/ld/blocks_chr_b/table_ld_statsb.csv
## Population,n,nVariants,geno,maf,passQC
## ALU,12,100367,5574,16348,78445
## ALV,12,100367,4943,15364,80060
## BAR,12,100367,6633,18733,75001
## BEN,12,100367,7303,19822,73242
We can check it out
# Load data from the table_ld_stats.csv file
ld_blocks <- read.csv(
here(
"euro_global/output/files/ld/blocks_chr_b/table_ld_statsb.csv"
),
header = TRUE,
sep = ","
)
# Create the flextable
ft <- flextable(ld_blocks)
# Apply zebra theme
ft <- theme_zebra(ft)
# Add a caption to the table
ft <- flextable::add_header_lines(ft, "Table 1: Summary of quality control for Euro_global dataset_b.")
# Save it to a Word document
officer::read_docx() |>
body_add_flextable(ft) |>
print(target = here::here("euro_global/output/summary_blocks_chr_b.docx"))
ft
Table 1: Summary of quality control for Euro_global dataset_b. | |||||
---|---|---|---|---|---|
Population | n | nVariants | geno | maf | passQC |
ALU | 12 | 100,367 | 5,574 | 16,348 | 78,445 |
ALV | 12 | 100,367 | 4,943 | 15,364 | 80,060 |
BAR | 12 | 100,367 | 6,633 | 18,733 | 75,001 |
BEN | 12 | 100,367 | 7,303 | 19,822 | 73,242 |
BER | 12 | 100,367 | 5,717 | 12,307 | 82,343 |
BRE | 13 | 100,367 | 11,370 | 20,312 | 68,685 |
CAM | 12 | 100,367 | 8,512 | 13,832 | 78,023 |
CES | 14 | 100,367 | 17,525 | 21,757 | 61,085 |
CHA | 12 | 100,367 | 5,415 | 17,268 | 77,684 |
CRO | 12 | 100,367 | 5,121 | 15,550 | 79,696 |
DES | 16 | 100,367 | 19,808 | 14,223 | 66,336 |
FRS | 12 | 100,367 | 4,063 | 12,196 | 84,108 |
GES | 12 | 100,367 | 4,671 | 22,794 | 72,902 |
GRA | 11 | 100,367 | 4,895 | 11,957 | 83,515 |
GRV | 12 | 100,367 | 6,563 | 20,180 | 73,624 |
HAI | 12 | 100,367 | 4,842 | 11,241 | 84,284 |
HUN | 12 | 100,367 | 4,322 | 10,144 | 85,901 |
ITR | 12 | 100,367 | 4,011 | 13,036 | 83,320 |
KAG | 12 | 100,367 | 5,815 | 16,681 | 77,871 |
KAN | 11 | 100,367 | 5,188 | 23,833 | 71,346 |
KER | 12 | 100,367 | 4,375 | 18,248 | 77,744 |
KRA | 12 | 100,367 | 6,944 | 15,678 | 77,745 |
MAL | 12 | 100,367 | 4,216 | 11,364 | 84,787 |
MAT | 12 | 100,367 | 5,785 | 18,986 | 75,596 |
OKI | 12 | 100,367 | 6,604 | 19,839 | 73,924 |
POP | 12 | 100,367 | 4,363 | 10,711 | 85,293 |
QNC | 11 | 100,367 | 6,335 | 34,788 | 59,244 |
RAR | 12 | 100,367 | 4,566 | 23,006 | 72,795 |
REC | 11 | 100,367 | 9,490 | 17,150 | 73,727 |
ROS | 11 | 100,367 | 5,609 | 17,909 | 76,849 |
SEV | 12 | 100,367 | 4,923 | 26,279 | 69,165 |
SIC | 9 | 100,367 | 21,294 | 15,310 | 63,763 |
SLO | 12 | 100,367 | 7,692 | 10,112 | 82,563 |
SOC | 12 | 100,367 | 4,661 | 20,282 | 75,424 |
SSK | 12 | 100,367 | 5,611 | 17,665 | 77,091 |
STS | 12 | 100,367 | 5,030 | 13,379 | 81,958 |
TIK | 12 | 100,367 | 4,662 | 23,951 | 71,754 |
TRE | 12 | 100,367 | 4,066 | 10,074 | 86,227 |
TUA | 9 | 100,367 | 13,966 | 18,077 | 68,324 |
TUH | 12 | 100,367 | 5,217 | 13,641 | 81,509 |
UTS | 12 | 100,367 | 4,736 | 16,562 | 79,069 |
Now we can count how many blocks we found in each population
cd euro_global/output/files/ld/blocks_chr_b
wc -l *.blocks | \
awk '{population = gensub(/\.blocks_chr/, "", "g", $2); print population "\t" $1}' | \
