Fase 1 [Descripciones Multivariantes]

1.1. Objetivos

Desarrollar una descripción multivariante detallada del conjunto de datos original y depurado, analizando y estructurando las variables presentes en ambos conjuntos para identificar patrones, relaciones y características clave. Esto incluirá la evaluación de la estructura del conjunto de datos original y depurado, con el fin de asegurar su calidad, consistencia y adecuación para su posterior análisis y toma de decisiones.

1.2. Descripción de los datos

1.2.1 Fuente del conjunto de datos.

El conjunto de datos de trabajo se obtuvo casi totalmente de Kaggle: https://www.kaggle.com/marius2303. Es conveniente anotar que Kaggle es una compañía subsidiaria de Google LLC que mantiene una comunidad online de científicos de datos y profesionales del aprendizaje automático. Esta empresa permite a sus usuarios encontrar y publicar conjuntos de datos, explorar y crear modelos en un entorno de ciencia de datos basado en la web, trabajar con otros científicos de datos e ingenieros de aprendizaje automático y participar en concursos para resolver desafíos de ciencia de datos.

1.2.2 Contexto del conjunto de datos.

Este conjunto de datos contiene información detallada sobre los propietarios de automóviles y sus vehículos, centrándose específicamente en los modelos Nissan.

1.2.3 Descripcion del conjunto de datos.

El conjunto de datos contiene 10 campos y 4189 registros. Uno de los campos es simplemente un identificador numérico secuencial de los registros. Contiene 4 campos de naturaleza cualitativa; contiene un campo de naturaleza dicotómica y el resto son numéricos estrictamente positivos. La lista siguiente los describe de izquierda a derecha, como aparecen en el rango de datos que los contiene y se establece para cada campo.

  • ID (identificador): registra un número secuenciado a partir de 1 para identificar de forma única cada registro consignado en el conjunto de datos.

  • Full_name (cualitativa::nominal): Registra el nombre del dueño del auto del cual se registraron los datos.

  • Age (cuantitativa::nominal): Registra la edad del dueño del automóvil.

  • Gender (cualitativa::nominal): Registra el genero del dueño del automóvil: 1 corresponde a los dueños de genero masculino y 0 a los dueños de género femenino.

  • Model (cualitativa::nominal): Registra el modelo de auto nissan que tienen los dueños de los cuales se registraron los datos.

  • Color (cualitativa::nominal): Registra el color del auto de cada dueño de los cuales se registraron los datos.

  • Perfomance (cuantitativa::razón): Registra el rendimiento del auto. El rendimiento en este caso es la velocidad que el auto puede alcanzar..

  • KM (cuantitativa::razón): Registra el kilometraje total que tiene el auto. El kilometraje es la distancia que el auto ya ha recorrido, esto debido a que los automóviles de este conjunto de datos son usados.

  • Condition (cualitativa::razón): Registra la condición en la que se encuentra el auto. 1 corresponde a los autos en condiciones muy malas, 2 corresponde a los autos en condiciones malas, 3 corresponde a los autos en condiciones buenas, 4 corresponde a los autos en condiciones muy buenas, 5 corresponde a los autos en condiciones de antigüedad (viejos) y 6 corresponde a los autos más nuevos.

  • Price (cuantitativa::nominal): Registra el precio de cada auto de los cuales se registraron los datos.

Estructura del Conjunto de Datos Original.
str(Modelos_Nissan)
## tibble [4,188 × 10] (S3: tbl_df/tbl/data.frame)
##  $ id         : num [1:4188] 1 3 4 5 6 7 9 10 12 13 ...
##  $ full_name  : chr [1:4188] "Dominic Applin" "Kendal Esselin" "Nehemiah Marvelley" "Domenic McGeouch" ...
##  $ age        : chr [1:4188] "42" "37" "55" "21" ...
##  $ gender     : chr [1:4188] "Male" "Male" "Male" "Male" ...
##  $ model      : chr [1:4188] "Quest" "March / Micra" "Gloria" "Avenir" ...
##  $ color      : chr [1:4188] "Mauv" "Teal" "Green" "Khaki" ...
##  $ performance: chr [1:4188] "299" "52" "336" "2" ...
##  $ km         : chr [1:4188] "509305" "380906" "573171" "809470" ...
##  $ condition  : chr [1:4188] "very bad" "bad" "very good" "old" ...
##  $ price      : num [1:4188] 40395 44705 32890 6949 18351 ...
Conjunto de Datos Original.
Modelos_Nissan
## # A tibble: 4,188 × 10
##       id full_name   age   gender model color performance km    condition  price
##    <dbl> <chr>       <chr> <chr>  <chr> <chr> <chr>       <chr> <chr>      <dbl>
##  1     1 Dominic Ap… 42    Male   Quest Mauv  299         5093… very bad  40395.
##  2     3 Kendal Ess… 37    Male   Marc… Teal  52          3809… bad       44705.
##  3     4 Nehemiah M… 55    Male   Glor… Green 336         5731… very good 32890.
##  4     5 Domenic Mc… 21    Male   Aven… Khaki 2           8094… old        6949.
##  5     6 Bancroft L… 42    Male   Puls… Indi… 43          3155… bad       18351.
##  6     7 Arlan Saig… 39    Male   Glor… Yell… 330         9871… old       40909.
##  7     9 Nil Dorsey  60    Male   Cedr… Crim… 282         3554… bad       39347.
##  8    10 Meghan Man… 43    Female Town… Khaki 143         8034… old       32742.
##  9    12 Corny Jans… 22    Male   Xter… Yell… 46          66616 new       19908.
## 10    13 Sammie Bis… 58    Male   Cima  Yell… 333         7282… very bad  13035.
## # ℹ 4,178 more rows
Estructura de Conjunto de Datos Depurado.

Cabe aclarar que a este conjunto de datos se le realizaron algunas modificaciones: se convirtieron variables como gender y condition, dada su naturaleza categórica. También se realizaron depuraciones generales, como la eliminación de filas vacías, la corrección de datos incoherentes y la eliminación de filas con celdas vacías. Además, se ajustaron las variables numéricas que no tenían el formato adecuado para asegurar un análisis correcto.

str(Modelos_Nissan_Depurado)
## tibble [4,130 × 10] (S3: tbl_df/tbl/data.frame)
##  $ id         : num [1:4130] 1 2 3 4 5 6 7 8 9 10 ...
##  $ full_name  : chr [1:4130] "Dominic Applin" "Kendal Esselin" "Nehemiah Marvelley" "Domenic McGeouch" ...
##  $ age        : num [1:4130] 42 37 55 21 42 39 60 43 22 58 ...
##  $ gender     : num [1:4130] 1 1 1 1 1 1 1 0 1 1 ...
##  $ model      : chr [1:4130] "Quest" "March / Micra" "Gloria" "Avenir" ...
##  $ color      : chr [1:4130] "Mauv" "Teal" "Green" "Khaki" ...
##  $ performance: num [1:4130] 299 52 336 2 43 330 282 143 46 333 ...
##  $ km         : num [1:4130] 509305 380906 573171 809470 315542 ...
##  $ condition  : num [1:4130] 1 2 4 5 2 5 2 5 6 1 ...
##  $ price      : num [1:4130] 4039491 4470531 3288988 694922 1835128 ...
Conjunto de Datos Depurado.
Modelos_Nissan_Depurado
## # A tibble: 4,130 × 10
##       id full_name    age gender model color performance     km condition  price
##    <dbl> <chr>      <dbl>  <dbl> <chr> <chr>       <dbl>  <dbl>     <dbl>  <dbl>
##  1     1 Dominic A…    42      1 Quest Mauv          299 509305         1 4.04e6
##  2     2 Kendal Es…    37      1 Marc… Teal           52 380906         2 4.47e6
##  3     3 Nehemiah …    55      1 Glor… Green         336 573171         4 3.29e6
##  4     4 Domenic M…    21      1 Aven… Khaki           2 809470         5 6.95e5
##  5     5 Bancroft …    42      1 Puls… Indi…          43 315542         2 1.84e6
##  6     6 Arlan Sai…    39      1 Glor… Yell…         330 987100         5 4.09e6
##  7     7 Nil Dorsey    60      1 Cedr… Crim…         282 355473         2 3.93e5
##  8     8 Meghan Ma…    43      0 Town… Khaki         143 803432         5 3.27e6
##  9     9 Corny Jan…    22      1 Xter… Yell…          46  66616         6 1.99e5
## 10    10 Sammie Bi…    58      1 Cima  Yell…         333 728227         1 1.30e6
## # ℹ 4,120 more rows

1.3. Estimaciones Multivariadas

Las estimaciones multivariadas son técnicas estadísticas utilizadas para analizar más de una variable dependiente a la vez, mientras se controlan o consideran múltiples variables independientes. A diferencia de las estimaciones univariadas, que solo involucran una variable dependiente, las multivariadas permiten estudiar relaciones más complejas y simultáneas entre varias variables, lo que las hace útiles en escenarios donde los resultados son influenciados por múltiples factores.

En un análisis multivariado, el vector de medias representa las medias o valores promedio de cada una de las variables en un conjunto de datos, proporcionando una medida central para cada variable. La matriz de varianzas-covarianzas describe cómo varían las variables respecto a sus medias y cómo se relacionan entre sí. Los elementos diagonales de esta matriz son las varianzas de cada variable, mientras que los elementos fuera de la diagonal son las covarianzas, que indican la magnitud y dirección de la relación lineal entre pares de variables. La matriz de correlaciones, por su parte, estandariza estas relaciones, mostrando los coeficientes de correlación (entre -1 y 1) que reflejan la fuerza y dirección de la relación entre las variables. A diferencia de la covarianza, la correlación es una medida adimensional, lo que facilita la comparación entre variables con diferentes escalas.

Con base en el conjunto de datos descrito se calcularán e intepretarán, para las variables numéricas, el vector de medias, la matriz de varianzas-covarianzas y la matriz de correlaciones. Se recuerda que las variables numéricas (en escalada de medición de razón) son: age, performance, km y price.

La Matriz de Varianzas-Covarianzas nos muestra que estos datos estan muy alejados de su media y que hay datos que se relacionan de manera negativa, lo que quire decir que si el valor de una variable aumenta la otra disminuye

Con base en la matriz de correlaciones, se observa una intensidad muy baja entre las variables. Sin embargo, esto no implica que las variables no estén relacionadas entre sí; solo es necesario realizar pruebas más robustas para identificar cuáles variables presentan una relación más estrecha.

Vector de Medias y Boxplots.

apply(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], 2, mean)
##          age  performance           km        price 
## 4.244576e+01 1.988462e+02 4.983990e+05 2.475648e+06
Modelos_Nissan_Depurado_Reducido = Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)]
nombres_boxplots <- c("age", "performance", "km", "price")
par(mfrow = c(1, ncol(Modelos_Nissan_Depurado_Reducido)))
invisible(lapply(1:ncol(Modelos_Nissan_Depurado_Reducido), function(i) boxplot(Modelos_Nissan_Depurado_Reducido[, i], main = nombres_boxplots[i])))

Matriz de Varianzas-Covarianzas.

round(cov(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)]),2)
##                   age performance            km         price
## age            211.64        2.50 -1.229766e+04  2.563444e+05
## performance      2.50    12250.68  1.795764e+05 -3.849995e+06
## km          -12297.66   179576.39  7.963417e+10 -1.369695e+10
## price       256344.40 -3849994.86 -1.369695e+10  2.292465e+12

Matriz de Correlaciones.

round(cor(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)]),4)
##                 age performance      km   price
## age          1.0000      0.0016 -0.0030  0.0116
## performance  0.0016      1.0000  0.0057 -0.0230
## km          -0.0030      0.0057  1.0000 -0.0321
## price        0.0116     -0.0230 -0.0321  1.0000

1.4. Gráficas Multivariadas

Diagrama de dispersión: Un diagrama de dispersión es una herramienta gráfica utilizada para visualizar la relación entre dos variables cuantitativas. En un gráfico de dispersión, cada punto representa un par de valores (x, y), lo que facilita la identificación de patrones o tendencias. Este tipo de diagrama es muy útil para detectar correlaciones, posibles anomalías y la variabilidad en los datos, ayudando a los analistas a entender mejor cómo se comportan las variables en conjunto.

Diagrama de distribución: se refiere a cómo se dispersan o esparcen los datos a lo largo de un rango de valores. Se puede representar de diversas maneras, siendo los histogramas y las curvas de densidad dos de las formas más comunes. La distribución nos proporciona información sobre la centralidad (media, mediana), dispersión (varianza, desviación estándar) y la forma de los datos (simetría, curtosis), permitiendo entender cómo se agrupan los datos y qué tan dispersos están.

Diagrama de correlación: mide la fuerza y la dirección de la relación lineal entre dos variables. Un valor de correlación puede variar entre -1 y 1; un valor cercano a 1 indica una fuerte correlación positiva, un valor cercano a -1 indica una fuerte correlación negativa, y un valor cercano a 0 indica que no hay una relación lineal significativa entre las variables. Los coeficientes de correlación, como el coeficiente de Pearson, son comúnmente utilizados para cuantificar esta relación. Es importante tener en cuenta que la correlación no implica causalidad, sino simplemente una asociación entre las variables.

La gráfica muestra una matriz de diagramas que visualiza la relación entre cuatro variables: age, performance, km y price del conjunto de datos. Cada celda representa una combinación de dos variables. En la parte diagonal de la gráfica, donde se repite la misma variable en ambos ejes, no hay puntos dispersos. En cambio, ves gráficos que muestran cuántos coches hay de diferentes edades, rendimientos, kilometrajes y precios. Esto te ayuda a ver cómo se distribuyen los coches por esas características.

Para realizar este gráfico, se utilizó una muestra aleatoria fija de 600 registros, ya que usar el total de registros resultaría muy complicado debido al tamaño de nuestro conjunto de datos.

En el Diagrama Conjunto de Dispersión, Distribución y Correlación [gender], vemos el mismo análisis descrito anteriormente, solo que este análisis contiene una diferencia fundamental: utilizamos la variable gender para dividir los datos en dos grupos y analizarlos de manera individual. En este análisis, observamos cambios que antes no eran posibles. Un ejemplo de ello es que algunos de los valores atípicos se presentan en sujetos denominados con el género 1 (masculino).

El diagrama de estrella, aunque simplificado, sirve para visualizar las variables (dimensiones) involucradas en el análisis y sus posibles combinaciones para generar diferentes vistas de los datos.

las caras de Chernoff son una forma de visualización de datos que utiliza las características faciales (forma de la cara, tamaño de la nariz, ojos, boca, etc.) para representar diferentes variables. En este caso, cada cara representa un aspecto o métrica relacionada con las variables cuantitativas de sacala razon de los 23 datos tomados como muestra.

Diagrama Conjunto de Dispersión, Distribución y Correlación

set.seed(123)
n_muestras <- 600

muestra <- Modelos_Nissan_Depurado[sample(1:nrow(Modelos_Nissan_Depurado), n_muestras), ]

ggpairs(muestra[,-c(1,2,4,5,6,9)])

Diagrama Conjunto de Dispersión, Distribución y Correlación [gender]

muestra$gender <- factor(muestra$gender,
                                  levels = c(0, 1),
                                  labels = c("F", "M"))

ggpairs(muestra, columns = c(3,7,8,10), aes(color = gender, alpha = 0.5), upper = list(continuous = wrap("cor", size = 2.5)))

Diagrama de Estrella

set.seed(780728)
Modelos_Nissan_Depurado_Muestreado = Modelos_Nissan_Depurado[sample(1:nrow(Modelos_Nissan_Depurado),23),-c(1,2,4,5,6,9)]
stars(Modelos_Nissan_Depurado_Muestreado, len = 1, cex = 0.4, key.loc = c(10, 2), draw.segments = TRUE)

Caras de Chernoff

set.seed(780728)
Modelos_Nissan_Depurado_Muestreado = Modelos_Nissan_Depurado[sample(1:nrow(Modelos_Nissan_Depurado),23),-c(1,2,4,5,6,9)]
faces(Modelos_Nissan_Depurado_Muestreado)

## effect of variables:
##  modified item       Var          
##  "height of face   " "age"        
##  "width of face    " "performance"
##  "structure of face" "km"         
##  "height of mouth  " "price"      
##  "width of mouth   " "age"        
##  "smiling          " "performance"
##  "height of eyes   " "km"         
##  "width of eyes    " "price"      
##  "height of hair   " "age"        
##  "width of hair   "  "performance"
##  "style of hair   "  "km"         
##  "height of nose  "  "price"      
##  "width of nose   "  "age"        
##  "width of ear    "  "performance"
##  "height of ear   "  "km"

1.5. Normalidad Multivariada

La normalidad multivariada es un supuesto crucial en el análisis de datos multivariantes, que implica que un conjunto de variables sigue una distribución normal conjunta. Este supuesto es esencial para la validez de muchos métodos estadísticos multivariantes, como el análisis de regresión multivariante, el análisis de componentes principales y el análisis de covarianza

En este apartado se contempla el uso de procedimientos inferenciales para determinar si el conjunto de datos de trabajo, en relación con sus variables numéricas, se distribuye normal multivariado (DNM). Las pruebas de normalidad multivariada (PNM) a las que será sometido son: Mardia, Henze-Zirkler, Doornik-Hansen y Royston. Para estas pruebas de normalidad los test obedecen a un nivel de significancia \(\alpha = 0.05\) y a las hipótesis:\[H_0: \text {Las variables tienen una DNM}\] \[H_1: \text {Las variables NO tienen una DNM}\]

En la prueba de Mardia Los valores p extremadamente bajos obtenidos para la asimetría y curtosis indican que la hipótesis de normalidad multivariada se rechaza. Los datos no siguen una distribución normal multivariada. Es importante tener en cuenta que esta conclusión se basa en los resultados de la prueba de Mardia, y se deben considerar otros métodos o pruebas de normalidad si es necesario.

En la prueba de Henze-zirkler la tabla indica una clara falta de normalidad tanto en la distribución multivariada como en las distribuciones univariadas de los datos. Esto tiene implicaciones importantes para el análisis posterior, ya que muchos métodos estadísticos asumen la normalidad de los datos. Si se requieren análisis que asumen normalidad, será necesario considerar transformaciones de los datos u optar por métodos estadísticos no paramétricos.

La preuba de Doornik-hansen muestra que tanto las variables individuales como el conjunto de ellas no siguen una distribución normal. Esto se indica por los valores p extremadamente bajos (menores que 0.001) en las pruebas de normalidad univariada y multivariada, lo que sugiere que los datos pueden presentar sesgos o variaciones significativas.

La prueba de Royston indica que los datos no se ajustan a una distribución normal multivariada. Esto es importante porque muchos métodos estadísticos, especialmente los de inferencia, asumen la normalidad de los datos. Si los datos no son normales, la aplicación de estos métodos podría llevar a conclusiones erróneas. Se deben considerar métodos estadísticos robustos a la no normalidad.

PNM Mardia

mvn(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], mvnTest="mardia")
## $multivariateNormality
##              Test        Statistic               p value Result
## 1 Mardia Skewness 607.471315490487 7.67356697899639e-116     NO
## 2 Mardia Kurtosis 22.9259289378229                     0     NO
## 3             MVN             <NA>                  <NA>     NO
## 
## $univariateNormality
##               Test    Variable Statistic   p value Normality
## 1 Anderson-Darling     age       39.2280  <0.001      NO    
## 2 Anderson-Darling performance   35.1528  <0.001      NO    
## 3 Anderson-Darling     km        40.4798  <0.001      NO    
## 4 Anderson-Darling    price      33.8520  <0.001      NO    
## 
## $Descriptives
##                n         Mean      Std.Dev  Median  Min      Max      25th
## age         4130 4.244576e+01 1.454794e+01      42   18       69      30.0
## performance 4130 1.988462e+02 1.106828e+02     198    1      399     106.0
## km          4130 4.983990e+05 2.821953e+05  498843  808   999480  263109.5
## price       4130 2.475648e+06 1.514089e+06 2462818 6065 20080185 1201855.5
##                   75th       Skew  Kurtosis
## age              55.00 0.05036488 -1.140333
## performance     294.75 0.01607156 -1.121184
## km           739023.50 0.00533277 -1.162869
## price       3710148.75 0.92506574  8.239404

PNM Henze-zirkler

mvn(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], mvnTest="hz")
## $multivariateNormality
##            Test       HZ p value MVN
## 1 Henze-Zirkler 7.383648       0  NO
## 
## $univariateNormality
##               Test    Variable Statistic   p value Normality
## 1 Anderson-Darling     age       39.2280  <0.001      NO    
## 2 Anderson-Darling performance   35.1528  <0.001      NO    
## 3 Anderson-Darling     km        40.4798  <0.001      NO    
## 4 Anderson-Darling    price      33.8520  <0.001      NO    
## 
## $Descriptives
##                n         Mean      Std.Dev  Median  Min      Max      25th
## age         4130 4.244576e+01 1.454794e+01      42   18       69      30.0
## performance 4130 1.988462e+02 1.106828e+02     198    1      399     106.0
## km          4130 4.983990e+05 2.821953e+05  498843  808   999480  263109.5
## price       4130 2.475648e+06 1.514089e+06 2462818 6065 20080185 1201855.5
##                   75th       Skew  Kurtosis
## age              55.00 0.05036488 -1.140333
## performance     294.75 0.01607156 -1.121184
## km           739023.50 0.00533277 -1.162869
## price       3710148.75 0.92506574  8.239404

PNM Doornik-hansen

mvn(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], mvnTest="dh")
## $multivariateNormality
##             Test        E df p value MVN
## 1 Doornik-Hansen 17370.28  8       0  NO
## 
## $univariateNormality
##               Test    Variable Statistic   p value Normality
## 1 Anderson-Darling     age       39.2280  <0.001      NO    
## 2 Anderson-Darling performance   35.1528  <0.001      NO    
## 3 Anderson-Darling     km        40.4798  <0.001      NO    
## 4 Anderson-Darling    price      33.8520  <0.001      NO    
## 
## $Descriptives
##                n         Mean      Std.Dev  Median  Min      Max      25th
## age         4130 4.244576e+01 1.454794e+01      42   18       69      30.0
## performance 4130 1.988462e+02 1.106828e+02     198    1      399     106.0
## km          4130 4.983990e+05 2.821953e+05  498843  808   999480  263109.5
## price       4130 2.475648e+06 1.514089e+06 2462818 6065 20080185 1201855.5
##                   75th       Skew  Kurtosis
## age              55.00 0.05036488 -1.140333
## performance     294.75 0.01607156 -1.121184
## km           739023.50 0.00533277 -1.162869
## price       3710148.75 0.92506574  8.239404

PNM Royston

set.seed(780728)
Modelos_Nissan_Depurado_Muestreado = Modelos_Nissan_Depurado[sample(1:nrow(Modelos_Nissan_Depurado),2000),-c(1,2,4,5,6,9)]
mvn(Modelos_Nissan_Depurado_Muestreado, mvnTest="royston")
## $multivariateNormality
##      Test        H     p value MVN
## 1 Royston 421.6167 5.92986e-90  NO
## 
## $univariateNormality
##               Test    Variable Statistic   p value Normality
## 1 Anderson-Darling     age       20.1310  <0.001      NO    
## 2 Anderson-Darling performance   15.0832  <0.001      NO    
## 3 Anderson-Darling     km        20.1938  <0.001      NO    
## 4 Anderson-Darling    price      14.5096  <0.001      NO    
## 
## $Descriptives
##                n         Mean      Std.Dev  Median  Min      Max       25th
## age         2000      42.5185 1.464865e+01      42   18       69      30.00
## performance 2000     196.0570 1.088104e+02     196    1      399     105.75
## km          2000  490981.4150 2.837429e+05  488600  808   998618  250244.50
## price       2000 2489766.0105 1.494561e+06 2516999 9697 20080185 1256170.75
##                  75th       Skew  Kurtosis
## age              55.0 0.02243759 -1.163210
## performance     285.0 0.03210992 -1.084591
## km           728534.5 0.02460894 -1.171084
## price       3685180.0 0.97102559  9.162294

Fase 2 [Componentes Principales]

2.1. Objetivos

Aplicar el Análisis de Componentes Principales (ACP) para reducir la dimensionalidad de un conjunto de datos, identificando las variables más significativas, optimizando la representación de la información y mejorando la interpretación y visualización de la estructura subyacente de los datos a través de técnicas como la matriz ACP, los valores y vectores propios, los gráficos de Cattell y el criterio de Kaiser.

