# Load Packages
library(tidyverse)
library(tidyquant)
Get stock prices and convert to returns
Ra <- c("GM", "DKNG", "PFE") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 99 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 GM 2022-01-31 -0.138
## 2 GM 2022-02-28 -0.114
## 3 GM 2022-03-31 -0.0638
## 4 GM 2022-04-29 -0.133
## 5 GM 2022-05-31 0.0203
## 6 GM 2022-06-30 -0.179
## 7 GM 2022-07-29 0.142
## 8 GM 2022-08-31 0.0562
## 9 GM 2022-09-30 -0.160
## 10 GM 2022-10-31 0.223
## # ℹ 89 more rows
2 Get baseline and convert to returns
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
3 join the two tables
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 99 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 GM 2022-01-31 -0.138 -0.101
## 2 GM 2022-02-28 -0.114 -0.0343
## 3 GM 2022-03-31 -0.0638 0.0341
## 4 GM 2022-04-29 -0.133 -0.133
## 5 GM 2022-05-31 0.0203 -0.0205
## 6 GM 2022-06-30 -0.179 -0.0871
## 7 GM 2022-07-29 0.142 0.123
## 8 GM 2022-08-31 0.0562 -0.0464
## 9 GM 2022-09-30 -0.160 -0.105
## 10 GM 2022-10-31 0.223 0.0390
## # ℹ 89 more rows
4 calculate CAPM
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 GM -0.120 -0.0075 -0.0866 1.26 1.06 0.888 0.729
## 2 DKNG 0.0911 0.0143 0.186 1.49 2.77 2.03 0.616
## 3 PFE -0.212 -0.0147 -0.162 0.211 0.379 -0.277 0.207
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
which stock has a positive skewed distribution of returns?
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = VolatilitySkewness)
RaRb_capm
## # A tibble: 3 × 2
## # Groups: symbol [3]
## symbol VolatilitySkewness.1
## <chr> <dbl>
## 1 GM 2.06
## 2 DKNG 2.63
## 3 PFE 1.24