sed 's#euro_global/output/files/ld/blocks_chr_b/##' | \
sed 's/.blocks//' | \
sed '$d' > populations_block_counts_b.csv;
head -n 79 populations_block_counts_b.csv
## ALU 80
## ALV 90
## BAR 107
## BEN 11
## BER 98
## BRE 286
## CAM 9
## CES 381
## CHA 8
## CRO 96
## DES 378
## FRS 59
## GES 166
## GRA 31
## GRV 168
## HAI 59
## HUN 42
## ITR 82
## KAG 123
## KAN 221
## KER 128
## KRA 83
## MAL 79
## MAT 14
## OKI 140
## POP 72
## QNC 23
## RAR 148
## REC 81
## ROS 64
## SEV 206
## SIC 0
## SLO 42
## SOC 124
## SSK 7
## STS 115
## TIK 187
## TRE 71
## TUA 2
## TUH 119
## UTS 145
Now we can add the number of blocks to the table we made
# Load data from the table_ld_stats.csv file
ld_blocks <- read.csv(
here(
"euro_global/output/files/ld/blocks_chr_b/table_ld_statsb.csv"
),
header = TRUE,
sep = ","
)
# Load the population counts data from the CSV file
pop_counts <-
read.delim(
here(
"euro_global/output/files/ld/blocks_chr_b/populations_block_counts_b.csv"
),
header = F,
sep = "\t"
) |>
rename(
Population = 1,
nBlocks = 2
)
# Merge the population counts with the table data
ld_blocks <- merge(ld_blocks, pop_counts, by = "Population")
# Create the flextable
ft <- flextable(ld_blocks)
# Apply zebra theme
ft <- theme_zebra(ft)
# Add a caption to the table
ft <- flextable::add_header_lines(ft, "Table 2: Number of linkage blocks detected with Plink for populations with at least 10 individuals.")
ft
Table 2: Number of linkage blocks detected with Plink for populations with at least 10 individuals. | ||||||
---|---|---|---|---|---|---|
Population | n | nVariants | geno | maf | passQC | nBlocks |
ALU | 12 | 100,367 | 5,574 | 16,348 | 78,445 | 80 |
ALV | 12 | 100,367 | 4,943 | 15,364 | 80,060 | 90 |
BAR | 12 | 100,367 | 6,633 | 18,733 | 75,001 | 107 |
BEN | 12 | 100,367 | 7,303 | 19,822 | 73,242 | 11 |
BER | 12 | 100,367 | 5,717 | 12,307 | 82,343 | 98 |
BRE | 13 | 100,367 | 11,370 | 20,312 | 68,685 | 286 |
CAM | 12 | 100,367 | 8,512 | 13,832 | 78,023 | 9 |
CES | 14 | 100,367 | 17,525 | 21,757 | 61,085 | 381 |
CHA | 12 | 100,367 | 5,415 | 17,268 | 77,684 | 8 |
CRO | 12 | 100,367 | 5,121 | 15,550 | 79,696 | 96 |
DES | 16 | 100,367 | 19,808 | 14,223 | 66,336 | 378 |
FRS | 12 | 100,367 | 4,063 | 12,196 | 84,108 | 59 |
GES | 12 | 100,367 | 4,671 | 22,794 | 72,902 | 166 |
GRA | 11 | 100,367 | 4,895 | 11,957 | 83,515 | 31 |
GRV | 12 | 100,367 | 6,563 | 20,180 | 73,624 | 168 |
HAI | 12 | 100,367 | 4,842 | 11,241 | 84,284 | 59 |
HUN | 12 | 100,367 | 4,322 | 10,144 | 85,901 | 42 |
ITR | 12 | 100,367 | 4,011 | 13,036 | 83,320 | 82 |
KAG | 12 | 100,367 | 5,815 | 16,681 | 77,871 | 123 |
KAN | 11 | 100,367 | 5,188 | 23,833 | 71,346 | 221 |
KER | 12 | 100,367 | 4,375 | 18,248 | 77,744 | 128 |
KRA | 12 | 100,367 | 6,944 | 15,678 | 77,745 | 83 |
MAL | 12 | 100,367 | 4,216 | 11,364 | 84,787 | 79 |
MAT | 12 | 100,367 | 5,785 | 18,986 | 75,596 | 14 |
OKI | 12 | 100,367 | 6,604 | 19,839 | 73,924 | 140 |
POP | 12 | 100,367 | 4,363 | 10,711 | 85,293 | 72 |
QNC | 11 | 100,367 | 6,335 | 34,788 | 59,244 | 23 |
RAR | 12 | 100,367 | 4,566 | 23,006 | 72,795 | 148 |