2.2. Selección de Componentes

El objetivo principal de este análisis es optimizar la selección de componentes para identificar las variables más relevantes que contribuyen significativamente a la variabilidad de los datos. Este proceso es esencial para mejorar la eficiencia del modelo y facilitar la interpretación de los resultados, permitiendo una representación más clara y concisa de la estructura subyacente de los datos.

Además, se busca asegurar una alta calidad de representación, garantizando que las características esenciales de los datos se capturen y reflejen con precisión. Una buena calidad de representación es fundamental para que las relaciones y patrones importantes no se pierdan durante el proceso de reducción de dimensionalidad, lo que a su vez asegura que las conclusiones derivadas del análisis sean válidas y útiles para la toma de decisiones.

Finalmente, se utilizarán bitplots para visualizar y evaluar las contribuciones de cada componente seleccionado en el modelo. Estos gráficos permitirán identificar qué componentes tienen mayor impacto en la variabilidad de los datos, ayudando a tomar decisiones informadas sobre qué componentes incluir en el modelo final. De esta manera, se maximiza la calidad de la representación y se asegura que las contribuciones más significativas se mantengan.

La Matriz ACP muestra que los cuatro primeros componentes principales explican el 100% de la varianza de los datos. Sin embargo, se observa que los primeros dos componentes principales (Dim.1 y Dim.2) explican una proporción considerable (51.14%) de la varianza. Esto sugiere que una reducción de dimensionalidad a solo dos componentes principales podría ser suficiente para capturar una gran parte de la información relevante en los datos. Se podría considerar conservar sólo los componentes principales con mayor varianza para simplificar los datos.

La matriz de correlaciones, por su parte, estandariza estas relaciones, mostrando los coeficientes de correlación (entre -1 y 1) que reflejan la fuerza y dirección de la relación entre las variables. La correlación es una medida adimensional, lo que facilita la comparación entre variables con diferentes escalas.

En Valores y Vectores Propios la primera tabla nos da la importancia de cada componente en términos de la varianza explicada. La segunda tabla muestra cómo las variables originales contribuyen a la formación de cada componente principal. Ambas tablas, en conjunto, nos ayudan a comprender la estructura de los datos y a identificar las variables más importantes para explicar la variabilidad.

Correlaciones compradas: La gráfica visualiza las relaciones entre las variables originales y cómo estas se proyectan en nuevos ejes (componentes principales) que resumen la variabilidad en los datos. La fuerza y la dirección de estas relaciones se representan mediante el color y la intensidad del color azul en la matriz. Analizando la intensidad del color azul en ambas matrices, se pueden extraer conclusiones sobre qué variables influyen más en cada componente principal y qué relaciones existen entre las variables originales.

El Gráfico de Cattell nos muestra la línea que conecta los puntos representa la disminución de la varianza explicada a medida que se incluyen más componentes. El “codo” (elbow) en esta línea, es decir, el punto donde la disminución de la varianza se hace menos pronunciada, sirve como una guía para determinar cuántos componentes principales son suficientes para capturar la mayor parte de la información relevante en los datos. En este caso, el codo no es muy definido, lo que sugiere que la decisión sobre el número de componentes a retener es subjetiva y podría depender del contexto y el objetivo del análisis. Podría considerarse la retención de dos o tres componentes, dado que después el decrecimiento es más lento.

el Gráfico de Cattell-Kaiser ayuda a decidir cuántos componentes principales son suficientes para representar la mayor parte de la variabilidad en los datos. Se busca el punto en el que la caída en los valores propios es sustancial, indicativo de que la información adicional proporcionada por los componentes siguientes es mínima. La línea punteada en el gráfico es una ayuda visual, pero la decisión final puede involucrar también otras consideraciones.

Matriz ACP

get_eigenvalue(PCA(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], ncp = 6, scale.unit = TRUE, graph = F))
##       eigenvalue variance.percent cumulative.variance.percent
## Dim.1  1.0441529         26.10382                    26.10382
## Dim.2  1.0013228         25.03307                    51.13689
## Dim.3  0.9928410         24.82102                    75.95792
## Dim.4  0.9616833         24.04208                   100.00000

Matriz de correlaciones_ACP

round(cor(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)]),4)
##                 age performance      km   price
## age          1.0000      0.0016 -0.0030  0.0116
## performance  0.0016      1.0000  0.0057 -0.0230
## km          -0.0030      0.0057  1.0000 -0.0321
## price        0.0116     -0.0230 -0.0321  1.0000

Valores y Vectores Propios

princomp(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], cor = TRUE)$sdev^2
##    Comp.1    Comp.2    Comp.3    Comp.4 
## 1.0441529 1.0013228 0.9928410 0.9616833
princomp(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], cor = TRUE)$loadings[ ,1:4]
##                 Comp.1      Comp.2      Comp.3     Comp.4
## age          0.2030171  0.85664348  0.43251563  0.1946182
## performance -0.4207791  0.51256160 -0.65336984 -0.3651484
## km          -0.5633342 -0.05692203  0.62103191 -0.5419722
## price        0.6814570  0.01422810 -0.01890653 -0.7314756

Correlaciones Comparadas

par(mfrow=c(1,2))
corrplot::corrplot(cor(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)]), method = "color", type = "upper", number.cex = 0.4)
corrplot::corrplot(cor(princomp(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], cor = TRUE)$scores), method = "color", type = "upper", number.cex = 0.4)

Gráfico de Cattell

fviz_eig(PCA(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], scale.unit = T, graph = F), addlabels = T, ylim=c(0,90), main = "")

Gráfico de Cattell-Kaiser

scree(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)],factors = FALSE, pc = TRUE, main ="")

2.3. Calidad de Representación

La calidad de representación en la gestión de datos se refiere a la precisión y consistencia con la que los datos reflejan la realidad que pretenden describir. Esto implica que los datos deben ser exactos, completos y actualizados, permitiendo que las decisiones basadas en ellos sean confiables y efectivas. La calidad de los datos es crucial para evitar errores y malentendidos que puedan afectar negativamente a las operaciones y estrategias de una organización.

Para asegurar una alta calidad de representación, es fundamental implementar prácticas de gestión de datos que incluyan la validación y limpieza de datos, así como la estandarización de formatos y la eliminación de duplicados. Estas prácticas ayudan a mantener la integridad y coherencia de los datos a lo largo de su ciclo de vida. Además, es importante establecer políticas claras de gobernanza de datos que definan responsabilidades y procedimientos para la gestión y el uso de los datos.

La calidad de los datos no solo mejora la eficiencia operativa, sino que también facilita el cumplimiento de normativas y la personalización de servicios para los clientes. Datos de alta calidad permiten a las empresas tomar decisiones más informadas, optimizar procesos y ofrecer experiencias más relevantes a sus usuarios. En resumen, la calidad de representación en la gestión de datos es un componente esencial para el éxito y la competitividad de cualquier organización.

el Círculo de Correlaciones ayuda a entender cómo las variables originales se relacionan entre sí y con los componentes principales obtenidos por el PCA. Variables agrupadas cerca en el gráfico tienden a estar correlacionadas. Se puede ver que “age” y “performance” están positivamente correlacionadas entre sí y con la Dim1, mientras que “price” y “km” están más cercanas entre ellas y en el eje horizontal, mostrando una correlación con Dim1.

Matriz de Representación: Esta matriz proporciona información valiosa para interpretar cómo las variables contribuyen al modelo ACP y qué dimensiones son más relevantes para representarlas. Puedes usar esta información para reducir dimensionalidad o identificar patrones clave en tus datos. La Dim.2 parece ser crucial para describir la variabilidad de age, por lo que esta variable tiene una fuerte asociación con ese componente. La Dim.3 explica patrones que involucran tanto performance como km, indicando una posible relación entre estas variables en el contexto de los datos. La variable price está repartida entre la Dim.1 y la Dim.4, lo que sugiere que diferentes dimensiones capturan distintos aspectos de su variabilidad.

Calidad de Representación: El gráfico de calidad de representación muestra que la variable age tiene una influencia significativa en la segunda dimensión (Dim2), mientras que km está bien representada en la primera dimensión (Dim1). Esto sugiere que la edad de los dueños y el kilometraje de los autos son factores clave que afectan la variabilidad en los datos y, por ende, pueden ser determinantes en las decisiones que se quieran tomar dependiendo al mometo siguiente de analizar los datos.

Coordenadas Individuales: Esto es útil cuando deseas reducir la dimensionalidad de los datos, visualizar relaciones entre observaciones, o simplificar la estructura para análisis posteriores.

Círculo de Correlaciones

fviz_pca_var(PCA(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], scale.unit = T, graph = F),col.var="#3B83BD", repel = T, col.circle = "#CDCDCD", ggtheme = theme_bw())

Matriz de Representación

(get_pca_var(PCA(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], ncp = 6, scale.unit = TRUE, graph = F)))$cos2
##                  Dim.1        Dim.2        Dim.3      Dim.4
## age         0.04303574 0.7348087729 0.1857305331 0.03642495
## performance 0.18487258 0.2630669215 0.4238360190 0.12822448
## km          0.33135708 0.0032444036 0.3829195341 0.28247899
## price       0.48488747 0.0002027067 0.0003548979 0.51455493

Calidad de Representación

fviz_pca_var(PCA(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], ncp = 6, scale.unit = TRUE, graph = F), col.var="cos2", gradient.cols=c("#00AFBB","#E7B800","#FC4E07"), repel = TRUE)

Coordenadas Individuales

head((PCA(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], ncp = 6, scale.unit = TRUE, graph = F))$ind$coord, n = 23L)
##          Dim.1      Dim.2       Dim.3       Dim.4
## 1  -0.29514267  0.4501045 -0.60006812  1.11296848
## 2  -1.61485769 -0.9583705  0.42151322  0.32653894
## 3   0.12943215  1.3671182 -0.28202640  0.82116865
## 4   0.97349230 -2.2541456  1.23137399 -0.62544834
## 5  -0.66308109 -0.7171792  0.51236460 -1.16895408
## 6   0.79538801  0.3211004  0.17868959  2.19795291
## 7   0.72306311  1.4281801 -0.25754026 -1.24107998
## 8   0.02947633 -0.2800414  1.00758458  0.78006226
## 9  -0.13308290 -1.8462695 -0.62747618 -2.16009535
## 10  1.27944452  1.4799574  0.19095819  0.10964383
## 11 -1.15948947  0.1252365  0.48280129  0.51853830
## 12 -0.68406868 -0.6074450 -0.88175750 -0.22993586
## 13 -0.58356130 -0.1570167 -0.35264930  1.05754130
## 14 -1.67929521  0.1462986 -0.08417240  0.24669193
## 15 -0.06105928 -0.8736994  0.21336955  1.08847145
## 16 -0.81521601 -1.2001120 -0.87339016  0.49589021
## 17  1.15638446 -0.2448090  0.92113971 -0.07927249
## 18  0.91848396 -1.0962898 -0.92085901  0.09858175
## 19  0.74493491 -1.2669337 -0.90660004  0.26666866
## 20  1.42825826  0.4870666 -0.08586565  0.26740273
## 21 -0.82582397  0.1762542  1.33605902  0.52510828
## 22  0.37103590  0.2915632  1.44139480  1.07795896
## 23 -0.18715564  0.9947381  0.37411590  1.32376367

2.4. Contribuciones y biplots

En términos generales, las contribuciones y los biplots son herramientas fundamentales para interpretar los resultados de análisis multivariados, como el Análisis de Componentes Principales (ACP) o el Análisis de Correspondencias. Las contribuciones permiten identificar qué variables originales o qué individuos (o filas) del conjunto de datos son los principales responsables de la variabilidad explicada por los componentes o dimensiones principales. Estas contribuciones se expresan como porcentajes y ayudan a destacar cuáles son los elementos más influyentes en la formación de un componente en particular.

Por otro lado, los biplots son representaciones gráficas que combinan información sobre individuos y variables en un mismo espacio, generalmente bidimensional. En un biplot, los puntos representan a los individuos, mientras que las flechas o vectores indican las variables. La dirección y longitud de las flechas reflejan la influencia y la correlación de cada variable con los componentes principales. Esto permite una visualización intuitiva de la relación entre variables y cómo los individuos se agrupan o distribuyen en función de ellas.

En conjunto, las contribuciones y los biplots son herramientas complementarias para analizar y comunicar los resultados de técnicas multivariadas. Mientras que las contribuciones ofrecen una visión cuantitativa sobre la importancia relativa de cada elemento, los biplots facilitan una interpretación visual de la estructura y relaciones del conjunto de datos. Esto es particularmente útil para identificar patrones, correlaciones y tendencias que podrían no ser evidentes a simple vista en los datos originales.

Matriz de Contribuciones: La matriz de contribuciones revela que diferentes variables influyen de manera distinta en las dimensiones del análisis de componentes principales (PCA) aplicado al conjunto de datos analizado. En particular, la edad del propietario vehículo es un factor clave en la segunda dimensión, mientras que el rendimiento se distribuye más equitativamente entre varias dimensiones. Además, el kilometraje tiene un impacto notable en la tercera dimensión, y el precio se destaca en la cuarta dimensión.

Biplot de Variables y Registros [Filtro Gender]: muestra simultáneamente la relación entre las variables y la distribución de los registros (individuos) en un espacio reducido, generalmente bidimensional, definido por los primeros componentes principales. Este tipo de gráfico es una herramienta visual poderosa para analizar patrones y relaciones dentro de los datos filtrados.

Coordenadas Individuales [Subconjunto condition]: muestra cómo las variables contribuyen a la estructura del subconjunto y cómo los registros (individuos) dentro de ese subconjunto se relacionan entre sí en el espacio definido por los componentes principales o dimensiones seleccionadas.

Biplot de Variables y Registros [Subconjunto condition]:

Matriz de Contribuciones

(get_pca_var(PCA(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], ncp = 6, scale.unit = TRUE, graph = F)))$contrib
##                 Dim.1       Dim.2       Dim.3     Dim.4
## age          4.121594 73.38380485 18.70697686  3.787624
## performance 17.705509 26.27193950 42.68921466 13.333337
## km          31.734537  0.32401176 38.56806279 29.373389
## price       46.438360  0.02024389  0.03574569 53.505651

Contribuciones a D1

fviz_contrib(PCA(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], ncp = 4, scale.unit = TRUE, graph = F), choice = "var", axes = 1, top = 10)

Contribuciones a D2

fviz_contrib(PCA(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], ncp = 4, scale.unit = TRUE, graph = F), choice = "var", axes = 2, top = 10)

Contribuciones a D3

fviz_contrib(PCA(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], ncp = 4, scale.unit = TRUE, graph = F), choice = "var", axes = 3, top = 10)

Contribuciones a D4

fviz_contrib(PCA(Modelos_Nissan_Depurado[,-c(1,2,4,5,6,9)], ncp = 4, scale.unit = TRUE, graph = F), choice = "var", axes = 4, top = 10)

Biplot de Variables y Registros [Filtro Gender]

set.seed(780720)
Modelos_Nissan_Depurado_Muestreado = Modelos_Nissan_Depurado[sample(1:nrow(Modelos_Nissan_Depurado),100),-c(1,2,5,6,9)]
Modelos_Nissan_Depurado_Muestreado$gender <- as.factor(Modelos_Nissan_Depurado_Muestreado$gender)
fviz_pca_biplot(PCA(Modelos_Nissan_Depurado_Muestreado, ncp = , scale.unit = TRUE, graph = F, quali.sup = "gender"), axes = c(1, 2), repel = TRUE, habillage = "gender")

Coordenadas Individuales [Subconjunto condition]

set.seed(780728)
Modelos_Nissan_Depurado_Muestreado_2 <- Modelos_Nissan_Depurado[sample(1:nrow(Modelos_Nissan_Depurado), 100), -c(1,2,5,6)]
set.seed(780728)
sampled_rows <- sample(1:nrow(Modelos_Nissan_Depurado_Muestreado_2), 100)

data_61 <- cbind(Modelos_Nissan_Depurado_Muestreado_2[sampled_rows,])
head(PCA(data_61, ncp = 6, scale.unit = T, graph = F, quali.sup = 5)$ind$coord, n = 61L)
##          Dim.1        Dim.2       Dim.3        Dim.4        Dim.5
## 1  -0.22126487 -1.022230252  0.75349277  0.989325262  1.261353731
## 2   0.10033940 -0.969703712 -0.33538092 -0.516190595 -1.400385186
## 3  -1.41250960  1.022178973  0.33011033 -0.433195202  0.342965943
## 4   0.66177317 -0.115214966  1.42633114  1.046673467 -0.648388198
## 5  -1.49097764  0.474612588  1.30334070  0.077198022 -0.760400297
## 6  -1.23624302 -0.990954813  0.31185280 -0.006901538 -0.417213572
## 7  -0.85682257 -1.002824034 -1.10765194  0.187052101 -0.749507796
## 8   1.58624911  1.167938552 -0.29179749  0.717406317 -0.981623521
## 9   2.15901510  1.426245315 -0.08608206 -0.556257035  0.179942560
## 10  0.23706303  1.597474883  0.83419787 -1.543086037 -0.665299082
## 11  1.50041358  1.361854954 -1.40185645  0.030905385  0.790242447
## 12 -0.79487953  0.940971440 -1.04024548 -0.546786919  0.148019837
## 13  0.66526200 -1.074670258 -1.43173965  0.795652366  1.119764064
## 14  0.17503638  0.815128373  1.65447681  0.133055419  1.492479331
## 15 -0.44836757  1.846512722  1.20785692  0.729041656  1.524177336
## 16  1.89990154  0.120034419  0.44038100 -0.420677888  0.296501961
## 17  1.12856072  1.176596154 -0.52733607  0.874215924 -0.421094989
## 18  0.73255283 -0.359645081  1.28021780  0.690964261 -0.055296184
## 19  0.92931237 -0.461435408 -0.45778705  0.575526067  0.585197013
## 20 -1.85549418 -1.158571330  0.33742360  0.444387213 -0.196277242
## 21 -0.67099963  1.414906774  0.08264276 -0.246289203 -1.106954338
## 22  1.09555492 -1.630838562 -1.26720001  1.075458662 -0.051966303
## 23 -1.93321389 -1.341915438 -0.77655647 -0.009862080  1.210377060
## 24 -0.41650232  0.691000092 -1.67914937 -0.313352453 -0.555064682
## 25 -1.07845163  0.498588926  0.77154195  2.323790499  0.133746259
## 26 -0.74008844 -1.052625516  0.97776621 -1.340668344  0.813195758
## 27 -1.52923072  1.242833365  0.46566819 -0.355742362  0.310641225
## 28  1.57505029 -2.294994066  0.09990711  0.368232646 -0.100885386
## 29  1.32549886  1.942849357  0.13852769  0.185864947  0.071944050
## 30  1.47824574  0.747293592  0.68485144  0.415355045 -0.653735378
## 31 -1.23912241  0.005939083 -1.35046396  0.967759358 -1.506004487
## 32 -0.11161606 -1.872994085  0.92670733 -1.491504907  0.192384347
## 33 -0.68669753 -0.041547207  1.40241027 -0.197906054 -1.549614438
## 34  1.81129754 -0.956871944  0.73088982 -0.414026419  0.435519777
## 35 -0.40351475 -1.130060817  1.15781820 -1.745580410  0.906322495
## 36  1.24345316  0.286045602 -2.02402606  0.283262477  1.164651437
## 37  1.60944111 -0.455043507 -0.70318689 -2.385791582 -0.493595015
## 38  1.29458728 -1.112978091  1.28245202  0.189094136  0.004398136
## 39  0.47477158 -1.467366687  0.17030988  0.578406910  1.162301427
## 40  0.61973320  0.856539118  0.76041061 -0.115220760  1.587314917
## 41  0.61221010  1.098660259  2.05678456  0.429011146  0.076412877
## 42 -2.68416121  0.023838063  0.24004954  1.116372144 -0.135686993
## 43 -0.21070216  1.444845441 -1.64631023 -0.790200801 -0.168732945
## 44  0.03288587  1.300835909 -1.42518280  2.079490344 -0.380496927
## 45  0.69087014 -1.244018413  0.58389496  0.482467709  0.777998854
## 46 -0.33723892  0.186521467 -1.01579030 -0.899186113  0.107366665
## 47  0.21221072 -0.675730016 -1.35477885 -0.546240638 -1.127741197
## 48 -0.53209784  0.776499633 -1.41106000  0.219494222 -1.414564727
## 49  0.07249848  0.938857723 -0.92850192 -1.337805951  0.078804358
## 50 -1.94517524  0.395278550 -0.12312984 -0.500978851  1.582321031
## 51 -0.75564065 -1.131327488 -1.30254534 -0.235542506 -0.083110822
## 52 -1.27665779 -1.228856035 -1.65998443  0.442079355 -0.254375299
## 53 -1.73848996 -2.018441005  0.04822088 -0.025482338  0.657121419
## 54 -0.82199951  0.343456896  1.85557446 -1.038002632 -0.125896195
## 55 -0.04297322 -0.424672612 -0.07644006 -0.518377656 -1.345730786
## 56  0.82183722 -1.632667488  1.20901062  0.668261147  0.029031149
## 57 -0.16941920  1.292986558 -0.62850537  1.694723014  0.266657325
## 58  0.57369338 -0.677368896 -0.44454760  0.079145430  2.030566035
## 59 -0.73919936  0.796985461 -1.14546995 -0.921103004  0.767426830
## 60  0.94098935 -0.180799443 -1.07139759 -2.075800647  0.163413699
## 61 -0.76606940  1.804595906  1.93722285 -1.207956432 -0.137705828

Biplot de Variables y Registros [Subconjunto condition]

set.seed(780728)
Modelos_Nissan_Depurado_Muestreado_2 <- Modelos_Nissan_Depurado[sample(1:nrow(Modelos_Nissan_Depurado), 100), -c(1,2,5,6)]
set.seed(780728)
sampled_rows <- sample(1:nrow(Modelos_Nissan_Depurado_Muestreado_2), 100)

data_61 <- cbind(Modelos_Nissan_Depurado_Muestreado_2[sampled_rows,])
fviz_pca_biplot(PCA(data_61, ncp = 6, scale.unit = T, graph = F, quali.sup = 5), axes = c(1, 2), repel = T, habillage = 5)

Fase 3 [Correspondencias]

3.1. Objetivos

Explorar y visualizar las relaciones entre categorías de dos variables cualitativas representadas en una tabla de contingencia. Este método permite simplificar datos complejos mediante la reducción de dimensionalidad, facilitando la identificación de patrones, asociaciones y similitudes entre las categorías. Además, genera representaciones gráficas que muestran las relaciones en un espacio de menor dimensión, usualmente en dos ejes, lo que ayuda a interpretar las conexiones y proximidades entre filas y columnas de manera clara y descriptiva. Es una herramienta valiosa para el análisis exploratorio de datos cualitativos antes de aplicar métodos más específicos.

3.2. Correspondencias Simples

Las correspondencias simples son una técnica de análisis multivariado que permite estudiar la relación entre dos variables categóricas a través de una tabla de contingencia. Este método busca identificar patrones de asociación y las interacciones subyacentes entre las categorías de ambas variables, transformando los datos originales en un espacio geométrico donde las filas y columnas se representan como puntos. Esto facilita la interpretación visual y cuantitativa de las relaciones entre categorías.

En este análisis, cada fila y cada columna de la tabla se proyectan en un sistema de ejes principales que resumen la mayor parte de la variabilidad en los datos. Las distancias entre puntos en este espacio representan similitudes o diferencias en las distribuciones de las categorías. Por ejemplo, filas (categorías de la primera variable) cercanas a columnas (categorías de la segunda variable) indican una asociación fuerte entre dichas categorías. Este enfoque es útil para identificar patrones clave que pueden no ser evidentes a simple vista en los datos tabulares.

