# Load Packages
library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.3.3
## Warning: package 'forcats' was built under R version 4.3.3
library(tidyquant)
Ra <- c("NOC", "WMT", "UPS", "UNH") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 132 × 3
## # Groups: symbol [4]
## symbol date Ra
## <chr> <date> <dbl>
## 1 NOC 2022-01-31 -0.0405
## 2 NOC 2022-02-28 0.200
## 3 NOC 2022-03-31 0.0115
## 4 NOC 2022-04-29 -0.0175
## 5 NOC 2022-05-31 0.0690
## 6 NOC 2022-06-30 0.0227
## 7 NOC 2022-07-29 0.000689
## 8 NOC 2022-08-31 0.00160
## 9 NOC 2022-09-30 -0.0160
## 10 NOC 2022-10-31 0.167
## # ℹ 122 more rows
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 33 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## # ℹ 23 more rows
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 132 × 4
## # Groups: symbol [4]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 NOC 2022-01-31 -0.0405 -0.101
## 2 NOC 2022-02-28 0.200 -0.0343
## 3 NOC 2022-03-31 0.0115 0.0341
## 4 NOC 2022-04-29 -0.0175 -0.133
## 5 NOC 2022-05-31 0.0690 -0.0205
## 6 NOC 2022-06-30 0.0227 -0.0871
## 7 NOC 2022-07-29 0.000689 0.123
## 8 NOC 2022-08-31 0.00160 -0.0464
## 9 NOC 2022-09-30 -0.0160 -0.105
## 10 NOC 2022-10-31 0.167 0.0390
## # ℹ 122 more rows
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 4 × 13
## # Groups: symbol [4]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 NOC 0.0934 0.0138 0.178 -0.209 0.705 -0.725
## 2 WMT 0.172 0.0157 0.205 0.401 0.0564 -0.341
## 3 UPS -0.170 -0.013 -0.145 0.746 0.980 0.941
## 4 UNH 0.0277 0.0059 0.0736 0.114 0.241 -0.162
## # ℹ 6 more variables: Correlation <dbl>, `Correlationp-value` <dbl>,
## # InformationRatio <dbl>, `R-squared` <dbl>, TrackingError <dbl>,
## # TreynorRatio <dbl>
RaRb_skew <- RaRb %>%
tq_performance(Ra = Ra,
Rb = NULL,
performance_fun = skewness)
RaRb_skew
## # A tibble: 4 × 2
## # Groups: symbol [4]
## symbol skewness.1
## <chr> <dbl>
## 1 NOC 0.366
## 2 WMT -0.467
## 3 UPS -0.328
## 4 UNH 0.650
NOC and UNH have positive skewing and WMT and UPS have negative skewing. UPS is also the only one not to make a positive return for 2022 on