REC | 11 | 100,367 | 9,490 | 17,150 | 73,727 | 81 |
ROS | 11 | 100,367 | 5,609 | 17,909 | 76,849 | 64 |
SEV | 12 | 100,367 | 4,923 | 26,279 | 69,165 | 206 |
SIC | 9 | 100,367 | 21,294 | 15,310 | 63,763 | 0 |
SLO | 12 | 100,367 | 7,692 | 10,112 | 82,563 | 42 |
SOC | 12 | 100,367 | 4,661 | 20,282 | 75,424 | 124 |
SSK | 12 | 100,367 | 5,611 | 17,665 | 77,091 | 7 |
STS | 12 | 100,367 | 5,030 | 13,379 | 81,958 | 115 |
TIK | 12 | 100,367 | 4,662 | 23,951 | 71,754 | 187 |
TRE | 12 | 100,367 | 4,066 | 10,074 | 86,227 | 71 |
TUA | 9 | 100,367 | 13,966 | 18,077 | 68,324 | 2 |
TUH | 12 | 100,367 | 5,217 | 13,641 | 81,509 | 119 |
UTS | 12 | 100,367 | 4,736 | 16,562 | 79,069 | 145 |
# Save it to a Word document
officer::read_docx() |>
body_add_flextable(ft) |>
print(target = here::here("euro_global/output/summary_blocks_chr_b.docx"))
Get the size of each block from the .block.det files
get_kb_column <- function(dir_path) {
# obtain the list of files with extension .blocks.det
file_names <- list.files(path = dir_path, pattern = "\\.blocks\\.det$", full.names = TRUE)
# create an empty list to hold the data frames
block_list <- list()
# loop through the files and read the data into the list
for (file in file_names) {
df <- read.table(file, header = TRUE, check.names = FALSE, stringsAsFactors = FALSE)
# select only the KB column and add it to the block_list with the file name
block_list[[file]] <- df %>% dplyr::select(KB) %>% add_column(file = file, .before = 1)
}
# combine the data frames in the block_list into a single data frame
blocks <- bind_rows(block_list)
# clean up the file name column
blocks$file <- str_remove(blocks$file, "^.*\\/ld\\/blocks\\/")
return(blocks)
}
# example usage: replace dir_path with your directory path
dir_path <- here("/gpfs/gibbs/pi/caccone/mkc54/albo/euro_global/output/files/ld/blocks_chr_b")
blocks<-
get_kb_column(dir_path) |>
mutate(file = str_remove(file, "/gpfs/gibbs/pi/caccone/mkc54/albo/euro_global/output/files/ld/blocks_chr_b/")) |>
mutate(file = str_remove(file, ".blocks.det")) |>
as_tibble() |>
rename(
Population = 1
)
Create density plot of the size of the LD blocks Plink found
# to check how many colors we need
# n_distinct(blocks$Population) #24
source(
here("scripts", "RMarkdowns",
"my_theme2.R"
)
)
n <- 50
qual_col_pals = brewer.pal.info[brewer.pal.info$category == 'qual',]
col_vector = unlist(mapply(brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals)))
pie(rep(1,n), col=sample(col_vector, n))
## [1] "#7FC97F" "#BEAED4" "#FDC086" "#FFFF99" "#386CB0" "#F0027F" "#BF5B17"
## [8] "#666666" "#1B9E77" "#D95F02" "#7570B3" "#E7298A" "#66A61E" "#E6AB02"
## [15] "#A6761D" "#666666" "#A6CEE3" "#1F78B4" "#B2DF8A" "#33A02C" "#FB9A99"
## [22] "#E31A1C" "#FDBF6F" "#FF7F00" "#CAB2D6" "#6A3D9A" "#FFFF99" "#B15928"
## [29] "#FBB4AE" "#B3CDE3" "#CCEBC5" "#DECBE4" "#FED9A6" "#FFFFCC" "#E5D8BD"
## [36] "#FDDAEC" "#F2F2F2" "#B3E2CD" "#FDCDAC" "#CBD5E8" "#F4CAE4" "#E6F5C9"
## [43] "#FFF2AE" "#F1E2CC" "#CCCCCC" "#E41A1C" "#377EB8" "#4DAF4A" "#984EA3"
## [50] "#FF7F00" "#FFFF33" "#A65628" "#F781BF" "#999999" "#66C2A5" "#FC8D62"
## [57] "#8DA0CB" "#E78AC3" "#A6D854" "#FFD92F" "#E5C494" "#B3B3B3" "#8DD3C7"
## [64] "#FFFFB3" "#BEBADA" "#FB8072" "#80B1D3" "#FDB462" "#B3DE69" "#FCCDE5"
## [71] "#D9D9D9" "#BC80BD" "#CCEBC5" "#FFED6F"
# make plot using the sample y scale for all populations
ggplot(blocks, aes(x = KB)) +