Las correspondencias simples permiten reducir la complejidad de los datos categóricos, proporcionando una representación gráfica y numérica de las asociaciones. Esto facilita la toma de decisiones informadas y el entendimiento de las relaciones entre variables en contextos como encuestas, estudios de mercado o análisis sociales, donde es esencial comprender cómo se vinculan las diferentes categorías de interés.

analisis de correspondencias

El análisis de correspondencia de un conjunto de datos revela las relaciones y asociaciones entre categorías de variables categóricas, representadas en una tabla de contingencia. Proyecta estas relaciones en un espacio de baja dimensión, donde filas y columnas se muestran como puntos, y sus posiciones reflejan similitudes o asociaciones.

Tablas de Contingencia: la tabla de contingencia muestra la relación entre diferentes modelos de vehículos y su estado, es decir, si son nuevos o usados. Cada fila representa un modelo específico y las columnas indican cuántos vehículos de cada tipo hay para ese modelo. Esto permite ver rápidamente cómo se distribuyen los vehículos nuevos y usados entre los diferentes modelos. Es útil para entender la oferta de vehículos.

Probabilidades: La tabla de probabilidades muestra la distribución de ciertos eventos o características asociadas a los modelos de vehículos en el conjunto de datos. Cada fila representa un modelo diferente, y las columnas indican la probabilidad de que ocurra un evento específico o que se presente una característica particular (como ser nuevo o usado). Esto permite entender cuán probable es que un modelo determinado tenga ciertas características en comparación con otros.

Frecuencias: Las frecuencias muestran cuántos vehículos hay de cada modelo en el conjunto de datos. Cada fila corresponde a un modelo específico y las columnas indican cuántos vehículos pertenecen a diferentes categorías. Esto permite ver cómo se distribuyen los vehículos entre los modelos y categorías.

Perfiles: La tabla de perfiles muestra cómo se distribuyen diferentes características o categorías en el conjunto de datos. Cada fila representa un grupo o categoría (como modelos de vehículos), y las columnas indican diferentes atributos (como género o alguna otra variable). Esto te ayuda a ver patrones o tendencias en los datos, permitiendo entender mejor las relaciones entre las distintas variables.

Pruebas de Hipotesis: La prueba de hipótesis evalúa si hay relaciones significativas entre diferentes variables, como el género, el modelo de vehículo y su condición (nuevo o usado). Los resultados indican que no hay una relación significativa entre el género y el modelo del vehículo, ni entre el género y la condición del vehículo. Sin embargo, sí se encontró una relación significativa entre el modelo del vehículo y su condición. la prueba de hipótesis ayuda a entender si las variables tienen alguna conexión o si son independientes entre sí. Para estas pruebas, y considerando un nivel de significancia α=0.05, se formularon las siguientes hipótesis:: \[H_0: \text {Las variables categóricas son independientes}\] \[H_1: \text {las variables categóricas son dependientes}\]

Tablas de Contingencia.
addmargins(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$model))
##      
##       370Z   AD Almera Altima Armada Avenir Bluebird Bluebird Sylphy
##   0      5    3      8    170      5    159        2               6
##   1      5    6      7    152     11    194        6               5
##   Sum   10    9     15    322     16    353        8              11
##      
##       Cabstar / Atlas Caravan / Urvan Cedric Cedric Y31 Cima Civilian Cube Dayz
##   0                 2              13      8         10    7        3    8    7
##   1                 7               4      9         14    6        7   10    5
##   Sum               9              17     17         24   13       10   18   12
##      
##       Elgrand Fairlady Z Figaro Frontier Gloria GT-R Hypermini Interstar Juke
##   0         4          4      6        4    165    6         3         5  180
##   1         3          3     14        5    188    2        10         5  208
##   Sum       7          7     20        9    353    8        13        10  388
##      
##       Kicks Lafesta Leaf Leopard Livina March / Micra Maxima Murano
##   0       5       5  188       4      5           149    165      9
##   1       3       6  174      10      4           159    195      7
##   Sum     8      11  362      14      9           308    360     16
##      
##       Navara / NP300 Note NT100 Clipper NV Cargo NV Passenger NV100 Clipper
##   0               10    6             6        7           10             7
##   1               13    4             4        7            5             4
##   Sum             23   10            10       14           15            11
##      
##       NV200 / Evalia   NX Paladin Pathfinder Patrol Primastar Pulsar
##   0                3    5       5        170      6        14      5
##   1                4    7      13        168      8         9     11
##   Sum              7   12      18        338     14        23     16
##      
##       Qashqai / Dualis Quest R'nessa Rogue Rogue Sport Roox Sakura Sentra
##   0                  4   144     156     1           4    5      5      6
##   1                  4   155     153     2           3    8      3      7
##   Sum                8   299     309     3           7   13      8     13
##      
##       Serena Silvia Skyline Stagea Sylphy Teana Terrano Tiida Titan Titan XD
##   0        2      7       6      5      6     5       6     7     9       12
##   1        5      3       6      6      9     8       6     4     5        5
##   Sum      7     10      12     11     15    13      12    11    14       17
##      
##       Townstar Vanette Versa Wingroad X-Trail Xterra  Sum
##   0         10       4     6        4       6      2 1999
##   1         14       4    11        3       2      4 2131
##   Sum       24       8    17        7       8      6 4130
addmargins(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition))
##      
##          1    2    3    4    5    6  Sum
##   0    415  477   41  326  430  310 1999
##   1    444  511   43  360  412  361 2131
##   Sum  859  988   84  686  842  671 4130
addmargins(table(Modelos_Nissan_Depurado$condition, Modelos_Nissan_Depurado$model))
##      
##       370Z   AD Almera Altima Armada Avenir Bluebird Bluebird Sylphy
##   1      4    2      1     62      4     61        3               3
##   2      3    6      4     62      3     68        4               5
##   3      0    0      3      2      3      2        0               0
##   4      1    0      0     70      1     78        0               1
##   5      2    1      5     58      4     87        1               2
##   6      0    0      2     68      1     57        0               0
##   Sum   10    9     15    322     16    353        8              11
##      
##       Cabstar / Atlas Caravan / Urvan Cedric Cedric Y31 Cima Civilian Cube Dayz
##   1                 2               3      1         11    5        1    5    6
##   2                 2               7     12          7    5        4    6    3
##   3                 1               0      1          2    0        1    2    0
##   4                 1               0      0          1    0        1    1    1
##   5                 3               7      3          2    2        3    3    2
##   6                 0               0      0          1    1        0    1    0
##   Sum               9              17     17         24   13       10   18   12
##      
##       Elgrand Fairlady Z Figaro Frontier Gloria GT-R Hypermini Interstar Juke
##   1         3          1     10        2     70    2         6         2   71
##   2         1          3      4        4     78    2         5         2   74
##   3         1          0      1        1      2    2         1         1    0
##   4         0          1      0        0     66    0         0         0   75
##   5         2          2      3        2     65    2         1         5   86
##   6         0          0      2        0     72    0         0         0   82
##   Sum       7          7     20        9    353    8        13        10  388
##      
##       Kicks Lafesta Leaf Leopard Livina March / Micra Maxima Murano
##   1       2       1   64       3      2            50     67      3
##   2       4       4   82       3      6            82     86      7
##   3       1       2    1       2      0             0      0      1
##   4       0       0   77       0      0            70     66      1
##   5       1       4   70       6      1            62     70      4
##   6       0       0   68       0      0            44     71      0
##   Sum     8      11  362      14      9           308    360     16
##      
##       Navara / NP300 Note NT100 Clipper NV Cargo NV Passenger NV100 Clipper
##   1                4    5             0        5            2             3
##   2                9    0             5        7            6             6
##   3                4    0             2        0            0             1
##   4                0    0             0        0            1             0
##   5                6    5             3        2            6             1
##   6                0    0             0        0            0             0
##   Sum             23   10            10       14           15            11
##      
##       NV200 / Evalia   NX Paladin Pathfinder Patrol Primastar Pulsar
##   1                1    3       5         83      4         6      4
##   2                4    5       4         61      4         8      5
##   3                0    2       2          0      3         3      1
##   4                0    0       0         59      1         0      2
##   5                2    2       7         61      2         6      4
##   6                0    0       0         74      0         0      0
##   Sum              7   12      18        338     14        23     16
##      
##       Qashqai / Dualis Quest R'nessa Rogue Rogue Sport Roox Sakura Sentra
##   1                  1    74      72     0           2    7      2      1
##   2                  4    65      60     2           1    3      2      6
##   3                  0     2       3     0           1    0      1      1
##   4                  0    50      56     1           0    0      0      1
##   5                  2    50      56     0           3    3      2      4
##   6                  1    58      62     0           0    0      1      0
##   Sum                8   299     309     3           7   13      8     13
##      
##       Serena Silvia Skyline Stagea Sylphy Teana Terrano Tiida Titan Titan XD
##   1        2      1       4      2      6     2       3     1     4        2
##   2        3      3       3      5      3     6       6     4     6        7
##   3        0      0       2      2      2     1       1     3     1        1
##   4        0      1       0      0      0     1       0     0     1        0
##   5        1      5       3      2      4     2       1     3     2        6
##   6        1      0       0      0      0     1       1     0     0        1
##   Sum      7     10      12     11     15    13      12    11    14       17
##      
##       Townstar Vanette Versa Wingroad X-Trail Xterra  Sum
##   1          4       2     2        4       1      2  859
##   2         11       3     6        0       5      2  988
##   3          4       2     4        2       0      0   84
##   4          0       0     0        0       0      0  686
##   5          5       1     5        1       2      1  842
##   6          0       0     0        0       0      1  671
##   Sum       24       8    17        7       8      6 4130
Probabilidades.
addmargins(prop.table(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$model))*100)
##      
##               370Z           AD       Almera       Altima       Armada
##   0     0.12106538   0.07263923   0.19370460   4.11622276   0.12106538
##   1     0.12106538   0.14527845   0.16949153   3.68038741   0.26634383
##   Sum   0.24213075   0.21791768   0.36319613   7.79661017   0.38740920
##      
##             Avenir     Bluebird Bluebird Sylphy Cabstar / Atlas Caravan / Urvan
##   0     3.84987893   0.04842615      0.14527845      0.04842615      0.31476998
##   1     4.69733656   0.14527845      0.12106538      0.16949153      0.09685230
##   Sum   8.54721550   0.19370460      0.26634383      0.21791768      0.41162228
##      
##             Cedric   Cedric Y31         Cima     Civilian         Cube
##   0     0.19370460   0.24213075   0.16949153   0.07263923   0.19370460
##   1     0.21791768   0.33898305   0.14527845   0.16949153   0.24213075
##   Sum   0.41162228   0.58111380   0.31476998   0.24213075   0.43583535
##      
##               Dayz      Elgrand   Fairlady Z       Figaro     Frontier
##   0     0.16949153   0.09685230   0.09685230   0.14527845   0.09685230
##   1     0.12106538   0.07263923   0.07263923   0.33898305   0.12106538
##   Sum   0.29055690   0.16949153   0.16949153   0.48426150   0.21791768
##      
##             Gloria         GT-R    Hypermini    Interstar         Juke
##   0     3.99515738   0.14527845   0.07263923   0.12106538   4.35835351
##   1     4.55205811   0.04842615   0.24213075   0.12106538   5.03631961
##   Sum   8.54721550   0.19370460   0.31476998   0.24213075   9.39467312
##      
##              Kicks      Lafesta         Leaf      Leopard       Livina
##   0     0.12106538   0.12106538   4.55205811   0.09685230   0.12106538
##   1     0.07263923   0.14527845   4.21307506   0.24213075   0.09685230
##   Sum   0.19370460   0.26634383   8.76513317   0.33898305   0.21791768
##      
##       March / Micra       Maxima       Murano Navara / NP300         Note
##   0      3.60774818   3.99515738   0.21791768     0.24213075   0.14527845
##   1      3.84987893   4.72154964   0.16949153     0.31476998   0.09685230
##   Sum    7.45762712   8.71670702   0.38740920     0.55690073   0.24213075
##      
##       NT100 Clipper     NV Cargo NV Passenger NV100 Clipper NV200 / Evalia
##   0      0.14527845   0.16949153   0.24213075    0.16949153     0.07263923
##   1      0.09685230   0.16949153   0.12106538    0.09685230     0.09685230
##   Sum    0.24213075   0.33898305   0.36319613    0.26634383     0.16949153
##      
##                 NX      Paladin   Pathfinder       Patrol    Primastar
##   0     0.12106538   0.12106538   4.11622276   0.14527845   0.33898305
##   1     0.16949153   0.31476998   4.06779661   0.19370460   0.21791768
##   Sum   0.29055690   0.43583535   8.18401937   0.33898305   0.55690073
##      
##             Pulsar Qashqai / Dualis        Quest      R'nessa        Rogue
##   0     0.12106538       0.09685230   3.48668281   3.77723971   0.02421308
##   1     0.26634383       0.09685230   3.75302663   3.70460048   0.04842615
##   Sum   0.38740920       0.19370460   7.23970944   7.48184019   0.07263923
##      
##        Rogue Sport         Roox       Sakura       Sentra       Serena
##   0     0.09685230   0.12106538   0.12106538   0.14527845   0.04842615
##   1     0.07263923   0.19370460   0.07263923   0.16949153   0.12106538
##   Sum   0.16949153   0.31476998   0.19370460   0.31476998   0.16949153
##      
##             Silvia      Skyline       Stagea       Sylphy        Teana
##   0     0.16949153   0.14527845   0.12106538   0.14527845   0.12106538
##   1     0.07263923   0.14527845   0.14527845   0.21791768   0.19370460
##   Sum   0.24213075   0.29055690   0.26634383   0.36319613   0.31476998
##      
##            Terrano        Tiida        Titan     Titan XD     Townstar
##   0     0.14527845   0.16949153   0.21791768   0.29055690   0.24213075
##   1     0.14527845   0.09685230   0.12106538   0.12106538   0.33898305
##   Sum   0.29055690   0.26634383   0.33898305   0.41162228   0.58111380
##      
##            Vanette        Versa     Wingroad      X-Trail       Xterra
##   0     0.09685230   0.14527845   0.09685230   0.14527845   0.04842615
##   1     0.09685230   0.26634383   0.07263923   0.04842615   0.09685230
##   Sum   0.19370460   0.41162228   0.16949153   0.19370460   0.14527845
##      
##                Sum
##   0    48.40193705
##   1    51.59806295
##   Sum 100.00000000
addmargins(prop.table(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition))*100)
##      
##                 1           2           3           4           5           6
##   0    10.0484262  11.5496368   0.9927361   7.8934625  10.4116223   7.5060533
##   1    10.7506053  12.3728814   1.0411622   8.7167070   9.9757869   8.7409201
##   Sum  20.7990315  23.9225182   2.0338983  16.6101695  20.3874092  16.2469734
##      
##               Sum
##   0    48.4019370
##   1    51.5980630
##   Sum 100.0000000
addmargins(prop.table(table(Modelos_Nissan_Depurado$condition, Modelos_Nissan_Depurado$model))*100)
##      
##               370Z           AD       Almera       Altima       Armada
##   1     0.09685230   0.04842615   0.02421308   1.50121065   0.09685230
##   2     0.07263923   0.14527845   0.09685230   1.50121065   0.07263923
##   3     0.00000000   0.00000000   0.07263923   0.04842615   0.07263923
##   4     0.02421308   0.00000000   0.00000000   1.69491525   0.02421308
##   5     0.04842615   0.02421308   0.12106538   1.40435835   0.09685230
##   6     0.00000000   0.00000000   0.04842615   1.64648910   0.02421308
##   Sum   0.24213075   0.21791768   0.36319613   7.79661017   0.38740920
##      
##             Avenir     Bluebird Bluebird Sylphy Cabstar / Atlas Caravan / Urvan
##   1     1.47699758   0.07263923      0.07263923      0.04842615      0.07263923
##   2     1.64648910   0.09685230      0.12106538      0.04842615      0.16949153
##   3     0.04842615   0.00000000      0.00000000      0.02421308      0.00000000
##   4     1.88861985   0.00000000      0.02421308      0.02421308      0.00000000
##   5     2.10653753   0.02421308      0.04842615      0.07263923      0.16949153
##   6     1.38014528   0.00000000      0.00000000      0.00000000      0.00000000
##   Sum   8.54721550   0.19370460      0.26634383      0.21791768      0.41162228
##      
##             Cedric   Cedric Y31         Cima     Civilian         Cube
##   1     0.02421308   0.26634383   0.12106538   0.02421308   0.12106538
##   2     0.29055690   0.16949153   0.12106538   0.09685230   0.14527845
##   3     0.02421308   0.04842615   0.00000000   0.02421308   0.04842615
##   4     0.00000000   0.02421308   0.00000000   0.02421308   0.02421308
##   5     0.07263923   0.04842615   0.04842615   0.07263923   0.07263923
##   6     0.00000000   0.02421308   0.02421308   0.00000000   0.02421308
##   Sum   0.41162228   0.58111380   0.31476998   0.24213075   0.43583535
##      
##               Dayz      Elgrand   Fairlady Z       Figaro     Frontier
##   1     0.14527845   0.07263923   0.02421308   0.24213075   0.04842615
##   2     0.07263923   0.02421308   0.07263923   0.09685230   0.09685230
##   3     0.00000000   0.02421308   0.00000000   0.02421308   0.02421308
##   4     0.02421308   0.00000000   0.02421308   0.00000000   0.00000000
##   5     0.04842615   0.04842615   0.04842615   0.07263923   0.04842615
##   6     0.00000000   0.00000000   0.00000000   0.04842615   0.00000000
##   Sum   0.29055690   0.16949153   0.16949153   0.48426150   0.21791768
##      
##             Gloria         GT-R    Hypermini    Interstar         Juke
##   1     1.69491525   0.04842615   0.14527845   0.04842615   1.71912833
##   2     1.88861985   0.04842615   0.12106538   0.04842615   1.79176755
##   3     0.04842615   0.04842615   0.02421308   0.02421308   0.00000000
##   4     1.59806295   0.00000000   0.00000000   0.00000000   1.81598063
##   5     1.57384988   0.04842615   0.02421308   0.12106538   2.08232446
##   6     1.74334140   0.00000000   0.00000000   0.00000000   1.98547215
##   Sum   8.54721550   0.19370460   0.31476998   0.24213075   9.39467312
##      
##              Kicks      Lafesta         Leaf      Leopard       Livina
##   1     0.04842615   0.02421308   1.54963680   0.07263923   0.04842615
##   2     0.09685230   0.09685230   1.98547215   0.07263923   0.14527845
##   3     0.02421308   0.04842615   0.02421308   0.04842615   0.00000000
##   4     0.00000000   0.00000000   1.86440678   0.00000000   0.00000000
##   5     0.02421308   0.09685230   1.69491525   0.14527845   0.02421308
##   6     0.00000000   0.00000000   1.64648910   0.00000000   0.00000000
##   Sum   0.19370460   0.26634383   8.76513317   0.33898305   0.21791768
##      
##       March / Micra       Maxima       Murano Navara / NP300         Note
##   1      1.21065375   1.62227603   0.07263923     0.09685230   0.12106538
##   2      1.98547215   2.08232446   0.16949153     0.21791768   0.00000000
##   3      0.00000000   0.00000000   0.02421308     0.09685230   0.00000000
##   4      1.69491525   1.59806295   0.02421308     0.00000000   0.00000000
##   5      1.50121065   1.69491525   0.09685230     0.14527845   0.12106538
##   6      1.06537530   1.71912833   0.00000000     0.00000000   0.00000000
##   Sum    7.45762712   8.71670702   0.38740920     0.55690073   0.24213075
##      
##       NT100 Clipper     NV Cargo NV Passenger NV100 Clipper NV200 / Evalia
##   1      0.00000000   0.12106538   0.04842615    0.07263923     0.02421308
##   2      0.12106538   0.16949153   0.14527845    0.14527845     0.09685230
##   3      0.04842615   0.00000000   0.00000000    0.02421308     0.00000000
##   4      0.00000000   0.00000000   0.02421308    0.00000000     0.00000000
##   5      0.07263923   0.04842615   0.14527845    0.02421308     0.04842615
##   6      0.00000000   0.00000000   0.00000000    0.00000000     0.00000000
##   Sum    0.24213075   0.33898305   0.36319613    0.26634383     0.16949153
##      
##                 NX      Paladin   Pathfinder       Patrol    Primastar
##   1     0.07263923   0.12106538   2.00968523   0.09685230   0.14527845
##   2     0.12106538   0.09685230   1.47699758   0.09685230   0.19370460
##   3     0.04842615   0.04842615   0.00000000   0.07263923   0.07263923
##   4     0.00000000   0.00000000   1.42857143   0.02421308   0.00000000
##   5     0.04842615   0.16949153   1.47699758   0.04842615   0.14527845
##   6     0.00000000   0.00000000   1.79176755   0.00000000   0.00000000
##   Sum   0.29055690   0.43583535   8.18401937   0.33898305   0.55690073
##      
##             Pulsar Qashqai / Dualis        Quest      R'nessa        Rogue
##   1     0.09685230       0.02421308   1.79176755   1.74334140   0.00000000
##   2     0.12106538       0.09685230   1.57384988   1.45278450   0.04842615
##   3     0.02421308       0.00000000   0.04842615   0.07263923   0.00000000
##   4     0.04842615       0.00000000   1.21065375   1.35593220   0.02421308
##   5     0.09685230       0.04842615   1.21065375   1.35593220   0.00000000
##   6     0.00000000       0.02421308   1.40435835   1.50121065   0.00000000
##   Sum   0.38740920       0.19370460   7.23970944   7.48184019   0.07263923
##      
##        Rogue Sport         Roox       Sakura       Sentra       Serena
##   1     0.04842615   0.16949153   0.04842615   0.02421308   0.04842615
##   2     0.02421308   0.07263923   0.04842615   0.14527845   0.07263923
##   3     0.02421308   0.00000000   0.02421308   0.02421308   0.00000000
##   4     0.00000000   0.00000000   0.00000000   0.02421308   0.00000000
##   5     0.07263923   0.07263923   0.04842615   0.09685230   0.02421308
##   6     0.00000000   0.00000000   0.02421308   0.00000000   0.02421308
##   Sum   0.16949153   0.31476998   0.19370460   0.31476998   0.16949153
##      
##             Silvia      Skyline       Stagea       Sylphy        Teana
##   1     0.02421308   0.09685230   0.04842615   0.14527845   0.04842615
##   2     0.07263923   0.07263923   0.12106538   0.07263923   0.14527845
##   3     0.00000000   0.04842615   0.04842615   0.04842615   0.02421308
##   4     0.02421308   0.00000000   0.00000000   0.00000000   0.02421308
##   5     0.12106538   0.07263923   0.04842615   0.09685230   0.04842615
##   6     0.00000000   0.00000000   0.00000000   0.00000000   0.02421308
##   Sum   0.24213075   0.29055690   0.26634383   0.36319613   0.31476998
##      
##            Terrano        Tiida        Titan     Titan XD     Townstar
##   1     0.07263923   0.02421308   0.09685230   0.04842615   0.09685230
##   2     0.14527845   0.09685230   0.14527845   0.16949153   0.26634383
##   3     0.02421308   0.07263923   0.02421308   0.02421308   0.09685230
##   4     0.00000000   0.00000000   0.02421308   0.00000000   0.00000000
##   5     0.02421308   0.07263923   0.04842615   0.14527845   0.12106538
##   6     0.02421308   0.00000000   0.00000000   0.02421308   0.00000000
##   Sum   0.29055690   0.26634383   0.33898305   0.41162228   0.58111380
##      
##            Vanette        Versa     Wingroad      X-Trail       Xterra
##   1     0.04842615   0.04842615   0.09685230   0.02421308   0.04842615
##   2     0.07263923   0.14527845   0.00000000   0.12106538   0.04842615
##   3     0.04842615   0.09685230   0.04842615   0.00000000   0.00000000
##   4     0.00000000   0.00000000   0.00000000   0.00000000   0.00000000
##   5     0.02421308   0.12106538   0.02421308   0.04842615   0.02421308
##   6     0.00000000   0.00000000   0.00000000   0.00000000   0.02421308
##   Sum   0.19370460   0.41162228   0.16949153   0.19370460   0.14527845
##      
##                Sum
##   1    20.79903148
##   2    23.92251816
##   3     2.03389831
##   4    16.61016949
##   5    20.38740920
##   6    16.24697337
##   Sum 100.00000000
Frecuencias.
round(addmargins(prop.table(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$model), 1)*100, 2), 2)
##    
##       370Z     AD Almera Altima Armada Avenir Bluebird Bluebird Sylphy
##   0   0.25   0.15   0.40   8.50   0.25   7.95     0.10            0.30
##   1   0.23   0.28   0.33   7.13   0.52   9.10     0.28            0.23
##    
##     Cabstar / Atlas Caravan / Urvan Cedric Cedric Y31   Cima Civilian   Cube
##   0            0.10            0.65   0.40       0.50   0.35     0.15   0.40
##   1            0.33            0.19   0.42       0.66   0.28     0.33   0.47
##    
##       Dayz Elgrand Fairlady Z Figaro Frontier Gloria   GT-R Hypermini Interstar
##   0   0.35    0.20       0.20   0.30     0.20   8.25   0.30      0.15      0.25
##   1   0.23    0.14       0.14   0.66     0.23   8.82   0.09      0.47      0.23
##    
##       Juke  Kicks Lafesta   Leaf Leopard Livina March / Micra Maxima Murano
##   0   9.00   0.25    0.25   9.40    0.20   0.25          7.45   8.25   0.45
##   1   9.76   0.14    0.28   8.17    0.47   0.19          7.46   9.15   0.33
##    
##     Navara / NP300   Note NT100 Clipper NV Cargo NV Passenger NV100 Clipper
##   0           0.50   0.30          0.30     0.35         0.50          0.35
##   1           0.61   0.19          0.19     0.33         0.23          0.19
##    
##     NV200 / Evalia     NX Paladin Pathfinder Patrol Primastar Pulsar
##   0           0.15   0.25    0.25       8.50   0.30      0.70   0.25
##   1           0.19   0.33    0.61       7.88   0.38      0.42   0.52
##    
##     Qashqai / Dualis  Quest R'nessa  Rogue Rogue Sport   Roox Sakura Sentra
##   0             0.20   7.20    7.80   0.05        0.20   0.25   0.25   0.30
##   1             0.19   7.27    7.18   0.09        0.14   0.38   0.14   0.33
##    
##     Serena Silvia Skyline Stagea Sylphy  Teana Terrano  Tiida  Titan Titan XD
##   0   0.10   0.35    0.30   0.25   0.30   0.25    0.30   0.35   0.45     0.60
##   1   0.23   0.14    0.28   0.28   0.42   0.38    0.28   0.19   0.23     0.23
##    
##     Townstar Vanette  Versa Wingroad X-Trail Xterra    Sum
##   0     0.50    0.20   0.30     0.20    0.30   0.10 100.00
##   1     0.66    0.19   0.52     0.14    0.09   0.19 100.00
round(addmargins(prop.table(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$model), 2)*100, 1), 2)
##      
##         370Z     AD Almera Altima Armada Avenir Bluebird Bluebird Sylphy
##   0    50.00  33.33  53.33  52.80  31.25  45.04    25.00           54.55
##   1    50.00  66.67  46.67  47.20  68.75  54.96    75.00           45.45
##   Sum 100.00 100.00 100.00 100.00 100.00 100.00   100.00          100.00
##      
##       Cabstar / Atlas Caravan / Urvan Cedric Cedric Y31   Cima Civilian   Cube
##   0             22.22           76.47  47.06      41.67  53.85    30.00  44.44
##   1             77.78           23.53  52.94      58.33  46.15    70.00  55.56
##   Sum          100.00          100.00 100.00     100.00 100.00   100.00 100.00
##      
##         Dayz Elgrand Fairlady Z Figaro Frontier Gloria   GT-R Hypermini
##   0    58.33   57.14      57.14  30.00    44.44  46.74  75.00     23.08
##   1    41.67   42.86      42.86  70.00    55.56  53.26  25.00     76.92
##   Sum 100.00  100.00     100.00 100.00   100.00 100.00 100.00    100.00
##      
##       Interstar   Juke  Kicks Lafesta   Leaf Leopard Livina March / Micra
##   0       50.00  46.39  62.50   45.45  51.93   28.57  55.56         48.38
##   1       50.00  53.61  37.50   54.55  48.07   71.43  44.44         51.62
##   Sum    100.00 100.00 100.00  100.00 100.00  100.00 100.00        100.00
##      
##       Maxima Murano Navara / NP300   Note NT100 Clipper NV Cargo NV Passenger
##   0    45.83  56.25          43.48  60.00         60.00    50.00        66.67
##   1    54.17  43.75          56.52  40.00         40.00    50.00        33.33
##   Sum 100.00 100.00         100.00 100.00        100.00   100.00       100.00
##      
##       NV100 Clipper NV200 / Evalia     NX Paladin Pathfinder Patrol Primastar
##   0           63.64          42.86  41.67   27.78      50.30  42.86     60.87
##   1           36.36          57.14  58.33   72.22      49.70  57.14     39.13
##   Sum        100.00         100.00 100.00  100.00     100.00 100.00    100.00
##      
##       Pulsar Qashqai / Dualis  Quest R'nessa  Rogue Rogue Sport   Roox Sakura
##   0    31.25            50.00  48.16   50.49  33.33       57.14  38.46  62.50
##   1    68.75            50.00  51.84   49.51  66.67       42.86  61.54  37.50
##   Sum 100.00           100.00 100.00  100.00 100.00      100.00 100.00 100.00
##      
##       Sentra Serena Silvia Skyline Stagea Sylphy  Teana Terrano  Tiida  Titan
##   0    46.15  28.57  70.00   50.00  45.45  40.00  38.46   50.00  63.64  64.29
##   1    53.85  71.43  30.00   50.00  54.55  60.00  61.54   50.00  36.36  35.71
##   Sum 100.00 100.00 100.00  100.00 100.00 100.00 100.00  100.00 100.00 100.00
##      
##       Titan XD Townstar Vanette  Versa Wingroad X-Trail Xterra
##   0      70.59    41.67   50.00  35.29    57.14   75.00  33.33
##   1      29.41    58.33   50.00  64.71    42.86   25.00  66.67
##   Sum   100.00   100.00  100.00 100.00   100.00  100.00 100.00
round(addmargins(prop.table(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition), 1)*100, 2), 2)
##    
##          1      2      3      4      5      6    Sum
##   0  20.76  23.86   2.05  16.31  21.51  15.51 100.00
##   1  20.84  23.98   2.02  16.89  19.33  16.94 100.00
round(addmargins(prop.table(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition), 2)*100, 1), 2)
##      
##            1      2      3      4      5      6
##   0    48.31  48.28  48.81  47.52  51.07  46.20
##   1    51.69  51.72  51.19  52.48  48.93  53.80
##   Sum 100.00 100.00 100.00 100.00 100.00 100.00
round(addmargins(prop.table(table(Modelos_Nissan_Depurado$condition, Modelos_Nissan_Depurado$model), 1)*100, 2), 2)
##    
##       370Z     AD Almera Altima Armada Avenir Bluebird Bluebird Sylphy
##   1   0.47   0.23   0.12   7.22   0.47   7.10     0.35            0.35
##   2   0.30   0.61   0.40   6.28   0.30   6.88     0.40            0.51
##   3   0.00   0.00   3.57   2.38   3.57   2.38     0.00            0.00
##   4   0.15   0.00   0.00  10.20   0.15  11.37     0.00            0.15
##   5   0.24   0.12   0.59   6.89   0.48  10.33     0.12            0.24
##   6   0.00   0.00   0.30  10.13   0.15   8.49     0.00            0.00
##    
##     Cabstar / Atlas Caravan / Urvan Cedric Cedric Y31   Cima Civilian   Cube
##   1            0.23            0.35   0.12       1.28   0.58     0.12   0.58
##   2            0.20            0.71   1.21       0.71   0.51     0.40   0.61
##   3            1.19            0.00   1.19       2.38   0.00     1.19   2.38
##   4            0.15            0.00   0.00       0.15   0.00     0.15   0.15
##   5            0.36            0.83   0.36       0.24   0.24     0.36   0.36
##   6            0.00            0.00   0.00       0.15   0.15     0.00   0.15
##    
##       Dayz Elgrand Fairlady Z Figaro Frontier Gloria   GT-R Hypermini Interstar
##   1   0.70    0.35       0.12   1.16     0.23   8.15   0.23      0.70      0.23
##   2   0.30    0.10       0.30   0.40     0.40   7.89   0.20      0.51      0.20
##   3   0.00    1.19       0.00   1.19     1.19   2.38   2.38      1.19      1.19
##   4   0.15    0.00       0.15   0.00     0.00   9.62   0.00      0.00      0.00
##   5   0.24    0.24       0.24   0.36     0.24   7.72   0.24      0.12      0.59
##   6   0.00    0.00       0.00   0.30     0.00  10.73   0.00      0.00      0.00
##    
##       Juke  Kicks Lafesta   Leaf Leopard Livina March / Micra Maxima Murano
##   1   8.27   0.23    0.12   7.45    0.35   0.23          5.82   7.80   0.35
##   2   7.49   0.40    0.40   8.30    0.30   0.61          8.30   8.70   0.71
##   3   0.00   1.19    2.38   1.19    2.38   0.00          0.00   0.00   1.19
##   4  10.93   0.00    0.00  11.22    0.00   0.00         10.20   9.62   0.15
##   5  10.21   0.12    0.48   8.31    0.71   0.12          7.36   8.31   0.48
##   6  12.22   0.00    0.00  10.13    0.00   0.00          6.56  10.58   0.00
##    
##     Navara / NP300   Note NT100 Clipper NV Cargo NV Passenger NV100 Clipper
##   1           0.47   0.58          0.00     0.58         0.23          0.35
##   2           0.91   0.00          0.51     0.71         0.61          0.61
##   3           4.76   0.00          2.38     0.00         0.00          1.19
##   4           0.00   0.00          0.00     0.00         0.15          0.00
##   5           0.71   0.59          0.36     0.24         0.71          0.12
##   6           0.00   0.00          0.00     0.00         0.00          0.00
##    
##     NV200 / Evalia     NX Paladin Pathfinder Patrol Primastar Pulsar
##   1           0.12   0.35    0.58       9.66   0.47      0.70   0.47
##   2           0.40   0.51    0.40       6.17   0.40      0.81   0.51
##   3           0.00   2.38    2.38       0.00   3.57      3.57   1.19
##   4           0.00   0.00    0.00       8.60   0.15      0.00   0.29
##   5           0.24   0.24    0.83       7.24   0.24      0.71   0.48
##   6           0.00   0.00    0.00      11.03   0.00      0.00   0.00
##    
##     Qashqai / Dualis  Quest R'nessa  Rogue Rogue Sport   Roox Sakura Sentra
##   1             0.12   8.61    8.38   0.00        0.23   0.81   0.23   0.12
##   2             0.40   6.58    6.07   0.20        0.10   0.30   0.20   0.61
##   3             0.00   2.38    3.57   0.00        1.19   0.00   1.19   1.19
##   4             0.00   7.29    8.16   0.15        0.00   0.00   0.00   0.15
##   5             0.24   5.94    6.65   0.00        0.36   0.36   0.24   0.48
##   6             0.15   8.64    9.24   0.00        0.00   0.00   0.15   0.00
##    
##     Serena Silvia Skyline Stagea Sylphy  Teana Terrano  Tiida  Titan Titan XD
##   1   0.23   0.12    0.47   0.23   0.70   0.23    0.35   0.12   0.47     0.23
##   2   0.30   0.30    0.30   0.51   0.30   0.61    0.61   0.40   0.61     0.71
##   3   0.00   0.00    2.38   2.38   2.38   1.19    1.19   3.57   1.19     1.19
##   4   0.00   0.15    0.00   0.00   0.00   0.15    0.00   0.00   0.15     0.00
##   5   0.12   0.59    0.36   0.24   0.48   0.24    0.12   0.36   0.24     0.71
##   6   0.15   0.00    0.00   0.00   0.00   0.15    0.15   0.00   0.00     0.15
##    
##     Townstar Vanette  Versa Wingroad X-Trail Xterra    Sum
##   1     0.47    0.23   0.23     0.47    0.12   0.23 100.00
##   2     1.11    0.30   0.61     0.00    0.51   0.20 100.00
##   3     4.76    2.38   4.76     2.38    0.00   0.00 100.00
##   4     0.00    0.00   0.00     0.00    0.00   0.00 100.00
##   5     0.59    0.12   0.59     0.12    0.24   0.12 100.00
##   6     0.00    0.00   0.00     0.00    0.00   0.15 100.00
round(addmargins(prop.table(table(Modelos_Nissan_Depurado$condition, Modelos_Nissan_Depurado$model), 2)*100, 1), 2)
##      
##         370Z     AD Almera Altima Armada Avenir Bluebird Bluebird Sylphy
##   1    40.00  22.22   6.67  19.25  25.00  17.28    37.50           27.27
##   2    30.00  66.67  26.67  19.25  18.75  19.26    50.00           45.45
##   3     0.00   0.00  20.00   0.62  18.75   0.57     0.00            0.00
##   4    10.00   0.00   0.00  21.74   6.25  22.10     0.00            9.09
##   5    20.00  11.11  33.33  18.01  25.00  24.65    12.50           18.18
##   6     0.00   0.00  13.33  21.12   6.25  16.15     0.00            0.00
##   Sum 100.00 100.00 100.00 100.00 100.00 100.00   100.00          100.00
##      
##       Cabstar / Atlas Caravan / Urvan Cedric Cedric Y31   Cima Civilian   Cube
##   1             22.22           17.65   5.88      45.83  38.46    10.00  27.78
##   2             22.22           41.18  70.59      29.17  38.46    40.00  33.33
##   3             11.11            0.00   5.88       8.33   0.00    10.00  11.11
##   4             11.11            0.00   0.00       4.17   0.00    10.00   5.56
##   5             33.33           41.18  17.65       8.33  15.38    30.00  16.67
##   6              0.00            0.00   0.00       4.17   7.69     0.00   5.56
##   Sum          100.00          100.00 100.00     100.00 100.00   100.00 100.00
##      
##         Dayz Elgrand Fairlady Z Figaro Frontier Gloria   GT-R Hypermini
##   1    50.00   42.86      14.29  50.00    22.22  19.83  25.00     46.15
##   2    25.00   14.29      42.86  20.00    44.44  22.10  25.00     38.46
##   3     0.00   14.29       0.00   5.00    11.11   0.57  25.00      7.69
##   4     8.33    0.00      14.29   0.00     0.00  18.70   0.00      0.00
##   5    16.67   28.57      28.57  15.00    22.22  18.41  25.00      7.69
##   6     0.00    0.00       0.00  10.00     0.00  20.40   0.00      0.00
##   Sum 100.00  100.00     100.00 100.00   100.00 100.00 100.00    100.00
##      
##       Interstar   Juke  Kicks Lafesta   Leaf Leopard Livina March / Micra
##   1       20.00  18.30  25.00    9.09  17.68   21.43  22.22         16.23
##   2       20.00  19.07  50.00   36.36  22.65   21.43  66.67         26.62
##   3       10.00   0.00  12.50   18.18   0.28   14.29   0.00          0.00
##   4        0.00  19.33   0.00    0.00  21.27    0.00   0.00         22.73
##   5       50.00  22.16  12.50   36.36  19.34   42.86  11.11         20.13
##   6        0.00  21.13   0.00    0.00  18.78    0.00   0.00         14.29
##   Sum    100.00 100.00 100.00  100.00 100.00  100.00 100.00        100.00
##      
##       Maxima Murano Navara / NP300   Note NT100 Clipper NV Cargo NV Passenger
##   1    18.61  18.75          17.39  50.00          0.00    35.71        13.33
##   2    23.89  43.75          39.13   0.00         50.00    50.00        40.00
##   3     0.00   6.25          17.39   0.00         20.00     0.00         0.00
##   4    18.33   6.25           0.00   0.00          0.00     0.00         6.67
##   5    19.44  25.00          26.09  50.00         30.00    14.29        40.00
##   6    19.72   0.00           0.00   0.00          0.00     0.00         0.00
##   Sum 100.00 100.00         100.00 100.00        100.00   100.00       100.00
##      
##       NV100 Clipper NV200 / Evalia     NX Paladin Pathfinder Patrol Primastar
##   1           27.27          14.29  25.00   27.78      24.56  28.57     26.09
##   2           54.55          57.14  41.67   22.22      18.05  28.57     34.78
##   3            9.09           0.00  16.67   11.11       0.00  21.43     13.04
##   4            0.00           0.00   0.00    0.00      17.46   7.14      0.00
##   5            9.09          28.57  16.67   38.89      18.05  14.29     26.09
##   6            0.00           0.00   0.00    0.00      21.89   0.00      0.00
##   Sum        100.00         100.00 100.00  100.00     100.00 100.00    100.00
##      
##       Pulsar Qashqai / Dualis  Quest R'nessa  Rogue Rogue Sport   Roox Sakura
##   1    25.00            12.50  24.75   23.30   0.00       28.57  53.85  25.00
##   2    31.25            50.00  21.74   19.42  66.67       14.29  23.08  25.00
##   3     6.25             0.00   0.67    0.97   0.00       14.29   0.00  12.50
##   4    12.50             0.00  16.72   18.12  33.33        0.00   0.00   0.00
##   5    25.00            25.00  16.72   18.12   0.00       42.86  23.08  25.00
##   6     0.00            12.50  19.40   20.06   0.00        0.00   0.00  12.50
##   Sum 100.00           100.00 100.00  100.00 100.00      100.00 100.00 100.00
##      
##       Sentra Serena Silvia Skyline Stagea Sylphy  Teana Terrano  Tiida  Titan
##   1     7.69  28.57  10.00   33.33  18.18  40.00  15.38   25.00   9.09  28.57
##   2    46.15  42.86  30.00   25.00  45.45  20.00  46.15   50.00  36.36  42.86
##   3     7.69   0.00   0.00   16.67  18.18  13.33   7.69    8.33  27.27   7.14
##   4     7.69   0.00  10.00    0.00   0.00   0.00   7.69    0.00   0.00   7.14
##   5    30.77  14.29  50.00   25.00  18.18  26.67  15.38    8.33  27.27  14.29
##   6     0.00  14.29   0.00    0.00   0.00   0.00   7.69    8.33   0.00   0.00
##   Sum 100.00 100.00 100.00  100.00 100.00 100.00 100.00  100.00 100.00 100.00
##      
##       Titan XD Townstar Vanette  Versa Wingroad X-Trail Xterra
##   1      11.76    16.67   25.00  11.76    57.14   12.50  33.33
##   2      41.18    45.83   37.50  35.29     0.00   62.50  33.33
##   3       5.88    16.67   25.00  23.53    28.57    0.00   0.00
##   4       0.00     0.00    0.00   0.00     0.00    0.00   0.00
##   5      35.29    20.83   12.50  29.41    14.29   25.00  16.67
##   6       5.88     0.00    0.00   0.00     0.00    0.00  16.67
##   Sum   100.00   100.00  100.00 100.00   100.00  100.00 100.00
Perfiles.
plotct(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$model),"row")

