# Load packages
library(tidyverse)
library(tidyquant)
Ra <- c("GOOG", "GME", "NVDA", "V") %>%
tq_get(get = "stock.prices",
from = "2024-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 36 × 3
## # Groups: symbol [4]
## symbol date Ra
## <chr> <date> <dbl>
## 1 GOOG 2024-01-31 0.0161
## 2 GOOG 2024-02-29 -0.0142
## 3 GOOG 2024-03-28 0.0893
## 4 GOOG 2024-04-30 0.0813
## 5 GOOG 2024-05-31 0.0566
## 6 GOOG 2024-06-28 0.0556
## 7 GOOG 2024-07-31 -0.0560
## 8 GOOG 2024-08-30 -0.0464
## 9 GOOG 2024-09-17 -0.0280
## 10 GME 2024-01-31 -0.146
## # ℹ 26 more rows
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2024-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 9 × 2
## date Rb
## <date> <dbl>
## 1 2024-01-31 0.0270
## 2 2024-02-29 0.0612
## 3 2024-03-28 0.0179
## 4 2024-04-30 -0.0441
## 5 2024-05-31 0.0688
## 6 2024-06-28 0.0596
## 7 2024-07-31 -0.00751
## 8 2024-08-30 0.00649
## 9 2024-09-17 -0.00483
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 36 × 4
## # Groups: symbol [4]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 GOOG 2024-01-31 0.0161 0.0270
## 2 GOOG 2024-02-29 -0.0142 0.0612
## 3 GOOG 2024-03-28 0.0893 0.0179
## 4 GOOG 2024-04-30 0.0813 -0.0441
## 5 GOOG 2024-05-31 0.0566 0.0688
## 6 GOOG 2024-06-28 0.0556 0.0596
## 7 GOOG 2024-07-31 -0.0560 -0.00751
## 8 GOOG 2024-08-30 -0.0464 0.00649
## 9 GOOG 2024-09-17 -0.0280 -0.00483
## 10 GME 2024-01-31 -0.146 0.0270
## # ℹ 26 more rows
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 4 × 13
## # Groups: symbol [4]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 GOOG -0.0598 0.0137 0.178 0.165 -3.20 0.512 0.112
## 2 GME 0.022 -0.0565 -0.502 5.93 0.0175 10.5 0.571
## 3 NVDA 1.95 0.0457 0.709 3.15 0.0711 2.52 0.831
## 4 V -0.0857 0.0122 0.156 0.115 1.93 -0.396 0.119
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = NULL,
performance_fun = skewness)
RaRb_capm
## # A tibble: 4 × 2
## # Groups: symbol [4]
## symbol skewness.1
## <chr> <dbl>
## 1 GOOG -0.00939
## 2 GME 2.29
## 3 NVDA 0.113
## 4 V -0.350
The stocks that have a positive skewed distributions are GameStop (GME) and NVIDIA (NVDA). Both Google and Visa have a negative skewed distribution.