stat_density(
aes(y = after_stat(count), fill = factor(Population)),
linewidth = .5,
alpha = .4,
position = "identity"
) +
scale_fill_manual(values = col_vector) +
scale_x_continuous(name = "Block length (kb)") +
scale_y_continuous(name = "Count") +
theme(
plot.title = element_text(hjust = 0.5, size = 18, face = "bold"),
axis.text = element_text(size = 12),
axis.title = element_text(size = 16, face = "bold"),
strip.text = element_text(size = 14, face = "bold"),
plot.background = element_rect(fill = "white"),
panel.background = element_rect(fill = 'white', colour = 'black')
) +
guides(fill = "none") +
facet_wrap( ~ Population, ncol = 3) + my_theme()
# save the plot as a PDF using ggsave
ggsave(
here("scripts", "RMarkdowns",
"output",
"euro_global",
"figures",
"block_density_y_scale_fixed_chr_euro_global_b.pdf"
),
width = 10,
height = 10,
units = "in"
)
Make plot allowing the y axis scale free
ggplot(blocks, aes(x = KB)) +
stat_density(
aes(y = after_stat(count), fill = factor(Population)),
linewidth = .5,
alpha = .4,
position = "identity"
) +
scale_fill_manual(values = col_vector) +
scale_x_continuous(name = "Block length (kb)") +
scale_y_continuous(name = "Count") +
theme(
plot.title = element_text(hjust = 0.5, size = 18, face = "bold"),
axis.text = element_text(size = 12),
axis.title = element_text(size = 16, face = "bold"),
strip.text = element_text(size = 14, face = "bold"),
plot.background = element_rect(fill = "white"),
panel.background = element_rect(fill = 'white', colour = 'black')
) +
guides(fill = "none") +
facet_wrap( ~ Population, ncol = 3, scales = "free_y") +
my_theme()
After quality control with approximately 100k SNPs
# load the function that we saved earlier
source(
here("scripts", "RMarkdowns",
"analyses", "import_bim.R"
),
local = knitr::knit_global()
)
# import the file
snp_den_qc <- import_bim(
here(
"euro_global/output/file7b.bim"
)
)
Make plot of the SNP density
# ____________________________________________________________________________
# plot SNP density after QC ####
snp_den_qc |>
rename(
Chromosome = 1
) |>
mutate(
Position = as.numeric(
Position
)
) |>
ggplot(
aes(
x = Position
),
label = sprintf(
"%0.2f",
round(
a,
digits = 0
)
)
) +
geom_histogram(
aes(
y = after_stat(
count
)
),
binwidth = 1e6
) +
facet_wrap(
vars(
Chromosome
),
scales = "free_x"
) +
labs(
title = "SNP Density after QC",
x = expression(
"Position in the genome (Mb)"
),
y = expression(
"Number of SNPs"
)
) +
scale_x_continuous(
labels = function(x) {
format(
x / 1e6,
big.mark = ",",
scientific = FALSE
)
}
) +
geom_density(
aes(
y = 1e6 * after_stat(count)
),
color = "red",
linewidth = .75,
alpha = .4,
fill = "pink"
) +
theme(
panel.grid.major = element_line(
linetype = "dashed",
linewidth = 0.2
),
panel.grid.minor = element_line(
linetype = "dashed",