plotct(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$model),"col")

plotct(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition),"row")

plotct(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition),"col")

plotct(table(Modelos_Nissan_Depurado$condition, Modelos_Nissan_Depurado$model),"row")

plotct(table(Modelos_Nissan_Depurado$condition, Modelos_Nissan_Depurado$model),"col")

Pruebas de Hipotesis.
chisq.test(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$model))
## Warning in chisq.test(table(Modelos_Nissan_Depurado$gender,
## Modelos_Nissan_Depurado$model)): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$model)
## X-squared = 63.586, df = 69, p-value = 0.6614
chisq.test(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition))
## 
##  Pearson's Chi-squared test
## 
## data:  table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition)
## X-squared = 3.9281, df = 5, p-value = 0.5598
chisq.test(table(Modelos_Nissan_Depurado$condition, Modelos_Nissan_Depurado$model))
## Warning in chisq.test(table(Modelos_Nissan_Depurado$condition,
## Modelos_Nissan_Depurado$model)): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(Modelos_Nissan_Depurado$condition, Modelos_Nissan_Depurado$model)
## X-squared = 1008.1, df = 345, p-value < 2.2e-16

AC Pareja Única.

La AC (Análisis de Correspondencia) de pareja única examina la relación específica entre dos variables categóricas de un conjunto de datos, ayudando a identificar patrones de asociación que facilitan la interpretación de los datos.

Contingencias y Residuales: La tabla muestra cómo las frecuencias observadas se comparan con las esperadas, las diferencias (residuales) entre estas frecuencias y la magnitud de esas diferencias en términos de desviación estándar. Esto ayuda a determinar si existe una asociación significativa entre las dos variables, gender y condition.

Contribuciones:Esta tabla muestra las contribuciones individuales de cada celda de la tabla de contingencia al valor total del estadístico de chi-cuadrado, lo que ayuda a identificar qué combinaciones de categorías tienen mayor impacto en la prueba de independencia entre las variables gender y condition.

Correspondencia Simple Unidimensional: La correspondencia simple unidimensional ayuda a identificar qué categorías son más significativas en relación con los componentes principales y cómo se agrupan en función de la variabilidad explicada. Estos resultados proporcionan información clave sobre cómo se distribuyen las categorías de la variable en el espacio reducido y cómo influyen en la estructura global del análisis.

Contingencias y Residuales.
chisq.test(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition))$observed
##    
##       1   2   3   4   5   6
##   0 415 477  41 326 430 310
##   1 444 511  43 360 412 361
chisq.test(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition))$expected 
##    
##            1        2        3        4        5       6
##   0 415.7726 478.2111 40.65763 332.0373 407.5443 324.777
##   1 443.2274 509.7889 43.34237 353.9627 434.4557 346.223
chisq.test(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition))$residuals
##    
##               1           2           3           4           5           6
##   0 -0.03789211 -0.05538393  0.05369432 -0.33132063  1.11234367 -0.81996171
##   1  0.03669978  0.05364120 -0.05200475  0.32089515 -1.07734217  0.79416043
chisq.test(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition))$stdres
##    
##               1           2           3           4           5           6
##   0 -0.05927436 -0.08839731  0.07552204 -0.50509751  1.73552715 -1.24731635
##   1  0.05927436  0.08839731 -0.07552204  0.50509751 -1.73552715  1.24731635
Contribuciones.
chisq.test(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition))$residuals^2/chisq.test(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition))$statistic*100
##    
##               1           2           3           4           5           6
##   0  0.03655266  0.07808884  0.07339696  2.79459142 31.49918733 17.11624576
##   1  0.03428849  0.07325180  0.06885055  2.62148674 29.54804104 16.05601843
Correspondencia Simple Unidimensional.
CA(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition), graph = FALSE)$eig
##         eigenvalue percentage of variance cumulative percentage of variance
## dim 1 0.0009511052                    100                               100
CA(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition), graph = FALSE)$col
## $coord
##           [,1]
## 1  0.001799847
## 2  0.002452950
## 3 -0.008155902
## 4  0.017610420
## 5 -0.053366196
## 6  0.044067216
## 
## $contrib
##          [,1]
## 1  0.07084115
## 2  0.15134064
## 3  0.14224751
## 4  5.41607815
## 5 61.04722837
## 6 33.17226419
## 
## $cos2
##   [,1]
## 1    1
## 2    1
## 3    1
## 4    1
## 5    1
## 6    1
## 
## $inertia
## [1] 6.737738e-07 1.439409e-06 1.352923e-06 5.151260e-05 5.806234e-04
## [6] 3.155031e-04
CA(table(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$condition), graph = FALSE)$row
## $coord
##           0           1 
## -0.03184195  0.02986957 
## 
## $contrib
##        0        1 
## 51.59806 48.40194 
## 
## $cos2
## 0 1 
## 1 1 
## 
## $inertia
## [1] 0.0004907519 0.0004603534

3.3. Correspondencias Múltiples

El análisis de correspondencias múltiples (ACM) es una técnica estadística utilizada para analizar datos categóricos nominales. Su objetivo principal es detectar y representar estructuras subyacentes en un conjunto de datos, permitiendo visualizar las relaciones entre diferentes categorías. Esto se logra representando los datos como puntos en un espacio euclidiano de baja dimensión1.

ACM: La tabla ayuda a entender qué cantidad de información (varianza) se retiene al reducir la dimensionalidad de los datos usando ACP. Se puede observar que la mayor parte de la varianza se concentra en los primeros componentes principales (dim 1, principalmente). Los últimos componentes principales contribuyen muy poco a la varianza total. Esto sugiere que la reducción de la dimensionalidad a un número menor de componentes principales, manteniendo una alta proporción de la varianza, podría ser posible sin una pérdida significativa de información

Biplot ACM: La gráfica de ACM proporciona una visión clara de las relaciones entre las diferentes observaciones (modelos de coches, en este caso) y las variables categóricas analizadas. Al observar la disposición de los puntos y los vectores, se puede concluir que hay patrones significativos en los datos. Los puntos que están agrupados indican que esos modelos de coches comparten características similares, mientras que la dirección y longitud de los vectores sugieren qué variables son más influyentes en la diferenciación entre estos modelos. Por ejemplo, si un vector es largo y apunta hacia un grupo específico de puntos, eso indica que esa variable tiene un papel importante en definir las características de esos modelos.

Contribuciones ACM: esta gráfica permite identificar claramente cuáles variables son clave para la primera dimensión del análisis, lo que puede guiar futuras investigaciones o decisiones estratégicas basadas en estas relaciones.

Biplot con Contribuciones: La gráfica de biplot proporciona una representación visual clara de las relaciones entre diferentes variables categóricas, mostrando cómo se agrupan y se relacionan entre sí en las dos dimensiones principales. Aunque las dimensiones Dim1 y Dim2 explican solo un 5% de la variabilidad total, permiten identificar patrones significativos en los datos.

Las variables color.NA, condition.NA y model.NA destacan por su alta contribución, lo que sugiere que la falta de información sobre estas características tiene un impacto considerable en el análisis. Esto puede indicar que es crucial considerar estos aspectos para obtener una comprensión más completa de los datos.

La proximidad de los modelos de coches en el gráfico indica similitudes en sus características, lo que podría ser útil para segmentar o clasificar los vehículos según sus atributos. En general, el biplot es una herramienta valiosa para explorar la estructura subyacente de los datos y guiar decisiones informadas basadas en las relaciones observadas.

ACM

round(MCA(Modelos_Nissan_Depurado[1:4188, -c(1,2,3,5,6,7,8,10)], graph = FALSE)$eig,2)
##       eigenvalue percentage of variance cumulative percentage of variance
## dim 1       1.00                  25.00                             25.00
## dim 2       0.52                  12.89                             37.89
## dim 3       0.50                  12.50                             50.39
## dim 4       0.50                  12.50                             62.89
## dim 5       0.50                  12.50                             75.39
## dim 6       0.50                  12.50                             87.89
## dim 7       0.48                  12.11                            100.00
## dim 8       0.00                   0.00                            100.00

Biplot ACM

datos <- muestra[1:200, -c(1,2,3,5,6,7,8,10)]
print(dim(datos))
## [1] 200   2
datos <- lapply(datos, as.factor)
if (any(is.na(datos))) {library(missMDA)
datos <- imputeMCA(as.data.frame(datos))$completeObs}
fviz_mca_biplot(MCA(as.data.frame(datos), graph = FALSE), repel = TRUE)

Calidad de Representación

fviz_mca_var(MCA(Modelos_Nissan_Depurado[1:4188, -c(1,2,3,4,7,8,10)], graph = FALSE), col.var ="cos2", gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"), repel = TRUE)

MCA(Modelos_Nissan_Depurado[1:4188, -c(1,2,4,7,8,10)], graph = FALSE)$var$cos2
##                         Dim 1        Dim 2        Dim 3        Dim 4
## 18               2.874418e-04 6.742517e-04 1.086093e-05 3.587603e-03
## 19               3.049229e-04 2.169597e-04 8.249748e-04 7.811868e-03
## 20               2.630396e-04 4.664630e-03 7.529241e-04 2.159141e-04
## 21               3.084242e-04 1.130664e-03 1.857360e-02 3.884363e-04
## 22               3.014233e-04 6.052251e-03 1.543504e-03 3.694862e-03
## 23               2.317873e-04 8.498692e-04 4.931192e-03 2.602775e-02
## 24               2.839507e-04 2.197853e-04 4.973808e-04 1.702612e-05
## 25               2.979253e-04 4.140840e-03 2.926159e-03 6.437145e-04
## 26               2.874418e-04 5.854873e-04 1.345276e-02 5.920488e-04
## 27               2.110282e-04 1.529573e-04 2.591228e-04 1.987415e-05
## 28               2.769735e-04 9.276349e-05 1.254533e-03 1.789285e-03
## 29               3.224467e-04 2.323268e-04 8.690494e-03 1.378297e-02
## 30               2.979253e-04 4.200505e-06 2.969568e-02 1.306681e-03
## 31               2.839507e-04 8.327093e-04 6.213650e-03 3.244399e-04
## 32               3.576231e-04 1.272448e-03 1.765323e-02 3.869033e-07
## 33               3.119273e-04 4.599690e-05 1.153082e-02 1.648747e-03
## 34               2.700032e-04 1.260737e-03 6.513018e-05 3.819841e-03
## 35               2.456604e-04 2.468616e-04 1.396423e-05 4.228392e-04
## 36               2.560829e-04 1.775989e-03 1.898565e-03 5.388216e-04
## 37               2.874418e-04 1.646525e-04 1.361556e-05 1.318581e-02
## 38               2.110282e-04 2.668932e-07 4.743093e-03 4.096692e-03
## 39               2.909346e-04 3.722493e-04 2.735820e-03 9.119705e-04
## 40               3.611502e-04 1.325472e-03 7.842512e-06 6.051913e-04
## 41               3.014233e-04 6.348453e-03 1.303093e-03 1.239740e-04
## 42               3.084242e-04 6.563038e-06 2.947159e-04 7.208496e-03
## 43               2.317873e-04 1.185405e-02 1.176264e-02 8.731976e-03
## 44               2.944291e-04 6.398623e-05 1.520203e-04 7.249268e-05
## 45               2.804612e-04 2.273046e-04 6.682147e-05 5.323440e-05
## 46               2.595604e-04 7.008634e-04 1.703442e-03 3.177761e-03
## 47               3.294682e-04 8.932083e-04 4.087737e-03 1.847051e-03
## 48               3.505740e-04 4.377240e-04 1.082657e-03 2.822378e-03
## 49               3.259566e-04 3.749890e-05 2.281322e-02 2.673887e-04
## 50               2.630396e-04 4.870870e-04 1.193619e-02 2.379475e-04
## 51               2.421896e-04 6.169891e-04 2.249691e-03 7.108330e-03
## 52               2.944291e-04 9.536034e-04 3.803857e-04 1.819927e-03
## 53               2.700032e-04 2.754251e-05 1.117460e-02 2.592459e-03
## 54               2.595604e-04 3.063512e-04 2.498335e-04 1.881482e-04
## 55               2.560829e-04 8.608448e-04 1.188964e-02 1.107974e-02
## 56               2.630396e-04 7.731643e-04 3.991283e-06 9.577661e-04
## 57               2.560829e-04 3.625716e-04 4.352264e-03 1.364111e-03
## 58               3.119273e-04 1.981850e-04 6.427519e-03 2.578524e-03
## 59               2.909346e-04 3.973104e-04 9.509380e-04 1.363047e-03
## 60               2.944291e-04 2.033562e-03 3.232773e-05 5.606698e-04
## 61               2.248609e-04 9.788346e-03 1.316782e-04 1.692989e-05
## 62               1.937749e-04 1.009336e-02 1.419612e-05 2.367575e-04
## 63               2.630396e-04 1.373422e-02 1.009938e-06 1.059041e-04
## 64               1.903293e-04 1.002614e-02 6.676057e-05 1.222947e-06
## 65               1.868853e-04 1.197938e-02 4.000698e-06 3.224702e-04
## 66               2.700032e-04 1.309904e-02 8.395691e-07 6.848266e-04
## 67               1.800024e-04 1.104155e-02 5.874395e-06 6.945418e-04
## 68               1.937749e-04 8.835310e-03 1.525932e-05 1.029152e-04
## 69               1.868853e-04 1.158569e-02 1.772302e-04 2.420392e-04
## age.NA           1.000000e+00 1.296287e-28 1.543058e-31 1.232024e-33
## 370Z             3.361317e-05 2.245421e-03 4.249640e-04 1.626746e-03
## AD               3.024462e-05 3.929744e-03 1.219883e-03 2.503169e-02
## Almera           5.048017e-05 1.668300e-02 8.950778e-04 8.085026e-03
## Altima           1.169693e-03 1.581436e-02 9.995368e-04 2.085193e-04
## Armada           5.385842e-05 1.072610e-02 3.945332e-03 3.039367e-02
## Avenir           1.292669e-03 1.458023e-02 6.081645e-04 1.253005e-03
## Bluebird         2.687767e-05 4.679129e-03 3.098517e-02 1.240443e-02
## Bluebird Sylphy  3.698334e-05 7.707305e-03 1.024454e-03 2.333768e-04
## Cabstar / Atlas  3.024462e-05 9.146955e-03 1.849766e-03 7.066911e-04
## Caravan / Urvan  5.723829e-05 1.833773e-02 8.232096e-03 1.806951e-03
## Cedric           5.723829e-05 1.128777e-02 9.914683e-05 1.033816e-02
## Cedric Y31       8.094284e-05 1.904930e-02 5.760625e-04 2.446727e-03
## Cima             4.372852e-05 4.892503e-03 5.269508e-03 3.746535e-03
## Civilian         3.361317e-05 8.591158e-03 1.746305e-05 2.134436e-02
## Cube             6.061979e-05 1.271510e-02 4.450762e-06 1.296989e-02
## Dayz             4.035513e-05 6.042960e-03 2.286318e-05 2.061782e-03
## Elgrand          2.351234e-05 1.142283e-02 1.744164e-04 1.359214e-02
## Fairlady Z       2.351234e-05 6.287736e-03 5.879603e-03 1.664122e-02
## Figaro           6.738764e-05 1.630959e-02 1.114115e-02 3.759509e-03
## Frontier         3.024462e-05 7.607505e-03 2.102615e-05 4.203181e-03
## Gloria           1.292669e-03 1.649916e-02 8.927298e-05 5.777760e-04
## GT-R             2.687767e-05 1.659603e-02 1.003315e-02 2.470427e-02
## Hypermini        4.372852e-05 1.693277e-02 9.722686e-02 1.399590e-02
## Interstar        3.361317e-05 7.096628e-03 1.219522e-03 1.803535e-02
## Juke             1.433924e-03 1.762400e-02 3.406025e-03 3.853544e-06
## Kicks            2.687767e-05 1.458708e-02 1.084047e-02 1.573451e-02
## Lafesta          3.698334e-05 1.255218e-02 8.693370e-03 1.789762e-04
## Leaf             1.328745e-03 1.371559e-02 1.532141e-03 3.081578e-04
## Leopard          4.710354e-05 7.527942e-03 1.767398e-04 1.883061e-04
## Livina           3.024462e-05 6.912915e-03 1.156939e-04 4.653710e-04
## March / Micra    1.114800e-03 1.444798e-02 5.278631e-04 6.190086e-05
## Maxima           1.320713e-03 1.510048e-02 1.435355e-03 1.622526e-03
## model.NA         1.000000e+00 1.296287e-28 1.543058e-31 1.232024e-33
## Murano           5.385842e-05 1.495871e-02 1.678087e-03 8.001421e-03
## Navara / NP300   7.755160e-05 2.455640e-02 3.077865e-03 1.430067e-03
## Note             3.361317e-05 3.294919e-03 2.425795e-03 5.404989e-03
## NT100 Clipper    3.361317e-05 1.312599e-02 5.846706e-03 1.487099e-02
## NV Cargo         4.710354e-05 9.240432e-03 1.373208e-02 2.046670e-03
## NV Passenger     5.048017e-05 1.365064e-02 7.606819e-03 3.718897e-04
## NV100 Clipper    3.698334e-05 1.657569e-02 3.985289e-02 2.770788e-02
## NV200 / Evalia   2.351234e-05 6.868107e-03 4.174784e-02 1.362076e-03
## NX               4.035513e-05 1.109516e-02 1.578505e-04 3.206172e-03
## Paladin          6.061979e-05 1.968116e-02 3.991731e-03 1.357714e-06
## Pathfinder       1.232917e-03 1.913460e-02 4.729499e-05 4.225818e-05
## Patrol           4.710354e-05 1.332338e-02 1.281844e-04 9.875254e-03
## Primastar        7.755160e-05 2.548138e-02 1.599082e-04 5.637818e-04
## Pulsar           5.385842e-05 6.975658e-03 7.095374e-03 7.277844e-04
## Qashqai / Dualis 2.687767e-05 4.035442e-03 1.607913e-02 1.268625e-02
## Quest            1.079720e-03 1.096617e-02 1.222257e-05 8.023361e-05
## R'nessa          1.118708e-03 9.592278e-03 3.883701e-04 6.126715e-10
## Rogue            1.006708e-05 4.820341e-04 1.936908e-03 2.403773e-03
## Rogue Sport      2.351234e-05 9.536389e-03 2.107006e-02 2.145350e-03
## Roox             4.372852e-05 6.697101e-03 2.672939e-02 2.747159e-02
## Sakura           2.687767e-05 8.297239e-03 3.744843e-03 2.103340e-04
## Sentra           4.372852e-05 5.245756e-03 2.781994e-03 7.792893e-04
## Serena           2.351234e-05 1.384128e-03 4.905830e-03 1.468854e-02
## Silvia           3.361317e-05 6.735609e-03 1.984500e-03 3.413640e-03
## Skyline          4.035513e-05 1.161187e-02 1.272769e-05 8.562967e-03
## Stagea           3.698334e-05 1.233722e-02 3.746385e-03 1.346735e-02
## Sylphy           5.048017e-05 1.981197e-02 2.942054e-02 6.109255e-02
## Teana            4.372852e-05 1.163857e-02 5.042204e-04 4.918852e-04
## Terrano          4.035513e-05 8.258029e-03 7.353245e-05 1.488263e-02
## Tiida            3.698334e-05 1.332576e-02 2.642101e-05 1.050079e-02
## Titan            4.710354e-05 1.141622e-02 2.875405e-05 3.467930e-02
## Titan XD         5.723829e-05 8.947727e-03 8.355499e-03 1.578765e-02
## Townstar         8.094284e-05 3.329682e-02 4.000985e-02 7.649092e-03
## Vanette          2.687767e-05 6.997483e-03 2.611526e-02 2.547656e-03
## Versa            5.723829e-05 1.758944e-02 1.084524e-02 1.114372e-02
## Wingroad         2.351234e-05 7.152329e-03 1.560513e-06 2.572589e-02
## X-Trail          2.687767e-05 5.662167e-03 6.032928e-02 1.516531e-02
## Xterra           2.014861e-05 3.153696e-04 2.468119e-05 2.444890e-03
## Aquamarine       1.696905e-04 4.481575e-02 7.560960e-02 7.407030e-03
## Black            1.205192e-03 2.672833e-02 3.051763e-06 6.394120e-05
## Blue             1.312690e-03 5.477487e-03 3.299553e-04 8.502148e-03
## color.NA         1.000000e+00 1.296287e-28 1.543058e-31 1.232024e-33
## Crimson          1.628242e-04 6.031346e-02 3.207852e-03 5.037267e-02
## Fuscia           1.525371e-04 4.795294e-02 1.100047e-02 7.888321e-02
## Goldenrod        1.320077e-04 3.635745e-02 3.950934e-02 1.030363e-01
## Gray             1.103089e-03 2.440249e-02 1.365679e-05 4.490017e-04
## Green            1.421714e-03 7.629248e-03 1.700599e-05 1.179736e-03
## Indigo           1.183543e-04 3.860177e-02 6.140596e-02 8.118764e-02
## Khaki            1.800024e-04 4.964992e-02 2.292843e-01 2.584425e-02
## Maroon           1.491114e-04 5.822292e-02 1.293390e-02 3.354389e-04
## Mauv             1.285918e-04 5.124561e-02 1.112657e-02 6.929595e-02
## Orange           1.304675e-03 4.615322e-03 2.404454e-04 4.436407e-04
## Pink             1.320077e-04 3.877769e-02 3.691065e-02 1.142692e-03
## Puce             1.696905e-04 6.185948e-02 3.896438e-02 5.798734e-03
## Purple           1.425782e-03 3.734840e-03 2.248588e-03 1.086099e-03
## Red              1.458401e-03 3.122192e-03 2.631837e-04 4.838308e-03
## Silver           1.244830e-03 2.663364e-02 4.372028e-05 1.508779e-04
## Teal             1.525371e-04 3.959535e-02 4.864743e-02 7.123787e-02
## Turquoise        1.422650e-04 5.542146e-02 5.311853e-04 5.177363e-02
## Violet           1.422650e-04 4.826414e-02 7.523953e-03 9.011029e-03
## White            1.197289e-03 2.570557e-02 1.385309e-05 8.390119e-05
## Yellow           1.381155e-03 4.588318e-03 5.697775e-06 4.052354e-05
## 1                3.623742e-03 8.241702e-03 3.030246e-03 3.779720e-02
## 2                4.335956e-03 5.063669e-02 9.808226e-03 1.033935e-04
## 3                2.874418e-04 1.929745e-01 1.893147e-02 4.949116e-02
## 4                2.750970e-03 8.962382e-02 8.740923e-04 5.618358e-04
## 5                3.533980e-03 4.361885e-03 2.415486e-04 4.412245e-03
## 6                2.679342e-03 8.904205e-02 1.300051e-04 1.958938e-03
## condition.NA     1.000000e+00 1.296287e-28 1.543058e-31 1.232024e-33
##                         Dim 5
## 18               5.161480e-04
## 19               2.054472e-02
## 20               1.194463e-04
## 21               2.393201e-02
## 22               2.737761e-04
## 23               4.487630e-06
## 24               2.652366e-03
## 25               5.091959e-03
## 26               4.158112e-04
## 27               4.492384e-05
## 28               1.706246e-03
## 29               3.109169e-05
## 30               7.266642e-03
## 31               9.022803e-03
## 32               9.072396e-04
## 33               2.889030e-03
## 34               4.783371e-06
## 35               3.377069e-03
## 36               9.054992e-04
## 37               7.125755e-04
## 38               6.724418e-04
## 39               1.955775e-04
## 40               5.536360e-03
## 41               1.666585e-03
## 42               8.315185e-03
## 43               2.261386e-04
## 44               2.742481e-03
## 45               6.378289e-03
## 46               6.351921e-04
## 47               8.909294e-06
## 48               7.055377e-06
## 49               3.015047e-03
## 50               9.093895e-05
## 51               3.980069e-04
## 52               3.829551e-03
## 53               3.703312e-03
## 54               3.506484e-03
## 55               1.697939e-02
## 56               1.059275e-02
## 57               9.470498e-06
## 58               1.207658e-03
## 59               6.369992e-03
## 60               2.556340e-03
## 61               1.326462e-04
## 62               7.263428e-05
## 63               6.753419e-06
## 64               2.837206e-06
## 65               2.799223e-06
## 66               1.224358e-05
## 67               1.344124e-06
## 68               2.098760e-04
## 69               6.655635e-06
## age.NA           1.604560e-33
## 370Z             8.453864e-03
## AD               1.701031e-05
## Almera           1.357008e-02
## Altima           1.747361e-04
## Armada           5.510010e-03
## Avenir           5.881841e-04
## Bluebird         7.644213e-03
## Bluebird Sylphy  3.782337e-02
## Cabstar / Atlas  8.300519e-03
## Caravan / Urvan  1.106649e-03
## Cedric           2.246778e-04
## Cedric Y31       3.979116e-03
## Cima             1.009882e-06
## Civilian         5.485129e-03
## Cube             4.531840e-12
## Dayz             1.373682e-02
## Elgrand          1.229633e-02
## Fairlady Z       1.980948e-02
## Figaro           7.024783e-03
## Frontier         7.537544e-04
## Gloria           1.520614e-05
## GT-R             7.525121e-02
## Hypermini        5.346908e-03
## Interstar        4.163828e-03
## Juke             1.531593e-04
## Kicks            3.569211e-05
## Lafesta          3.968934e-03
## Leaf             7.012735e-04
## Leopard          1.564323e-02
## Livina           3.589452e-02
## March / Micra    5.170571e-06
## Maxima           5.324078e-05
## model.NA         1.604560e-33
## Murano           2.561951e-02
## Navara / NP300   2.243715e-02
## Note             4.642261e-03
## NT100 Clipper    9.779330e-03
## NV Cargo         1.138613e-02
## NV Passenger     4.177225e-03
## NV100 Clipper    7.978616e-03
## NV200 / Evalia   3.232626e-04
## NX               4.119814e-02
## Paladin          7.495545e-03
## Pathfinder       1.618210e-04
## Patrol           6.253767e-04
## Primastar        2.496858e-03
## Pulsar           1.845959e-03
## Qashqai / Dualis 2.616974e-03
## Quest            5.391458e-05
## R'nessa          4.606599e-08
## Rogue            5.603180e-03
## Rogue Sport      3.260946e-04
## Roox             8.126701e-03
## Sakura           1.518888e-03
## Sentra           1.991792e-02
## Serena           1.864073e-04
## Silvia           1.320502e-02
## Skyline          3.255421e-04
## Stagea           2.477277e-03
## Sylphy           4.812251e-03
## Teana            2.897224e-02
## Terrano          1.721602e-02
## Tiida            2.662341e-02
## Titan            7.819906e-06
## Titan XD         1.232431e-02
## Townstar         1.049511e-02
## Vanette          1.696755e-03
## Versa            9.846352e-03
## Wingroad         2.573120e-02
## X-Trail          6.996992e-03
## Xterra           1.796738e-03
## Aquamarine       5.399019e-02
## Black            5.151601e-05
## Blue             3.008792e-03
## color.NA         1.604560e-33
## Crimson          7.568962e-03
## Fuscia           7.209613e-02
## Goldenrod        2.556588e-03
## Gray             2.810487e-05
## Green            4.756431e-04
## Indigo           1.182151e-02
## Khaki            1.482418e-04
## Maroon           9.008687e-02
## Mauv             7.061241e-02
## Orange           4.680366e-04
## Pink             2.814662e-03
## Puce             1.226241e-02
## Purple           2.862875e-03
## Red              4.197733e-03
## Silver           6.393276e-04
## Teal             1.974363e-04
## Turquoise        2.534697e-02
## Violet           2.322228e-01
## White            1.652531e-05
## Yellow           2.687551e-04
## 1                2.374547e-06
## 2                2.173118e-03
## 3                6.225974e-03
## 4                1.702328e-03
## 5                6.989788e-03
## 6                5.868331e-04
## condition.NA     1.604560e-33

Contribuciones ACM

fviz_contrib(MCA(Modelos_Nissan_Depurado[1:4188, -c(1,2,3,4,7,8,10)], graph = FALSE), choice = "var", axes = 1, top = 15)

fviz_contrib(MCA(Modelos_Nissan_Depurado[1:4188, -c(1,2,3,4,7,8,10)], graph = FALSE), choice = "var", axes = 2, top = 15)

fviz_contrib(MCA(Modelos_Nissan_Depurado[1:4188, -c(1,2,3,4,7,8,10)], graph = FALSE), choice = "var", axes = 3, top = 15)

fviz_contrib(MCA(Modelos_Nissan_Depurado[1:4188, -c(1,2,3,4,7,8,10)], graph = FALSE), choice = "var", axes = 4, top = 15)

fviz_contrib(MCA(Modelos_Nissan_Depurado[1:4188, -c(1,2,3,4,7,8,10)], graph = FALSE), choice = "var", axes = 5, top = 15)

Biplot con Contribuciones

fviz_mca_var(MCA(Modelos_Nissan_Depurado[1:4188, -c(1,2,3,4,7,8,10)], graph = FALSE), col.var ="contrib", gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"), repel = TRUE)

Fase 4 [Conglomerados]

4.1. Objetivos

La agrupación jerárquica organiza los elementos en un árbol de grupos anidados, conocido como dendrograma, y puede ser aglomerativa (de abajo hacia arriba) o divisiva (de arriba hacia abajo), identificando relaciones jerárquicas entre los datos. En contraste, la agrupación no jerárquica, como el método k-means, agrupa los datos en un número fijo de clústeres para maximizar o minimizar ciertos criterios de evaluación

4.2. Agrupación Jerárquica

La agrupación jerárquica es un método de análisis de datos que organiza elementos en un árbol de grupos anidados, conocido como dendrograma. Este método puede ser aglomerativo (de abajo hacia arriba) o divisivo (de arriba hacia abajo). En el enfoque aglomerativo, cada elemento comienza en su propio grupo y se fusiona con otros grupos basándose en la similitud, hasta que todos los elementos están en un solo grupo. En el enfoque divisivo, todos los elementos comienzan en un solo grupo y se dividen sucesivamente en grupos más pequeños.