linewidth = 0.2
),
panel.spacing = unit(0.5, "lines"),
strip.text = element_text(
face = "bold", hjust = .5
),
strip.background.x = element_rect(
color = "gray"
)
)
# save the density plot ####
ggsave(
here("scripts", "RMarkdowns",
"output", "euro_global","figures", "snp_density_after_qc_euro_globalb.pdf"
),
width = 10,
height = 6,
units = "in"
)
SNPs per chromosome (after QC)
# we can use dplyr "count" to get the number of SNPs for each chromosome
# lets get the data we need
snps_per_chrm <-
snp_den_qc |>
count(
Scaffold) |>
rename(
Chromosome = 1,
"SNPs (N) " = 2
)
# Create the flextable
ft <- flextable::flextable(snps_per_chrm)
# Apply zebra theme
ft <- flextable::theme_zebra(ft)
# Add a caption to the table
ft <- flextable::add_header_lines(ft, "SNPs per chromosome after quality control")
ft
SNPs per chromosome after quality control | |
---|---|
Chromosome | SNPs (N) |
1 | 22,313 |
2 | 42,102 |
3 | 35,952 |
We can get the mean number of SNPs per chromosome for the entire genome
# we first use dplyr cut_width to get the number of SNPs per 1Mb window
albo_den <-
snp_den_qc |>
dplyr::select(
Scaffold, Position
) |>
group_by(
Scaffold,
windows = cut_width(
Position,
width = 1e6,
boundary = 0
)
) |>
summarise(
n = n(),
.groups = "keep"
) |>
group_by(
Scaffold
) |>
summarise(
mean = mean(n),
n = n(),
.groups = "keep"
) |>
rename(
Chromosome = 1,
"SNPs per 1Mb window" = 2,
"Number of windows" = 3
)
#
# check the results
snp_table <-
flextable(
albo_den
)
snp_table <- colformat_double(
x = snp_table,
big.mark = ",",
digits = 2,
na_str = "N/A"
)
snp_table
Chromosome | SNPs per 1Mb window | Number of windows |
---|---|---|
1 | 60.47 | 369 |
2 | 72.46 | 581 |
3 | 73.52 | 489 |
Merge objects
# we can merge the two data sets we created above into one table
after_qc <-
snps_per_chrm |>
left_join(
albo_den,
by = "Chromosome"
)
snp_table2 <- flextable(
after_qc)
snp_table2 <- colformat_double(
x = snp_table2,
big.mark = ",",
digits = 2,
na_str = "N/A"
)
snp_table2
Chromosome | SNPs (N) | SNPs per 1Mb window | Number of windows |
---|---|---|---|
1 | 22,313 | 60.47 | 369 |
2 | 42,102 | 72.46 | 581 |
3 | 35,952 | 73.52 | 489 |
# we set a window of variants of 5 and move the window 1 variant per time, removing 1 of the variants with lowest MAF from a pair above the threshold of r^2 > 0.1
# the mean distance is 203kb across the tested populations. Try --indep-pairwise 200kb 1 0.1
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file7b \
--indep-pairwise 5 1 0.1 \
--out euro_global/output/indepSNP_chrb \
--silent;
grep 'pairwise\|variants\|samples' euro_global/output/indepSNP_chrb.log
–indep-pairwise 5 1 0.1 688 samples (82 females, 64 males, 542 ambiguous; 688 founders) loaded from 100367 variants loaded from euro_global/output/file7b.bim. –indep-pairwise (3 compute threads): 34050/100367 variants removed.
Lets do the scaffold again
First need to import same SNP list Import the .bim file with the SNPs
# import the bim file with the SNP data ####
snps <-
read_delim( # to learn about the options use here, run ?read_delim on the console.