El dendrograma resultante de la agrupación jerárquica proporciona una representación visual de las relaciones jerárquicas entre los datos. Cada nodo del árbol representa un grupo de datos similares, y los nodos se agrupan en niveles sucesivos según su similitud. Esto permite identificar patrones y estructuras subyacentes en los datos, facilitando la interpretación y el análisis.

La agrupación jerárquica se utiliza en diversas áreas, como la biología para clasificar especies, la mercadotecnia para segmentar clientes y la informática para organizar grandes volúmenes de datos. Su capacidad para manejar datos complejos y proporcionar una visión clara de las relaciones jerárquicas la convierte en una herramienta valiosa en el análisis de datos.

Campo Clasificador

Modelos_Nissan_Color_promedio <- read_excel("C:/Users/Home/Desktop/Curso GdD 2024_1 [3]/Modelos_Nissan_Color_promedio.xlsx")

Conjunto Modificado.

Estas tablas ofrecen una descripción general de un conjunto de datos que analiza las características de modelos de Nissan agrupados por color. La agrupación jerárquica no se muestra directamente en estas tablas, pero es probable que se haya usado previamente para obtener estos datos ya agrupados.

head(as.data.frame(Modelos_Nissan_Color_promedio))
##        color GRE_age_S01 GRE_performance_S02 GRE_km_S03 GRE_price_S04
## 1 Aquamarine      0.4514            0.452513      0.589        0.1298
## 2      Black      0.5198            0.498700      0.517        0.1239
## 3       Blue      0.4922            0.521600      0.510        0.1219
## 4    Crimson      0.4236            0.494300      0.357        0.1331
## 5     Fuscia      0.3817            0.485200      0.519        0.1047
## 6  Goldenrod      0.3846            0.458200      0.500        0.1253
str(as.data.frame(Modelos_Nissan_Color_promedio))
## 'data.frame':    23 obs. of  5 variables:
##  $ color              : chr  "Aquamarine" "Black" "Blue" "Crimson" ...
##  $ GRE_age_S01        : num  0.451 0.52 0.492 0.424 0.382 ...
##  $ GRE_performance_S02: num  0.453 0.499 0.522 0.494 0.485 ...
##  $ GRE_km_S03         : num  0.589 0.517 0.51 0.357 0.519 0.5 0.494 0.489 0.459 0.547 ...
##  $ GRE_price_S04      : num  0.13 0.124 0.122 0.133 0.105 ...

Disimilaridad

La gráfica de disimilaridad proporciona una representación clara y visual de las diferencias entre varios colores en el conjunto de datos analizado. Al utilizar una escala de 0 a 5, permite identificar rápidamente cuáles colores son más similares entre sí y cuáles son significativamente diferentes. Los colores con valores bajos indican alta similitud, lo que puede ser útil para tomar decisiones en diseño o marketing, mientras que los colores con valores altos sugieren diferencias marcadas que podrían influir en la percepción o preferencia del consumidor.

Esta matriz es especialmente valiosa para entender relaciones complejas entre categorías, facilitando la identificación de agrupaciones o patrones que pueden no ser evidentes a simple vista.

data_ = as.data.frame(Modelos_Nissan_Color_promedio)[, -c(1)]
rownames(data_) = unclass(Modelos_Nissan_Color_promedio$color)
fviz_dist(get_dist(data_, stand = T, method = "euclidean"), gradient = list(low = "#00AFBB", mid = "white", high = "#FC4E07"))

Optimización de Mojena

La optimización de Mojena es una técnica utilizada en el análisis de agrupamiento jerárquico para determinar el número óptimo de clústeres. Se basa en la identificación de un punto de corte en el dendrograma, utilizando un criterio estadístico que maximiza la diferencia entre las distancias de los clústeres fusionados y no fusionados, permitiendo una segmentación más precisa y significativa de los datos

Unión Simple

La gráfica muestra el resultado de un análisis de agrupamiento jerárquico aglomerativo, específicamente utilizando el método de unión simple (single linkage). El objetivo es determinar el número óptimo de grupos (“clusters”) en un conjunto de datos. la gráfica sugiere que la mejor agrupación de los datos se logra con 3 grupos, según el criterio de minimizar la dispersión dentro de los grupos utilizando la unión simple como método de agrupamiento.

hc_single = hclust(get_dist(data_, stand = T, method = "euclidean"), method = "single")

mojena = function(hc){
  n_hd = length(hc$height)
  alp_g = 0 ; alpha = hc$height[n_hd:1]
  for(i in 1:(n_hd-1)){
    alp_g[i] = mean(alpha[(n_hd-i+1):1])+1.25*sd(alpha[(n_hd-i+1):1])
  }
  nog = sum(alp_g<= alpha[-n_hd]) + 1
  plot(alpha[-n_hd], pch=20, col=(alp_g>alpha[-n_hd])+1, main = paste("Optimal number of groups =",nog),
       ylab = expression(alpha[g]), xlab="Nodes")}

mojena(hc_single)

Unión Completa

La gráfica de optimización para el método de unión completa proporciona una representación clara del proceso de agrupamiento jerárquico y ayuda a identificar el número óptimo de grupos en el conjunto de datos analizado. Al observar cómo varía la métrica αg con el número de grupos, se puede concluir que el número óptimo de agrupaciones es 4. Esto se basa en la identificación del codo en la curva, donde la disminución en la calidad de la agrupación comienza a estabilizarse.

hc_complete = hclust(get_dist(data_, stand = T, method = "euclidean"), method = "complete")

mojena = function(hc){
  n_hd = length(hc$height)
  alp_g = 0 ; alpha = hc$height[n_hd:1]
  for(i in 1:(n_hd-1)){
    alp_g[i] = mean(alpha[(n_hd-i+1):1])+1.25*sd(alpha[(n_hd-i+1):1])
  }
  nog = sum(alp_g<= alpha[-n_hd]) + 1
  plot(alpha[-n_hd], pch=20, col=(alp_g>alpha[-n_hd])+1, main = paste("Optimal number of groups =",nog),
       ylab = expression(alpha[g]), xlab="Nodes")}

mojena(hc_complete)

Unión Promedio

La gráfica de optimización para el método de unión promedio indica que el número óptimo de grupos en el conjunto de datos analizado es 4. Esto se basa en la observación de que, después de este punto, la mejora en la métrica αg se vuelve mínima, sugiriendo que agregar más grupos no aporta beneficios significativos en la calidad del agrupamiento. En resumen, agrupar los datos en 4 clústeres permite una representación equilibrada y efectiva, facilitando un análisis más claro y útil de los patrones presentes en los datos.

hc_average = hclust(get_dist(data_, stand = T, method = "euclidean"), method = "average")

mojena = function(hc){
  n_hd = length(hc$height)
  alp_g = 0 ; alpha = hc$height[n_hd:1]
  for(i in 1:(n_hd-1)){
    alp_g[i] = mean(alpha[(n_hd-i+1):1])+1.25*sd(alpha[(n_hd-i+1):1])
  }
  nog = sum(alp_g<= alpha[-n_hd]) + 1
  plot(alpha[-n_hd], pch=20, col=(alp_g>alpha[-n_hd])+1, main = paste("Optimal number of groups =",nog),
       ylab = expression(alpha[g]), xlab="Nodes")}

mojena(hc_average)

Dendogramas Optimizados

Los dendrogramas optimizados son representaciones visuales de la agrupación jerárquica que han sido ajustadas para mejorar la claridad y precisión en la interpretación de las relaciones entre los datos. Utilizan técnicas estadísticas y algoritmos para determinar el número óptimo de clústeres y el punto de corte adecuado en el dendrograma, facilitando una segmentación más significativa y precisa de los datos

Enlace Simple

El dendrograma muestra una jerarquía de agrupaciones de colores. Los colores cercanos en la parte inferior están más estrechamente relacionados (más similares) que aquellos que se unen a mayores alturas en el dendrograma. El método de enlace simple se centra en la menor distancia entre puntos de diferentes grupos para realizar las agrupaciones.

suppressWarnings(fviz_dend(hc_single, k = 3, cex = 0.5, k_colors = "npg", color_labels_by_k = T, rect = T))

Enlace Completo

La conclusión del dendrograma de enlace completo es que se puede identificar claramente la jerarquía de similitud entre los colores analizados. Los colores que se agrupan a alturas bajas en el dendrograma son más similares entre sí, mientras que aquellos que se unen a mayores alturas presentan una mayor disimilitud. Se observa que los colores como Crimson e Indigo son los más cercanos, formando un grupo compacto, mientras que otros grupos de colores, como los tonos cálidos y fríos, se separan a una distancia significativa. Esto sugiere que hay patrones claros en la relación de similitud entre los colores, lo que puede ser útil para tareas como la segmentación en diseño gráfico, análisis de tendencias o estudios de percepción del color.

fviz_dend(hc_complete, k = 3, cex = 0.5, k_colors = "npg", color_labels_by_k = T, rect = T)

Enlace Promedio

Este análisis revela la existencia de al menos tres grupos principales: uno de colores fríos, otro de colores cálidos y un tercero con tonos intermedios o neutros. La estructura del dendrograma permite identificar fácilmente estos patrones, lo que puede ser útil para aplicaciones en diseño, marketing o estudios relacionados con la percepción del color. El dendrograma proporciona una representación visual efectiva de la relación de similitud entre los colores, facilitando la identificación de agrupaciones significativas en el conjunto de datos.

fviz_dend(hc_average, k = 4, cex = 0.5, k_colors = "npg", color_labels_by_k = T, rect = T)

4.3. Agrupación No-Jerárquica

La agrupación no jerárquica es un enfoque de análisis de datos en el que los datos se agrupan en clústeres sin una estructura jerárquica predefinida. A diferencia de los métodos jerárquicos, donde los grupos se forman de manera secuencial y se dividen o fusionan en niveles jerárquicos, en la agrupación no jerárquica cada observación se asigna a un grupo según ciertas características similares, sin un orden o estructura jerárquica. Un ejemplo común de este tipo de agrupación es el algoritmo K-means, que agrupa los datos en un número predefinido de clústeres.

En este proceso, el número de clústeres debe ser especificado antes de iniciar el análisis. El algoritmo busca dividir los datos de manera que los elementos dentro de cada grupo sean lo más similares posible entre sí, y lo más diferentes posible de los elementos de otros grupos. Para ello, se utilizan medidas de distancia, como la distancia euclidiana, para asignar los puntos a los grupos basándose en su proximidad en el espacio de características. A lo largo de varias iteraciones, el algoritmo ajusta la asignación de los puntos a los clústeres para minimizar las diferencias internas dentro de cada grupo.

Una característica importante de la agrupación no jerárquica es que no hay un árbol de decisiones o un enfoque jerárquico en la formación de grupos. En cambio, se busca una segmentación “plana”, donde todos los clústeres tienen el mismo nivel de importancia y no existen subgrupos dentro de los clústeres. Esto hace que los métodos no jerárquicos sean más adecuados para grandes conjuntos de datos, donde una estructura jerárquica sería demasiado compleja o poco práctica.

K-óptimos

Los K-óptimos son el resultado de una selección cuidadosa del número de clústeres que mejor reflejan la estructura subyacente de los datos, mejorando la interpretación y utilidad de los resultados de la agrupación.

Elbow

La tabla muestra cómo se puede elegir el número ideal de grupos o clústeres en un análisis de agrupamiento. La idea es encontrar un equilibrio entre tener suficientes grupos para capturar la diversidad de los datos y no crear demasiados grupos que no aporten información útil. Ayuda a decidir cuántos grupos se deben considerar al analizar los datos, buscando el número que mejor represente las diferencias sin complicar demasiado el análisis.

fviz_nbclust(data_, kmeans, method = "wss") + geom_vline(xintercept = 3, linetype = 2)

Silhouette

La tabla de silhouette muestra cómo se agrupan los datos según diferentes números de clústeres. Un mayor ancho de silueta indica un mejor agrupamiento. Los resultados sugieren que el número óptimo de clústeres está entre 4 y 5, con un máximo en 4, lo que indica que los datos se agrupan mejor con ese número.

fviz_nbclust(data_, kmeans, method = "silhouette")

Gap Statistic

La gráfica del estadístico Gap se utiliza para ayudar a determinar cuántos grupos o clústeres deberían formarse en un análisis de agrupamiento. La idea es comparar la calidad de agrupamiento de los datos de este conjunto con la de un conjunto de datos aleatorios.

fviz_nbclust(data_, kmeans, method = "gap_stat")

Majority Rule

Estas gráficas ayudan a tomar decisiones informadas sobre cuántos grupos establecer en el conjunto de datos, asegurando lograr un equilibrio entre una buena representación y la complejidad del modelo.

suppressWarnings(NbClust(data = data_, diss = NULL, distance = "euclidean", min.nc = 2, max.nc = 10, method = "kmeans")$Best.nc)

## *** : The Hubert index is a graphical method of determining the number of clusters.
##                 In the plot of Hubert index, we seek a significant knee that corresponds to a 
##                 significant increase of the value of the measure i.e the significant peak in Hubert
##                 index second differences plot. 
## 

## *** : The D index is a graphical method of determining the number of clusters. 
##                 In the plot of D index, we seek a significant knee (the significant peak in Dindex
##                 second differences plot) that corresponds to a significant increase of the value of
##                 the measure. 
##  
## ******************************************************************* 
## * Among all indices:                                                
## * 4 proposed 2 as the best number of clusters 
## * 8 proposed 3 as the best number of clusters 
## * 7 proposed 4 as the best number of clusters 
## * 1 proposed 6 as the best number of clusters 
## * 3 proposed 10 as the best number of clusters 
## 
##                    ***** Conclusion *****                            
##  
## * According to the majority rule, the best number of clusters is  3 
##  
##  
## *******************************************************************
##                      KL      CH Hartigan     CCC   Scott Marriot TrCovW TraceW
## Number_clusters  4.0000  4.0000   3.0000  2.0000  3.0000       3  3e+00 3.0000
## Value_Index     27.7776 22.6798   9.2277 17.5514 48.2229       0  8e-04 0.0257
##                 Friedman     Rubin  Cindex      DB Silhouette   Duda PseudoT2
## Number_clusters     6.00    4.0000 10.0000 10.0000     4.0000 2.0000   4.0000
## Value_Index      2317.48 -149.3821  0.0245  0.7094     0.4671 1.6703  -0.7797
##                   Beale Ratkowsky   Ball PtBiserial Frey McClain   Dunn Hubert
## Number_clusters  2.0000    3.0000 3.0000     4.0000    1  2.0000 3.0000      0
## Value_Index     -0.7266    0.4224 0.0273     0.7258   NA  0.3307 0.3567      0
##                 SDindex Dindex    SDbw
## Number_clusters  4.0000      0 10.0000
## Value_Index     45.0236      0  0.0863

Resultados K-means

Los resultados de K-means describen cómo se agrupan los datos, cuán distintos son los clústeres y cómo se ajusta el modelo a los datos. Esto ayuda a interpretar patrones y relaciones dentro del conjunto de datos.

K-óptimo [wws]

Este análisis K-óptimo proporciona una visión clara sobre cómo se agrupan los datos y qué tan bien se separan esos grupos entre sí. Esto es útil para entender patrones o tendencias en los datos.

set.seed(780728)
print(kmeans(data_, 3, nstart = 25))
## K-means clustering with 3 clusters of sizes 10, 10, 3
## 
## Cluster means:
##   GRE_age_S01 GRE_performance_S02 GRE_km_S03 GRE_price_S04
## 1   0.4912000           0.5014900     0.4978       0.12305
## 2   0.4077700           0.4732113     0.5287       0.11990
## 3   0.4130667           0.4585000     0.4020       0.13690
## 
## Clustering vector:
## Aquamarine      Black       Blue    Crimson     Fuscia  Goldenrod       Gray 
##          2          1          1          3          2          2          1 
##      Green     Indigo      Khaki     Maroon       Mauv     Orange       Pink 
##          1          3          2          2          3          1          2 
##       Puce     Purple        Red     Silver       Teal  Turquoise     Violet 
##          2          1          1          1          2          2          2 
##      White     Yellow 
##          1          1 
## 
## Within cluster sum of squares by cluster:
## [1] 0.005854454 0.028415912 0.007827467
##  (between_SS / total_SS =  66.1 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"
K-óptimo [sil]

Este análisis proporciona una visión clara sobre cómo se agrupan los datos en dos clusters, destacando las diferencias y similitudes dentro y entre esos grupos. Esto ayuda a identificar patrones o comportamientos en los datos que son significativos.

set.seed(780728)
print(kmeans(data_, 2, nstart = 25))
## K-means clustering with 2 clusters of sizes 11, 12
## 
## Cluster means:
##   GRE_age_S01 GRE_performance_S02 GRE_km_S03 GRE_price_S04
## 1   0.4850545           0.5008364  0.4850000     0.1239636
## 2   0.4077750           0.4677761  0.5113333     0.1230500
## 
## Clustering vector:
## Aquamarine      Black       Blue    Crimson     Fuscia  Goldenrod       Gray 
##          2          1          1          1          2          2          1 
##      Green     Indigo      Khaki     Maroon       Mauv     Orange       Pink 
##          1          2          2          2          2          1          2 
##       Puce     Purple        Red     Silver       Teal  Turquoise     Violet 
##          2          1          1          1          2          2          2 
##      White     Yellow 
##          1          1 
## 
## Within cluster sum of squares by cluster:
## [1] 0.02817000 0.05155924
##  (between_SS / total_SS =  35.8 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"

Gráficos K-means

Los gráficos K-means ayudan a validar visualmente la calidad de la agrupación y a interpretar cómo los datos se dividen en clústeres, facilitando la comprensión de las relaciones y patrones en los datos.

K-óptimo [wws]

En esta gráfica de K-óptimo se visualizan los resultados de un análisis de agrupación K-means, representando los datos distribuidos en tres clústeres, cada uno identificado con un color distinto (azul, amarillo y cian). Muestra cómo se distribuyen y agrupan los datos en tres clústeres óptimos, permitiendo visualizar similitudes y diferencias entre grupos, así como patrones generales en las características de los datos.

fviz_cluster(kmeans(data_, 3, nstart = 25), data = data_, palette = c("#2E9FDF", "#00AFBB", "#E7B800", "#E7B801"), ellipse.type = "euclid", star.plot = TRUE, repel = TRUE, ggtheme = theme_minimal()
)
## Too few points to calculate an ellipse

K-óptimo [sil]

Esta gráfica de K-óptimo representa la agrupación de datos en dos clústeres (1 y 2), proyectados en dos dimensiones principales (Dim1 y Dim2), las cuales explican conjuntamente el 73.7% de la variabilidad total del conjunto de datos. Esto ayuda a validar la selección de dos clústeres como una opción óptima según los patrones observados.

fviz_cluster(kmeans(data_, 2, nstart = 25), data = data_, palette = c("#2E9FDF", "#00AFBB", "#E7B800", "#E7B801"), ellipse.type = "euclid", star.plot = TRUE, repel = TRUE, ggtheme = theme_minimal()
)

Fase 5 [Análisis de Regresión]

5.1. Objetivos

Aplicar técnicas de análisis de regresión para modelar y cuantificar las relaciones entre variables, con el fin de realizar predicciones, identificar influencias significativas de variables independientes sobre la variable dependiente, y evaluar la calidad del ajuste del modelo.

5.2. Regresión Lineal Simple

La regresión lineal simple es un método estadístico que se utiliza para modelar la relación entre dos variables: una variable dependiente (o respuesta) y una variable independiente (o predictora). Esta relación se describe mediante una línea recta que mejor ajusta los datos, conocida como la línea de regresión. La regresión lineal simple es una herramienta poderosa para entender y cuantificar relaciones lineales entre dos variables, siendo ampliamente utilizada en diversas áreas, como economía, ciencias sociales y medicina. Permite realizar predicciones, evaluar la dependencia entre variables y determinar si la relación observada es estadísticamente significativa. Sin embargo, es importante verificar las suposiciones del modelo (como la linealidad, independencia de errores, y homocedasticidad) para garantizar la validez de los resultados.

Resumen de age

Este gráfico es un diagrama de caja y bigotes (boxplot) que resume la distribución de la variable age. Este boxplot proporciona un resumen visual del rango, mediana y dispersión de la variable age, mostrando que los datos están distribuidos de forma equilibrada sin valores atípicos evidentes.

summary(Modelos_Nissan_Depurado$age)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   18.00   30.00   42.00   42.45   55.00   69.00
boxplot(Modelos_Nissan_Depurado$age, main = "Diagrama de Caja de age", col = c("orange"))

Resumen de price

El diagrama indica que la mayoría de los precios se concentran en torno a la mediana, pero hay varios precios mucho más altos que afectan la distribución, como se puede observar por la presencia de los outliers.

summary(Modelos_Nissan_Depurado$price)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##     6065  1201856  2462818  2475648  3710149 20080185
boxplot(Modelos_Nissan_Depurado$price, main = "Diagrama de Caja de price", col = c("orange"))

Diagrama de Dispersion Price vs Age.

El diagrama de dispersión muestra la relación entre el precio de los modelos Nissan y la edad de los compradores de modelos Nissan. Se observa una fuerte concentración de datos en precios bajos y una amplia gama de edades, indicando que la mayoría de los vehículos son relativamente baratos y abarcan un rango amplio de edades de las personas. Hay algunos puntos dispersos a precios más altos, sugiriendo la existencia de vehículos más caros, generalmentede personas mas jóvenes.

plot(Modelos_Nissan_Depurado$price, Modelos_Nissan_Depurado$age, main = "Diagrama de Dispersión price vs. age")

Diagramas Totales de Dispersión

Los totales de dispersión muestran un diagrama de dispersión de pares que visualiza las relaciones entre cuatro variables: age, price, performance y km. Cada panel muestra la relación entre dos variables. Los puntos representan las observaciones individuales, y la densidad de los puntos indica la frecuencia de ocurrencia en esa región del espacio. Observamos que hay muchos puntos superpuestos, lo que hace difícil ver todas las relaciones individuales con claridad. Se aprecian algunos valores atípicos (outliers) en algunas de las variables, particularmente en relación al precio y a la performance, que aparecen como puntos aislados.

pairs(~age + price + performance + km, data = Modelos_Nissan_Depurado)

Formulación del modelo de RLS entre las variables de estudio.

La navegación a través de las pestañas muestra los coeficientes del modelo de regresión lineal simple, su resumen estadístico y su tabla ANOVA. Se menciona de nuevo que las variables de interés son: age (variable dependiente) y price (variable independiente). Al considerar los resultados presentados en la pestaña Coeficientes del Modelo RLS se puede establer que el modelo de regresión lineal simple que relaciona a las variables de interés. Tiene la formulación:

\(age = 42,17+1.118e-7*price\)

Coeficientes del Modelo RLS

El código ajusta un modelo de regresión lineal simple para predecir la edad (age) en función de su precio (price). Luego, obtenemos los coeficientes del modelo (el intercepto y la pendiente) que indican la relación matemática entre estas dos variables.

modelo_RL_Simple = lm(Modelos_Nissan_Depurado$age~Modelos_Nissan_Depurado$price)
coef(modelo_RL_Simple)
##                   (Intercept) Modelos_Nissan_Depurado$price 
##                  4.216893e+01                  1.118204e-07

Resumen Estadístico del Modelo RLS

La tabla sugiere que no hay una relación significativa entre el precio y la edad de los compradores del vehículo en este conjunto de datos, dado que el efecto del precio es prácticamente nulo y no estadísticamente significativo. Esto implica que otros factores podrían ser más relevantes para explicar las variaciones en la edad del vehículo

summary(modelo_RL_Simple)
## 
## Call:
## lm(formula = Modelos_Nissan_Depurado$age ~ Modelos_Nissan_Depurado$price)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -24.7279 -12.4061  -0.3596  12.3952  26.8141 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   4.217e+01  4.339e-01  97.178   <2e-16 ***
## Modelos_Nissan_Depurado$price 1.118e-07  1.495e-07   0.748    0.455    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.55 on 4128 degrees of freedom
## Multiple R-squared:  0.0001354,  Adjusted R-squared:  -0.0001068 
## F-statistic: 0.5592 on 1 and 4128 DF,  p-value: 0.4546

Tabla ANOVA para el Modelo RLS

La tabla ANOVA indica que el modelo no explica significativamente la variación en la edad de los vehículos en función del precio. Con un valor p alto y un estadístico F bajo, podemos concluir que no hay una relación estadísticamente significativa entre estas dos variables en este conjunto de datos.

anova(modelo_RL_Simple)
## Analysis of Variance Table
## 
## Response: Modelos_Nissan_Depurado$age
##                                 Df Sum Sq Mean Sq F value Pr(>F)
## Modelos_Nissan_Depurado$price    1    118  118.36  0.5592 0.4546
## Residuals                     4128 873754  211.66

Análisis del modelo RLS.

El análisis del modelo RLS muestra que no es muy significativo y en consecuencia aporta poca información relevante para estimar age a partir de price. Esto debido a que el intervalo de confianza para el coeficiente de price en el modelo RLS incluye al cero y que hasta incluso puede tomar valores negativos haciendo que no se represente bien el modelo:

\(-1.813542e-07<β1<4.049950e-07\)

Intervalo de Confianza para B1

confint(modelo_RL_Simple, level = 0.95)
##                                       2.5 %       97.5 %
## (Intercept)                    4.131819e+01 4.301968e+01
## Modelos_Nissan_Depurado$price -1.813542e-07 4.049950e-07