here(
"euro_global/output/file7b_backup.bim" #output/populations/file4.bim
), # use library here to load it
col_names = FALSE, # we don't have header in the input file
show_col_types = FALSE, # suppress message from read_delim
col_types = "ccidcc" # set the class of each column
)
#
# set column names
colnames(
snps
) <- # to add a header in our tibble
c(
"Scaffold", "SNP", "Cm", "Position", "Allele1", "Allele2"
)
#
# check the tibble
head(snps)
## # A tibble: 6 × 6
## Scaffold SNP Cm Position Allele1 Allele2
## <chr> <chr> <int> <dbl> <chr> <chr>
## 1 1.1 AX-583033342 0 315059 C G
## 2 1.1 AX-583035163 0 315386 A G
## 3 1.1 AX-583033356 0 315674 C T
## 4 1.1 AX-583033370 0 330057 G A
## 5 1.1 AX-583035194 0 330265 A G
## 6 1.1 AX-583033387 0 331288 C T
write.table(
snps,
file = here(
"euro_global/output/snps_all_scaffolds_4ld_b.txt"
),
sep = "\t",
row.names = FALSE,
col.names = FALSE,
quote = FALSE
)
nrow(snps)
#100367
## [1] 100367
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file5b \
--king-cutoff euro_global/output/file6b 0.354 \
--make-bed \
--out euro_global/output/file11b \
--silent;
grep 'samples\|variants\|remaining' euro_global/output/file11b.log
699 samples (85 females, 65 males, 549 ambiguous; 699 founders) loaded from 100367 variants loaded from euro_global/output/file5b.bim. euro_global/output/file11b.king.cutoff.out.id , and 688 remaining sample IDs
# we set a window of variants of 5 and move the window 1 variant each time, removing 1 of the variants with lowest MAF from a pair above the threshold of r^2 > 0.1
# the mean distance is 203kb across the tested populations. We used --indep-pairwise 5 1 0.1 before. We can use the same values from the mean half distance max r2
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file11b \
--indep-pairwise 5 1 0.1 \
--out euro_global/output/indepSNP_scaffoldsb \
--silent;
grep 'pairwise\|variants\|samples' euro_global/output/indepSNP_scaffoldsb.log
–indep-pairwise 5 1 0.1 688 samples (82 females, 64 males, 542 ambiguous; 688 founders) loaded from 100367 variants loaded from euro_global/output/file11b.bim. –indep-pairwise (27 compute threads): 34032/100367 variants removed.
Now we can compare the two sets of SNPs using scaffolds or chromosomal scale
Create Venn diagram of SNPs removed due to LD
# Read in the two files as vectors
prunout_chr <-
read_delim(
here(
"euro_global/output/indepSNP_chrb.prune.out"
),
delim = " ",
col_names = FALSE,
show_col_types = FALSE
)
prunout_scaffolds <-
read_delim(
here(
"euro_global/output/indepSNP_scaffoldsb.prune.out"
),
delim = " ",
col_names = FALSE,
show_col_types = FALSE
)
# Convert the list to vector
prunout_scaffolds <- unlist(prunout_scaffolds)
prunout_chr <- unlist(prunout_chr)
# Calculate shared values
prunout <- intersect(prunout_chr, prunout_scaffolds)
# Create Venn diagram
venn_data1 <- list(
"Chromosomal" = prunout_chr,
"Scaffolds" = prunout_scaffolds
)
# create plot
venn_plot1 <- ggvenn(venn_data1, fill_color = c("steelblue", "darkorange"), show_percentage = TRUE)
# Add a title
venn_plot1 <- venn_plot1 +
ggtitle("Comparison of genomic scales for linked SNPs MAF 0.01") +
theme(plot.title = element_text(hjust = .5))
# Display the Venn diagram
print(venn_plot1)
# Save Venn diagram to PDF
output_path <- here("scripts", "RMarkdowns", "output", "euro_global", "figures", "SNPs_linked_comparison_euro_global_b.pdf")
ggsave(output_path, venn_plot1, height = 5, width = 5, dpi = 300)
Now compare MAF 0.01 to MAF 0.1 pruning
Create Venn diagram of SNPs removed due to LD
# Read in the two files as vectors
prunout_chr_0.01 <-
read_delim(
here(
"euro_global/output/indepSNP_chrb.prune.out"
),
delim = " ",
col_names = FALSE,
show_col_types = FALSE
)
prunout_chr_0.1 <-
read_delim(
here(
"euro_global/output/indepSNP_chr.prune.out"
),
delim = " ",
col_names = FALSE,
show_col_types = FALSE
)
# Convert the list to vector
prunout_chr_0.01 <- unlist(prunout_chr_0.01)
prunout_chr_0.1 <- unlist(prunout_chr_0.1)
# Calculate shared values
prunout <- intersect(prunout_chr_0.01, prunout_chr_0.1)
# Create Venn diagram
venn_data1 <- list(
"MAF 1%" = prunout_chr_0.01,
"MAF 10%" = prunout_chr_0.1
)
# create plot
venn_plot1 <- ggvenn(venn_data1, fill_color = c("steelblue", "darkorange"), show_percentage = TRUE)
# Add a title
venn_plot1 <- venn_plot1 +
ggtitle("Comparison of SNPs sets pruned for MAF 1% and MAF 10%") +
theme(plot.title = element_text(hjust = .5))
# Display the Venn diagram
print(venn_plot1)
If needed, can create it again using the code below
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file7b \
--indep-pairwise 5 1 0.1 \
--out euro_global/output/indepSNP_chrb \
--silent;
grep 'pairwise\|variants\|samples' euro_global/output/indepSNP_chrb.log
–indep-pairwise 5 1 0.1 688 samples (82 females, 64 males, 542 ambiguous; 688 founders) loaded from 100367 variants loaded from euro_global/output/file7b.bim. –indep-pairwise (3 compute threads): 34050/100367 variants removed.
The indepSNP_chrb.prune.in file produced here = those SNPs < our LD 0.1 threshold, that we want to use
Now we need to make pruned dataset for 0.01. Can use file7b
plink2 \
--allow-extra-chr \
--bfile euro_global/output/file7b \
--indep-pairwise 5 1 0.01 \
--out euro_global/output/indepSNP_chrb_r01 \
--silent;
grep 'pairwise\|variants\|samples' euro_global/output/indepSNP_chrb_r01.log
–indep-pairwise 5 1 0.01 688 samples (82 females, 64 males, 542 ambiguous; 688 founders) loaded from 100367 variants loaded from euro_global/output/file7b.bim. –indep-pairwise (3 compute threads): 77725/100367 variants removed.
We can use the SNP set the LD pruning we just did and extract them from file7
plink2 \
--keep-allele-order \
--bfile euro_global/output/file7b \
--make-bed \
--export vcf \
--out euro_global/output/snps_sets/r2_0.1_b \
--extract euro_global/output/indepSNP_chrb.prune.in \
--silent
grep "variants\|samples" euro_global/output/snps_sets/r2_0.1_b.log
688 samples (82 females, 64 males, 542 ambiguous; 688 founders) loaded from 100367 variants loaded from euro_global/output/file7b.bim. –extract: 66317 variants remaining. 66317 variants remaining after main filters.
Repeat for 0.01 dataset (Set 3)
plink2 \
--keep-allele-order \
--bfile euro_global/output/file7b \
--make-bed \
--export vcf \
--out euro_global/output/snps_sets/r2_0.01_b \
--extract euro_global/output/indepSNP_chrb_r01.prune.in \
--silent
grep "variants\|samples" euro_global/output/snps_sets/r2_0.01_b.log
688 samples (82 females, 64 males, 542 ambiguous; 688 founders) loaded from 100367 variants loaded from euro_global/output/file7b.bim. –extract: 22642 variants remaining. 22642 variants remaining after main filters.
These snp set can now be used for subsequent pop gen analyses.
Create Venn diagram of SNPs removed due to LD
# Read in the two files as vectors
prunout_chr_0.01 <-
read_delim(
here(
"euro_global/output/indepSNP_chrb_r01.prune.in"
),
delim = " ",
col_names = FALSE,
show_col_types = FALSE
)
prunout_chr_0.1 <-
read_delim(
here(
"euro_global/output/indepSNP_chr_r01.prune.in"
),
delim = " ",
col_names = FALSE,
show_col_types = FALSE
)
# Convert the list to vector
prunout_chr_0.01 <- unlist(prunout_chr_0.01)
prunout_chr_0.1 <- unlist(prunout_chr_0.1)
# Calculate shared values
prunout <- intersect(prunout_chr_0.01, prunout_chr_0.1)
# Create Venn diagram
venn_data1 <- list(
"MAF 1%" = prunout_chr_0.01,
"MAF 10%" = prunout_chr_0.1
)
# create plot
venn_plot1 <- ggvenn(venn_data1, fill_color = c("steelblue", "darkorange"), show_percentage = TRUE)
# Add a title
venn_plot1 <- venn_plot1 +
ggtitle("Comparison of LD 0.01 SNPs sets for MAF 1% and MAF 10%") +
theme(plot.title = element_text(hjust = .5))
# Display the Venn diagram
print(venn_plot1)