Predicciones y sus Intervalos de Predicción

predict(modelo_RL_Simple, data.frame(seq(1,400)), interval='prediction', level = 0.95)
## Warning: 'newdata' had 400 rows but variables found have 4130 rows
##           fit      lwr      upr
## 1    42.62063 14.09017 71.15110
## 2    42.66883 14.13606 71.20161
## 3    42.53671 14.00893 71.06449
## 4    42.24664 13.71508 70.77820
## 5    42.37414 13.84674 70.90154
## 6    42.62638 14.09567 71.15709
## 7    42.21293 13.67962 70.74624
## 8    42.53506 14.00732 71.06280
## 9    42.19120 13.65661 70.72578
## 10   42.31470 13.78585 70.84355
## 11   42.64249 14.11105 71.17393
## 12   42.49756 13.97046 71.02467
## 13   42.64479 14.11323 71.17634
## 14   42.67066 14.13778 71.20353
## 15   42.58480 14.05569 71.11391
## 16   42.60112 14.07143 71.13081
## 17   42.29901 13.76963 70.82838
## 18   42.35232 13.82449 70.88015
## 19   42.39270 13.86558 70.91982
## 20   42.31556 13.78673 70.84438
## 21   42.60220 14.07247 71.13193
## 22   42.53253 14.00484 71.06022
## 23   42.63247 14.10149 71.16345
## 24   42.62121 14.09072 71.15170
## 25   42.56462 14.03614 71.09310
## 26   42.61361 14.08343 71.14378
## 27   42.18306 13.64797 70.71816
## 28   42.46728 13.94044 70.99411
## 29   42.18499 13.65002 70.71996
## 30   42.42422 13.89738 70.95106
## 31   42.29764 13.76822 70.82707
## 32   42.31517 13.78633 70.84400
## 33   42.17129 13.63543 70.70714
## 34   42.42182 13.89497 70.94867
## 35   42.39914 13.87210 70.92618
## 36   42.21806 13.68504 70.75109
## 37   42.27846 13.74831 70.80862
## 38   42.62314 14.09257 71.15371
## 39   42.49580 13.96872 71.02289
## 40   42.55668 14.02841 71.08494
## 41   42.62331 14.09273 71.15389
## 42   42.61297 14.08282 71.14312
## 43   42.56060 14.03223 71.08897
## 44   42.37025 13.84279 70.89772
## 45   42.36536 13.83780 70.89292
## 46   42.56470 14.03621 71.09318
## 47   42.57336 14.04461 71.10210
## 48   42.35114 13.82328 70.87900
## 49   42.28274 13.75276 70.81272
## 50   42.61868 14.08829 71.14906
## 51   42.17118 13.63531 70.70704
## 52   42.19267 13.65817 70.72716
## 53   42.40380 13.87681 70.93079
## 54   42.57338 14.04464 71.10212
## 55   42.56616 14.03764 71.09469
## 56   42.66776 14.13504 71.20048
## 57   42.56711 14.03855 71.09566
## 58   42.38712 13.85992 70.91431
## 59   42.61775 14.08740 71.14809
## 60   42.37966 13.85235 70.90696
## 61   42.46196 13.93515 70.98877
## 62   42.47162 13.94476 70.99848
## 63   42.49511 13.96803 71.02218
## 64   42.37388 13.84648 70.90129
## 65   42.65801 14.12580 71.19021
## 66   42.55998 14.03162 71.08833
## 67   42.38956 13.86240 70.91672
## 68   42.17314 13.63741 70.70887
## 69   42.34693 13.81897 70.87489
## 70   42.49530 13.96822 71.02238
## 71   42.38538 13.85816 70.91260
## 72   42.54547 14.01749 71.07345
## 73   42.32176 13.79313 70.85040
## 74   42.49403 13.96697 71.02109
## 75   42.27605 13.74580 70.80630
## 76   42.64550 14.11391 71.17709
## 77   42.52363 13.99612 71.05114
## 78   42.33335 13.80504 70.86165
## 79   42.61928 14.08888 71.14969
## 80   42.35404 13.82625 70.88184
## 81   42.30174 13.77246 70.83102
## 82   42.46170 13.93488 70.98851
## 83   42.25907 13.72810 70.79005
## 84   42.46301 13.93619 70.98982
## 85   42.29645 13.76699 70.82592
## 86   42.63456 14.10348 71.16563
## 87   42.54951 14.02143 71.07758
## 88   42.34124 13.81315 70.86934
## 89   42.43828 13.91149 70.96506
## 90   42.63297 14.10196 71.16397
## 91   42.49361 13.96656 71.02067
## 92   42.20921 13.67569 70.74273
## 93   42.20536 13.67162 70.73911
## 94   42.19965 13.66557 70.73372
## 95   42.28401 13.75408 70.81394
## 96   42.18172 13.64654 70.71690
## 97   42.39772 13.87066 70.92477
## 98   42.31088 13.78191 70.83986
## 99   42.64693 14.11528 71.17859
## 100  42.38328 13.85603 70.91054
## 101  42.26201 13.73116 70.79286
## 102  42.41496 13.88807 70.94186
## 103  42.47739 13.95048 71.00429
## 104  42.62039 14.08994 71.15084
## 105  42.19041 13.65577 70.72504
## 106  42.19176 13.65721 70.72631
## 107  42.54050 14.01264 71.06836
## 108  42.47982 13.95290 71.00674
## 109  42.44408 13.91730 70.97086
## 110  42.19960 13.66552 70.73368
## 111  42.28174 13.75172 70.81177
## 112  42.32832 13.79987 70.85676
## 113  42.31549 13.78666 70.84431
## 114  42.56422 14.03574 71.09269
## 115  43.20731 14.61074 71.80388
## 116  42.65297 14.12101 71.18492
## 117  42.40258 13.87558 70.92959
## 118  42.50242 13.97525 71.02959
## 119  42.62810 14.09732 71.15889
## 120  42.33156 13.80321 70.85991
## 121  42.62529 14.09463 71.15596
## 122  42.45187 13.92508 70.97866
## 123  42.26270 13.73189 70.79352
## 124  42.32543 13.79691 70.85396
## 125  42.44152 13.91473 70.96830
## 126  42.45169 13.92490 70.97847
## 127  42.45396 13.92717 70.98074
## 128  42.50403 13.97684 71.03122
## 129  42.37836 13.85103 70.90569
## 130  42.55068 14.02257 71.07878
## 131  42.46790 13.94106 70.99474
## 132  42.35018 13.82229 70.87806
## 133  42.35197 13.82413 70.87981
## 134  42.36376 13.83617 70.89135
## 135  42.47653 13.94963 71.00342
## 136  42.29933 13.76996 70.82869
## 137  42.17098 13.63510 70.70686
## 138  42.45032 13.92353 70.97710
## 139  42.28267 13.75268 70.81265
## 140  42.62060 14.09013 71.15106
## 141  42.21119 13.67778 70.74460
## 142  42.34395 13.81592 70.87198
## 143  42.48146 13.95453 71.00839
## 144  42.48349 13.95654 71.01045
## 145  42.45651 13.92971 70.98330
## 146  42.59945 14.06982 71.12907
## 147  42.59854 14.06895 71.12814
## 148  42.31060 13.78162 70.83958
## 149  42.31533 13.78650 70.84416
## 150  42.61425 14.08405 71.14445
## 151  42.61157 14.08148 71.14167
## 152  42.42992 13.90311 70.95673
## 153  43.50100 14.84037 72.16163
## 154  42.58870 14.05946 71.11794
## 155  42.36448 13.83690 70.89205
## 156  42.59948 14.06985 71.12911
## 157  42.53000 14.00237 71.05764
## 158  42.45816 13.93136 70.98496
## 159  42.38532 13.85809 70.91254
## 160  42.53824 14.01043 71.06605
## 161  42.39265 13.86553 70.91977
## 162  42.80803 14.26544 71.35062
## 163  42.17621 13.64067 70.71174
## 164  42.39470 13.86760 70.92179
## 165  42.65685 14.12470 71.18900
## 166  42.57388 14.04513 71.10264
## 167  42.20339 13.66954 70.73725
## 168  42.28510 13.75521 70.81499
## 169  42.32683 13.79835 70.85532
## 170  42.29282 13.76322 70.82242
## 171  42.23012 13.69774 70.76251
## 172  42.55151 14.02338 71.07964
## 173  42.53955 14.01171 71.06740
## 174  42.56377 14.03531 71.09222
## 175  42.35917 13.83148 70.88685
## 176  42.19561 13.66129 70.72993
## 177  42.47584 13.94895 71.00273
## 178  42.23806 13.70608 70.77004
## 179  42.47635 13.94946 71.00324
## 180  42.55090 14.02279 71.07901
## 181  42.56050 14.03213 71.08886
## 182  42.50962 13.98235 71.03690
## 183  42.33213 13.80380 70.86047
## 184  42.42496 13.89813 70.95180
## 185  42.18719 13.65236 70.72203
## 186  42.29662 13.76715 70.82608
## 187  42.23940 13.70749 70.77132
## 188  42.43764 13.91085 70.96443
## 189  42.33592 13.80769 70.86416
## 190  42.57472 14.04593 71.10350
## 191  44.39979 15.41663 73.38296
## 192  42.65166 14.11977 71.18355
## 193  42.61471 14.08449 71.14493
## 194  42.38826 13.86108 70.91544
## 195  42.31853 13.78980 70.84726
## 196  42.56219 14.03377 71.09060
## 197  42.21186 13.67849 70.74523
## 198  42.54433 14.01638 71.07228
## 199  42.17945 13.64413 70.71478
## 200  42.34174 13.81366 70.86983
## 201  42.35918 13.83149 70.88686
## 202  42.52298 13.99548 71.05048
## 203  42.31197 13.78303 70.84090
## 204  42.58489 14.05578 71.11400
## 205  42.52394 13.99643 71.05146
## 206  42.39352 13.86641 70.92063
## 207  42.54931 14.02124 71.07738
## 208  42.44065 13.91387 70.96744
## 209  42.37380 13.84639 70.90120
## 210  42.56630 14.03777 71.09483
## 211  42.59504 14.06557 71.12450
## 212  42.21541 13.68223 70.74858
## 213  42.66317 14.13070 71.19564
## 214  42.38044 13.85314 70.90773
## 215  42.36067 13.83302 70.88833
## 216  42.33775 13.80956 70.86594
## 217  42.43021 13.90340 70.95702
## 218  42.60679 14.07688 71.13669
## 219  42.50151 13.97435 71.02866
## 220  42.63547 14.10436 71.16659
## 221  42.29371 13.76414 70.82328
## 222  42.47531 13.94842 71.00219
## 223  42.61430 14.08410 71.14451
## 224  42.37569 13.84832 70.90306
## 225  42.64611 14.11450 71.17773
## 226  42.49053 13.96351 71.01755
## 227  42.51625 13.98887 71.04363
## 228  42.39958 13.87254 70.92662
## 229  42.31178 13.78284 70.84072
## 230  42.63397 14.10292 71.16502
## 231  42.40118 13.87416 70.92820
## 232  42.47170 13.94483 70.99856
## 233  42.40156 13.87455 70.92858
## 234  42.19751 13.66331 70.73172
## 235  42.55689 14.02862 71.08516
## 236  42.44701 13.92023 70.97379
## 237  42.19617 13.66189 70.73046
## 238  42.59527 14.06580 71.12475
## 239  42.50239 13.97522 71.02956
## 240  42.58564 14.05650 71.11478
## 241  42.42542 13.89859 70.95225
## 242  42.47729 13.95039 71.00419
## 243  42.30879 13.77975 70.83783
## 244  42.64041 14.10907 71.17176
## 245  42.51383 13.98649 71.04116
## 246  42.40277 13.87577 70.92978
## 247  42.30941 13.78039 70.83844
## 248  42.28857 13.75881 70.81833
## 249  42.22858 13.69612 70.76105
## 250  42.38803 13.86084 70.91521
## 251  42.34942 13.82152 70.87732
## 252  42.51164 13.98434 71.03895
## 253  42.55278 14.02462 71.08094
## 254  42.41728 13.89041 70.94416
## 255  42.25413 13.72292 70.78533
## 256  42.27504 13.74475 70.80534
## 257  42.43772 13.91093 70.96451
## 258  42.35557 13.82781 70.88333
## 259  42.29993 13.77058 70.82927
## 260  42.51118 13.98388 71.03847
## 261  42.48465 13.95769 71.01162
## 262  42.54825 14.02020 71.07629
## 263  42.33369 13.80540 70.86199
## 264  42.54431 14.01636 71.07226
## 265  42.56255 14.03413 71.09097
## 266  42.17461 13.63897 70.71024
## 267  42.43549 13.90870 70.96229
## 268  42.48735 13.96036 71.01433
## 269  42.58827 14.05904 71.11749
## 270  42.36225 13.83463 70.88987
## 271  42.62675 14.09602 71.15747
## 272  42.29839 13.76899 70.82779
## 273  42.25505 13.72388 70.78621
## 274  42.19965 13.66557 70.73373
## 275  42.41327 13.88637 70.94018
## 276  42.62824 14.09744 71.15903
## 277  43.40895 14.77061 72.04729
## 278  42.46612 13.93929 70.99295
## 279  42.46820 13.94136 70.99504
## 280  42.49832 13.97121 71.02544
## 281  42.63228 14.10131 71.16325
## 282  42.37482 13.84743 70.90220
## 283  42.31329 13.78440 70.84219
## 284  42.41533 13.88844 70.94222
## 285  42.49250 13.96545 71.01954
## 286  42.24403 13.71235 70.77571
## 287  42.56137 14.03298 71.08976
## 288  42.66439 14.13185 71.19693
## 289  42.42826 13.90144 70.95508
## 290  42.47862 13.95171 71.00553
## 291  42.49901 13.97188 71.02613
## 292  42.60928 14.07928 71.13928
## 293  42.29304 13.76345 70.82263
## 294  42.35407 13.82627 70.88186
## 295  42.45926 13.93245 70.98606
## 296  42.47069 13.94384 70.99755
## 297  42.34380 13.81576 70.87183
## 298  42.57823 14.04933 71.10712
## 299  42.49342 13.96637 71.02047
## 300  42.46541 13.93858 70.99223
## 301  42.28281 13.75283 70.81279
## 302  42.82389 14.27989 71.36789
## 303  42.23832 13.70636 70.77028
## 304  42.53305 14.00535 71.06075
## 305  42.53378 14.00606 71.06149
## 306  42.51138 13.98408 71.03868
## 307  42.38672 13.85952 70.91392
## 308  42.58843 14.05919 71.11766
## 309  42.50922 13.98195 71.03648
## 310  42.62449 14.09387 71.15512
## 311  42.25007 13.71867 70.78146
## 312  42.30830 13.77924 70.83736
## 313  42.40408 13.87709 70.93107
## 314  42.41085 13.88392 70.93777
## 315  42.17134 13.63549 70.70720
## 316  42.38294 13.85569 70.91020
## 317  42.66273 14.13028 71.19518
## 318  42.29528 13.76577 70.82479
## 319  42.36336 13.83576 70.89096
## 320  42.17185 13.63603 70.70767
## 321  42.41492 13.88802 70.94181
## 322  42.37883 13.85151 70.90615
## 323  42.28848 13.75872 70.81824
## 324  42.54928 14.02121 71.07735
## 325  42.63435 14.10329 71.16542
## 326  42.58439 14.05529 71.11349
## 327  42.32243 13.79382 70.85105
## 328  42.17036 13.63444 70.70628
## 329  42.43843 13.91165 70.96522
## 330  42.45988 13.93308 70.98669
## 331  42.66508 14.13251 71.19766
## 332  42.56862 14.04002 71.09722
## 333  42.58592 14.05678 71.11507
## 334  42.29402 13.76446 70.82357
## 335  42.40423 13.87724 70.93121
## 336  42.45807 13.93127 70.98486
## 337  42.55186 14.02372 71.07999
## 338  42.20385 13.67002 70.73768
## 339  42.58935 14.06009 71.11862
## 340  42.48232 13.95538 71.00926
## 341  42.33599 13.80776 70.86422
## 342  42.40525 13.87827 70.93223
## 343  42.50093 13.97378 71.02808
## 344  42.43359 13.90679 70.96039
## 345  42.43396 13.90716 70.96076
## 346  42.21829 13.68527 70.75130
## 347  42.52299 13.99549 71.05049
## 348  42.31176 13.78281 70.84070
## 349  42.32950 13.80109 70.85791
## 350  42.53464 14.00691 71.06237
## 351  42.44259 13.91581 70.96938
## 352  42.65332 14.12135 71.18529
## 353  42.60438 14.07457 71.13420
## 354  42.35654 13.82880 70.88428
## 355  42.55101 14.02290 71.07913
## 356  42.33691 13.80870 70.86512
## 357  42.54010 14.01225 71.06795
## 358  42.47770 13.95079 71.00460
## 359  42.28490 13.75500 70.81479
## 360  42.61516 14.08493 71.14540
## 361  42.50788 13.98064 71.03513
## 362  42.42446 13.89762 70.95129
## 363  42.66398 14.13147 71.19650
## 364  42.61825 14.08788 71.14861
## 365  42.67133 14.13842 71.20424
## 366  42.57815 14.04926 71.10704
## 367  42.58367 14.05460 71.11275
## 368  42.58186 14.05284 71.11087
## 369  42.19090 13.65629 70.72550
## 370  42.62547 14.09480 71.15614
## 371  42.24339 13.71167 70.77510
## 372  42.45070 13.92392 70.97749
## 373  42.89795 14.34655 71.44936
## 374  42.21876 13.68577 70.75175
## 375  42.36573 13.83818 70.89329
## 376  42.63250 14.10151 71.16348
## 377  42.35505 13.82728 70.88283
## 378  42.61757 14.08723 71.14791
## 379  42.57570 14.04688 71.10451
## 380  42.49763 13.97052 71.02473
## 381  42.20094 13.66694 70.73494
## 382  42.63721 14.10601 71.16841
## 383  42.49887 13.97175 71.02599
## 384  42.54639 14.01839 71.07439
## 385  42.52294 13.99544 71.05044
## 386  42.51949 13.99205 71.04692
## 387  42.63146 14.10053 71.16240
## 388  42.47615 13.94925 71.00304
## 389  42.65693 14.12478 71.18908
## 390  42.31595 13.78714 70.84476
## 391  42.48379 13.95684 71.01075
## 392  42.37008 13.84261 70.89755
## 393  42.65304 14.12109 71.18500
## 394  42.59684 14.06731 71.12637
## 395  42.58821 14.05899 71.11744
## 396  42.48624 13.95926 71.01322
## 397  42.41002 13.88308 70.93695
## 398  42.30170 13.77242 70.83098
## 399  42.17282 13.63706 70.70857
## 400  42.41972 13.89286 70.94658
## 401  42.42564 13.89881 70.95247
## 402  42.52690 13.99933 71.05448
## 403  42.40945 13.88251 70.93639
## 404  42.33089 13.80252 70.85926
## 405  42.39922 13.87217 70.92626
## 406  42.37508 13.84769 70.90246
## 407  42.43748 13.91069 70.96427
## 408  42.49500 13.96792 71.02207
## 409  42.19695 13.66271 70.73119
## 410  44.41431 15.42439 73.40423
## 411  42.50793 13.98068 71.03518
## 412  42.39521 13.86812 70.92230
## 413  42.58363 14.05456 71.11270
## 414  42.55091 14.02280 71.07902
## 415  42.29861 13.76922 70.82800
## 416  42.50913 13.98187 71.03640
## 417  42.40469 13.87770 70.93167
## 418  42.32099 13.79234 70.84965
## 419  42.17037 13.63446 70.70629
## 420  42.55578 14.02754 71.08402
## 421  42.31655 13.78776 70.84535
## 422  42.19747 13.66326 70.73167
## 423  42.29787 13.76846 70.82729
## 424  42.56690 14.03835 71.09545
## 425  42.55263 14.02447 71.08078
## 426  42.64995 14.11815 71.18175
## 427  42.25262 13.72134 70.78389
## 428  42.17237 13.63659 70.70816
## 429  42.33908 13.81093 70.86723
## 430  42.63862 14.10736 71.16988
## 431  42.54997 14.02188 71.07806
## 432  42.57813 14.04924 71.10702
## 433  42.36409 13.83651 70.89168
## 434  42.42237 13.89552 70.94922
## 435  42.17368 13.63798 70.70937
## 436  42.38275 13.85549 70.91001
## 437  42.42364 13.89680 70.95048
## 438  42.43199 13.90519 70.95880
## 439  42.35078 13.82291 70.87865
## 440  42.41176 13.88484 70.93868
## 441  42.24283 13.71108 70.77457
## 442  42.42100 13.89415 70.94786
## 443  42.31050 13.78152 70.83949
## 444  42.41006 13.88313 70.93700
## 445  42.34521 13.81722 70.87321
## 446  42.39898 13.87194 70.92602
## 447  42.68890 14.15500 71.22281
## 448  42.52462 13.99709 71.05215
## 449  42.55005 14.02196 71.07814
## 450  42.44833 13.92155 70.97511
## 451  42.61228 14.08216 71.14240
## 452  42.63493 14.10383 71.16602
## 453  42.43280 13.90599 70.95960
## 454  42.31331 13.78442 70.84221
## 455  42.50204 13.97488 71.02920
## 456  42.45493 13.92814 70.98173
## 457  42.38781 13.86063 70.91500
## 458  42.20444 13.67065 70.73824
## 459  42.17649 13.64097 70.71200
## 460  42.36502 13.83745 70.89259
## 461  42.52672 13.99915 71.05429
## 462  42.49134 13.96431 71.01837
## 463  42.62902 14.09820 71.15985
## 464  42.30779 13.77872 70.83687
## 465  42.48370 13.95674 71.01065
## 466  42.20951 13.67601 70.74302
## 467  42.50954 13.98227 71.03681
## 468  42.18155 13.64636 70.71674
## 469  42.54092 14.01305 71.06879
## 470  42.40480 13.87781 70.93178
## 471  42.64129 14.10990 71.17268
## 472  42.63454 14.10347 71.16561
## 473  42.40991 13.88297 70.93684
## 474  42.56949 14.04086 71.09811
## 475  42.35252 13.82469 70.88035
## 476  42.17652 13.64100 70.71203
## 477  42.46732 13.94048 70.99415
## 478  42.31824 13.78950 70.84698
## 479  42.42243 13.89559 70.94928
## 480  42.64239 14.11095 71.17383
## 481  42.20097 13.66697 70.73497
## 482  42.37000 13.84253 70.89748
## 483  42.65924 14.12697 71.19151
## 484  42.52844 14.00084 71.05605
## 485  42.67012 14.13727 71.20296
## 486  42.19643 13.66216 70.73070
## 487  42.45209 13.92530 70.97887
## 488  42.64319 14.11171 71.17466
## 489  42.52170 13.99422 71.04918
## 490  42.45599 13.92920 70.98278
## 491  42.23625 13.70418 70.76832
## 492  42.53958 14.01174 71.06742
## 493  42.55298 14.02481 71.08114
## 494  42.27874 13.74860 70.80888
## 495  42.43834 13.91155 70.96513
## 496  42.34774 13.81980 70.87568
## 497  42.39841 13.87136 70.92546
## 498  42.64323 14.11175 71.17471
## 499  42.47315 13.94628 71.00002
## 500  42.58633 14.05716 71.11549
## 501  42.47529 13.94840 71.00217
## 502  42.32843 13.79999 70.85687
## 503  42.45013 13.92335 70.97692
## 504  42.33289 13.80457 70.86120
## 505  42.63971 14.10840 71.17103
## 506  42.23601 13.70393 70.76809
## 507  42.32071 13.79204 70.84937
## 508  42.40896 13.88202 70.93590
## 509  42.48393 13.95697 71.01089
## 510  42.25194 13.72063 70.78324
## 511  42.46574 13.93891 70.99257
## 512  42.59348 14.06407 71.12289
## 513  42.19167 13.65711 70.72622
## 514  42.24691 13.71536 70.77845
## 515  42.45662 13.92983 70.98341
## 516  42.21066 13.67722 70.74410
## 517  42.20733 13.67370 70.74096
## 518  42.46144 13.93463 70.98825
## 519  42.34188 13.81380 70.86996
## 520  42.46135 13.93454 70.98816
## 521  42.21349 13.68021 70.74677
## 522  42.19506 13.66071 70.72941
## 523  42.17981 13.64451 70.71511
## 524  42.65262 14.12069 71.18456
## 525  42.43998 13.91320 70.96677
## 526  42.38688 13.85968 70.91408
## 527  42.48236 13.95542 71.00930
## 528  42.17106 13.63519 70.70693
## 529  42.50764 13.98040 71.03489
## 530  42.20355 13.66970 70.73740
## 531  42.31302 13.78412 70.84193
## 532  42.42210 13.89525 70.94894
## 533  42.38341 13.85616 70.91066
## 534  42.29756 13.76814 70.82699
## 535  42.31931 13.79061 70.84802
## 536  42.30295 13.77371 70.83219
## 537  43.08495 14.50898 71.66091
## 538  42.36558 13.83803 70.89314
## 539  42.51019 13.98291 71.03747
## 540  42.31356 13.78468 70.84245
## 541  42.54755 14.01952 71.07558
## 542  42.38079 13.85350 70.90808
## 543  42.29315 13.76356 70.82273
## 544  42.61392 14.08373 71.14410
## 545  42.42604 13.89921 70.95286
## 546  42.28935 13.75962 70.81908
## 547  42.41521 13.88832 70.94211
## 548  42.66398 14.13146 71.19649
## 549  42.61393 14.08374 71.14411
## 550  42.65033 14.11851 71.18215
## 551  42.40098 13.87396 70.92800
## 552  42.31524 13.78640 70.84407
## 553  42.58931 14.06005 71.11857
## 554  42.41079 13.88387 70.93772
## 555  42.29994 13.77059 70.82928
## 556  42.18380 13.64875 70.71885
## 557  42.38650 13.85930 70.91370
## 558  42.55601 14.02777 71.08426
## 559  42.29337 13.76380 70.82295
## 560  42.37507 13.84769 70.90245
## 561  42.47782 13.95091 71.00472
## 562  42.33241 13.80408 70.86074
## 563  42.39107 13.86393 70.91821
## 564  42.48161 13.95468 71.00855
## 565  42.65217 14.12026 71.18409
## 566  42.55845 14.03014 71.08676
## 567  42.39982 13.87279 70.92686
## 568  42.38883 13.86166 70.91600
## 569  42.62427 14.09365 71.15489
## 570  42.59264 14.06326 71.12201
## 571  42.18792 13.65313 70.72271
## 572  42.62106 14.09057 71.15154
## 573  42.39353 13.86642 70.92064
## 574  42.30159 13.77230 70.83087
## 575  42.37197 13.84453 70.89941
## 576  42.46762 13.94078 70.99446
## 577  42.19373 13.65930 70.72817
## 578  42.24952 13.71810 70.78094
## 579  42.41240 13.88549 70.93932
## 580  42.41618 13.88930 70.94307
## 581  42.62509 14.09444 71.15575
## 582  42.22693 13.69438 70.75948
## 583  42.50680 13.97957 71.03403
## 584  42.35257 13.82475 70.88040
## 585  42.85020 14.30372 71.39668
## 586  42.34384 13.81581 70.87187
## 587  42.60425 14.07445 71.13406
## 588  42.58228 14.05325 71.11131
## 589  42.26484 13.73412 70.79557
## 590  42.23826 13.70629 70.77023
## 591  42.58993 14.06065 71.11922
## 592  42.35236 13.82452 70.88019
## 593  42.62929 14.09845 71.16012
## 594  42.29596 13.76648 70.82545
## 595  42.32547 13.79694 70.85399
## 596  42.60056 14.07089 71.13023
## 597  42.64909 14.11732 71.18085
## 598  42.52748 13.99990 71.05507
## 599  42.36993 13.84245 70.89740
## 600  42.54495 14.01698 71.07291
## 601  42.36352 13.83592 70.89112
## 602  43.02664 14.45924 71.59405
## 603  42.47224 13.94538 70.99911
## 604  42.17311 13.63737 70.70884
## 605  42.57567 14.04685 71.10448
## 606  42.29525 13.76574 70.82476
## 607  42.46277 13.93595 70.98958
## 608  42.32573 13.79721 70.85425
## 609  42.38386 13.85661 70.91110
## 610  42.26320 13.73240 70.79400
## 611  42.30669 13.77758 70.83581
## 612  42.44037 13.91358 70.96715
## 613  42.53118 14.00352 71.05884
## 614  42.48717 13.96018 71.01416
## 615  42.20610 13.67240 70.73980
## 616  42.48435 13.95739 71.01131
## 617  42.64896 14.11720 71.18071
## 618  42.36566 13.83811 70.89322
## 619  42.62454 14.09391 71.15517
## 620  42.49130 13.96427 71.01833
## 621  42.55812 14.02982 71.08642
## 622  42.30153 13.77224 70.83082
## 623  42.42227 13.89542 70.94912
## 624  42.20172 13.66776 70.73567
## 625  42.58338 14.05432 71.11244
## 626  42.55416 14.02597 71.08236
## 627  42.20355 13.66970 70.73740
## 628  42.31757 13.78881 70.84633
## 629  42.31414 13.78527 70.84301
## 630  42.35322 13.82540 70.88103
## 631  42.25582 13.72469 70.78695
## 632  42.17636 13.64084 70.71188
## 633  42.55015 14.02206 71.07825
## 634  42.45771 13.93091 70.98451
## 635  42.32908 13.80066 70.85750
## 636  42.53904 14.01121 71.06686
## 637  42.37006 13.84259 70.89753
## 638  42.17144 13.63559 70.70728
## 639  42.59439 14.06495 71.12383
## 640  42.33876 13.81060 70.86692
## 641  42.37712 13.84977 70.90447
## 642  42.61731 14.08699 71.14764
## 643  42.44324 13.91646 70.97002
## 644  42.57980 14.05085 71.10874
## 645  42.66010 14.12779 71.19242
## 646  42.40396 13.87696 70.93095
## 647  42.41206 13.88514 70.93898
## 648  42.39692 13.86985 70.92398
## 649  42.40215 13.87514 70.92916
## 650  42.54165 14.01376 71.06954
## 651  42.39555 13.86846 70.92263
## 652  42.52914 14.00152 71.05676
## 653  42.43300 13.90620 70.95981
## 654  42.39095 13.86381 70.91810
## 655  43.39541 14.76018 72.03065
## 656  42.58260 14.05357 71.11164
## 657  42.24277 13.71103 70.77452
## 658  42.39073 13.86358 70.91787
## 659  42.18063 13.64538 70.71588
## 660  42.38230 13.85504 70.90957
## 661  42.64147 14.11008 71.17287
## 662  42.36223 13.83460 70.88985
## 663  42.66249 14.13005 71.19493
## 664  42.51696 13.98957 71.04435
## 665  42.55296 14.02480 71.08113
## 666  42.60494 14.07511 71.13477
## 667  42.56042 14.03206 71.08879
## 668  42.58583 14.05669 71.11498
## 669  42.46539 13.93856 70.99221
## 670  42.17581 13.64025 70.71137
## 671  42.50190 13.97474 71.02906
## 672  42.20493 13.67116 70.73870
## 673  42.25070 13.71933 70.78206
## 674  42.29438 13.76484 70.82392
## 675  42.49888 13.97176 71.02600
## 676  42.57069 14.04203 71.09935
## 677  42.65365 14.12166 71.18564
## 678  42.21440 13.68117 70.74763
## 679  42.29910 13.76973 70.82847
## 680  42.33810 13.80992 70.86628
## 681  42.50706 13.97982 71.03429
## 682  42.40600 13.87903 70.93297
## 683  42.32153 13.79289 70.85017
## 684  42.45163 13.92485 70.97841
## 685  42.58763 14.05843 71.11684
## 686  42.61492 14.08469 71.14515
## 687  42.28482 13.75492 70.81472
## 688  42.37211 13.84468 70.89954
## 689  42.19054 13.65591 70.72517
## 690  42.66822 14.13548 71.20097
## 691  42.55718 14.02890 71.08546
## 692  42.33557 13.80733 70.86381
## 693  42.53043 14.00278 71.05807
## 694  42.48237 13.95543 71.00931
## 695  42.20810 13.67451 70.74168
## 696  42.46666 13.93983 70.99350
## 697  42.47782 13.95092 71.00473
## 698  42.62171 14.09120 71.15222
## 699  42.43514 13.90835 70.96194
## 700  42.59911 14.06950 71.12872
## 701  42.55612 14.02788 71.08437
## 702  42.30597 13.77684 70.83511
## 703  42.32761 13.79915 70.85607
## 704  42.46957 13.94272 70.99642
## 705  42.47032 13.94347 70.99718
## 706  42.63279 14.10180 71.16379
## 707  42.37155 13.84411 70.89900
## 708  42.41401 13.88711 70.94091
## 709  42.51404 13.98670 71.04139
## 710  42.18431 13.64930 70.71933
## 711  42.38121 13.85393 70.90849
## 712  42.31848 13.78975 70.84721
## 713  42.25346 13.72222 70.78469
## 714  42.54602 14.01803 71.07401
## 715  42.43517 13.90837 70.96196
## 716  42.42351 13.89667 70.95035
## 717  42.34465 13.81663 70.87266
## 718  42.64388 14.11237 71.17539
## 719  42.40537 13.87840 70.93235
## 720  42.39252 13.86540 70.91964
## 721  42.49039 13.96337 71.01741
## 722  42.51593 13.98856 71.04331
## 723  42.27408 13.74375 70.80441
## 724  42.21793 13.68490 70.75096
## 725  42.55741 14.02913 71.08569
## 726  42.20955 13.67605 70.74305
## 727  42.31407 13.78520 70.84294
## 728  42.29181 13.76218 70.82145
## 729  42.38083 13.85354 70.90812
## 730  42.48978 13.96277 71.01679
## 731  42.26713 13.73650 70.79775
## 732  42.57736 14.04849 71.10622
## 733  42.19805 13.66388 70.73223
## 734  42.58812 14.05890 71.11734
## 735  42.23721 13.70519 70.76923
## 736  42.30738 13.77829 70.83646
## 737  42.29120 13.76155 70.82086
## 738  42.63606 14.10491 71.16720
## 739  42.33587 13.80763 70.86410
## 740  42.55929 14.03096 71.08762
## 741  42.44776 13.92098 70.97454
## 742  42.17177 13.63594 70.70759
## 743  42.38641 13.85920 70.91361
## 744  42.64642 14.11479 71.17805
## 745  42.44285 13.91606 70.96963
## 746  42.54881 14.02075 71.07687
## 747  42.61023 14.08019 71.14027
## 748  42.53131 14.00365 71.05898
## 749  42.57883 14.04991 71.10774
## 750  42.34155 13.81346 70.86964
## 751  42.39002 13.86286 70.91717
## 752  42.41620 13.88931 70.94308
## 753  42.41645 13.88956 70.94333
## 754  42.61564 14.08538 71.14589
## 755  42.55375 14.02557 71.08194
## 756  42.19595 13.66165 70.73024
## 757  42.32643 13.79793 70.85493
## 758  42.44415 13.91737 70.97093
## 759  42.32943 13.80102 70.85784
## 760  42.61363 14.08346 71.14381
## 761  42.21540 13.68222 70.74857
## 762  42.25223 13.72093 70.78352
## 763  42.38435 13.85712 70.91159
## 764  42.35095 13.82308 70.87881
## 765  42.61659 14.08630 71.14689
## 766  42.59704 14.06750 71.12658
## 767  42.44220 13.91542 70.96898
## 768  42.49120 13.96417 71.01823
## 769  42.44430 13.91752 70.97108
## 770  42.30104 13.77174 70.83035
## 771  42.61687 14.08656 71.14718
## 772  42.44227 13.91549 70.96905
## 773  42.44281 13.91603 70.96959
## 774  42.54318 14.01526 71.07110
## 775  42.37856 13.85124 70.90589
## 776  42.56914 14.04052 71.09775
## 777  42.27547 13.74520 70.80575
## 778  42.49181 13.96478 71.01885
## 779  42.48506 13.95809 71.01202
## 780  42.66836 14.13561 71.20111
## 781  42.45045 13.92367 70.97724
## 782  42.51396 13.98662 71.04131
## 783  42.21628 13.68315 70.74940
## 784  42.65833 14.12611 71.19056
## 785  42.17319 13.63746 70.70892
## 786  42.43003 13.90322 70.95684
## 787  42.30542 13.77627 70.83458
## 788  42.21600 13.68286 70.74914
## 789  42.61783 14.08748 71.14818
## 790  42.29293 13.76333 70.82252
## 791  42.34634 13.81837 70.87432
## 792  42.59994 14.07029 71.12958
## 793  42.29277 13.76317 70.82237
## 794  42.57234 14.04363 71.10105
## 795  42.20686 13.67320 70.74051
## 796  42.56934 14.04072 71.09797
## 797  42.53995 14.01210 71.06780
## 798  42.30805 13.77898 70.83711
## 799  42.45935 13.93255 70.98615
## 800  42.54724 14.01921 71.07526
## 801  42.21164 13.67826 70.74503
## 802  42.52257 13.99507 71.05006
## 803  42.55087 14.02275 71.07898
## 804  42.33051 13.80213 70.85889
## 805  42.54577 14.01779 71.07376
## 806  42.48382 13.95687 71.01078
## 807  42.47452 13.94764 71.00140
## 808  42.62010 14.08966 71.15055
## 809  42.35157 13.82372 70.87942
## 810  42.55173 14.02360 71.07987
## 811  42.63788 14.10665 71.16911
## 812  42.47204 13.94517 70.99890
## 813  42.47693 13.95004 71.00383
## 814  42.24638 13.71481 70.77795
## 815  42.59751 14.06795 71.12706
## 816  42.59887 14.06927 71.12848
## 817  42.18350 13.64843 70.71857
## 818  42.45747 13.93067 70.98426
## 819  42.23007 13.69768 70.76245
## 820  42.42439 13.89755 70.95122
## 821  42.29359 13.76402 70.82316
## 822  42.36274 13.83513 70.89035
## 823  42.45903 13.93223 70.98583
## 824  42.21101 13.67759 70.74443
## 825  42.66481 14.13225 71.19737
## 826  42.18179 13.64661 70.71696
## 827  42.59650 14.06698 71.12601
## 828  42.62001 14.08958 71.15045
## 829  42.37471 13.84732 70.90210
## 830  42.66444 14.13190 71.19698
## 831  42.51009 13.98281 71.03737
## 832  42.59668 14.06716 71.12621
## 833  42.46179 13.93498 70.98861
## 834  42.52104 13.99358 71.04851
## 835  42.35458 13.82680 70.88236
## 836  42.32046 13.79178 70.84913
## 837  42.63147 14.10053 71.16240
## 838  42.53169 14.00402 71.05936
## 839  42.39733 13.87027 70.92439
## 840  42.45182 13.92503 70.97860
## 841  42.34775 13.81982 70.87569
## 842  42.60461 14.07479 71.13443
## 843  42.37042 13.84295 70.89788
## 844  42.19142 13.65685 70.72600
## 845  42.54689 14.01888 71.07491
## 846  42.43987 13.91308 70.96665
## 847  42.29417 13.76462 70.82372
## 848  42.78048 14.24020 71.32075
## 849  42.65520 14.12314 71.18727
## 850  42.26887 13.73832 70.79942
## 851  42.48315 13.95620 71.01010
## 852  42.44935 13.92257 70.97613
## 853  42.42404 13.89720 70.95088
## 854  42.28044 13.75037 70.81052
## 855  42.29135 13.76170 70.82101
## 856  42.48469 13.95772 71.01165
## 857  42.17228 13.63649 70.70807
## 858  42.20115 13.66716 70.73514
## 859  42.33462 13.80635 70.86289
## 860  42.45057 13.92378 70.97735
## 861  42.29665 13.76719 70.82611
## 862  42.60628 14.07640 71.13617
## 863  42.58863 14.05939 71.11787
## 864  42.58257 14.05353 71.11160
## 865  42.43860 13.91182 70.96539
## 866  42.58846 14.05922 71.11769
## 867  42.50295 13.97578 71.03013
## 868  42.69916 14.16464 71.23367
## 869  42.40053 13.87350 70.92756
## 870  42.20037 13.66634 70.73441
## 871  42.20037 13.66634 70.73441
## 872  42.20037 13.66634 70.73441
## 873  42.29801 13.76860 70.82743
## 874  42.47824 13.95133 71.00514
## 875  42.71063 14.17539 71.24586
## 876  42.38510 13.85788 70.91233
## 877  42.44767 13.92088 70.97445
## 878  42.24429 13.71262 70.77596
## 879  42.24430 13.71263 70.77597
## 880  42.26536 13.73466 70.79606
## 881  42.32694 13.79845 70.85542
## 882  42.19201 13.65748 70.72655
## 883  42.47316 13.94629 71.00003
## 884  42.71962 14.18380 71.25543
## 885  42.65077 14.11892 71.18261
## 886  42.41353 13.88662 70.94043
## 887  42.42240 13.89556 70.94925
## 888  42.67790 14.14463 71.21117
## 889  42.45044 13.92366 70.97722
## 890  42.39272 13.86560 70.91984
## 891  42.69129 14.15725 71.22533
## 892  42.28601 13.75616 70.81587
## 893  42.72130 14.18537 71.25723
## 894  42.27036 13.73988 70.80085
## 895  42.35630 13.82855 70.88404
## 896  42.66134 14.12896 71.19372
## 897  42.48071 13.95378 71.00763
## 898  42.48072 13.95379 71.00765
## 899  42.22500 13.69234 70.75765
## 900  42.69511 14.16084 71.22938
## 901  42.53398 14.00627 71.06170
## 902  42.67625 14.14306 71.20943
## 903  42.67626 14.14308 71.20944
## 904  42.44773 13.92095 70.97451
## 905  42.43921 13.91242 70.96600
## 906  42.36683 13.83929 70.89436
## 907  42.55527 14.02704 71.08349
## 908  42.45006 13.92327 70.97684
## 909  42.45007 13.92328 70.97685
## 910  42.45008 13.92330 70.97686
## 911  42.69787 14.16343 71.23230
## 912  42.59588 14.06638 71.12537
## 913  42.65968 14.12738 71.19197
## 914  42.65969 14.12739 71.19198
## 915  42.59160 14.06226 71.12095
## 916  42.59161 14.06227 71.12096
## 917  42.40403 13.87704 70.93102
## 918  42.40404 13.87705 70.93103
## 919  42.20245 13.66854 70.73636
## 920  42.43984 13.91306 70.96663
## 921  42.49559 13.96851 71.02267
## 922  42.31960 13.79090 70.84829
## 923  42.36027 13.83261 70.88793
## 924  42.69787 14.16343 71.23231
## 925  42.58421 14.05512 71.11330
## 926  42.26237 13.73154 70.79320
## 927  42.46258 13.93577 70.98939
## 928  42.33730 13.80910 70.86549
## 929  42.33731 13.80911 70.86550
## 930  42.52581 13.99826 71.05336
## 931  42.52654 13.99897 71.05411
## 932  42.63894 14.10766 71.17022
## 933  42.48929 13.96228 71.01630
## 934  42.26886 13.73831 70.79941
## 935  42.61828 14.08791 71.14864
## 936  42.61829 14.08792 71.14866
## 937  42.33925 13.81110 70.86740
## 938  42.57982 14.05087 71.10877
## 939  42.25443 13.72324 70.78562
## 940  42.68610 14.15236 71.21984
## 941  42.53195 14.00427 71.05962
## 942  42.54113 14.01326 71.06901
## 943  42.37563 13.84826 70.90301
## 944  42.44101 13.91423 70.96779
## 945  42.32039 13.79171 70.84906
## 946  42.28967 13.75995 70.81938
## 947  42.20711 13.67347 70.74075
## 948  42.27432 13.74399 70.80464
## 949  42.25652 13.72542 70.78761
## 950  42.61048 14.08043 71.14053
## 951  42.64088 14.10951 71.17225
## 952  42.42618 13.89935 70.95300
## 953  42.42718 13.90036 70.95400
## 954  42.67564 14.14250 71.20879
## 955  42.72484 14.18867 71.26100
## 956  42.27075 13.74028 70.80122
## 957  42.21948 13.68653 70.75243
## 958  42.21750 13.68445 70.75056
## 959  42.39953 13.87249 70.92657
## 960  42.17153 13.63568 70.70737
## 961  42.56103 14.03265 71.08941
## 962  42.66057 14.12823 71.19291
## 963  42.58652 14.05735 71.11568
## 964  42.58553 14.05640 71.11467
## 965  42.63108 14.10016 71.16200
## 966  42.63109 14.10018 71.16201
## 967  42.70709 14.17208 71.24209
## 968  42.45617 13.92937 70.98296
## 969  42.70887 14.17375 71.24399
## 970  42.68117 14.14772 71.21463
## 971  42.50254 13.97537 71.02971
## 972  42.43399 13.90719 70.96078
## 973  42.24377 13.71207 70.77546
## 974  42.54027 14.01242 71.06813
## 975  42.61696 14.08665 71.14728
## 976  42.29614 13.76666 70.82562
## 977  42.39786 13.87081 70.92492
## 978  42.30320 13.77398 70.83243
## 979  42.30322 13.77399 70.83244
## 980  42.60912 14.07913 71.13912
## 981  42.33344 13.80514 70.86174
## 982  42.31259 13.78368 70.84151
## 983  42.69078 14.15677 71.22480
## 984  42.22315 13.69040 70.75590
## 985  42.41769 13.89082 70.94457
## 986  42.41770 13.89083 70.94458
## 987  42.18780 13.65301 70.72260
## 988  42.67819 14.14490 71.21148
## 989  42.39476 13.86767 70.92185
## 990  42.32503 13.79650 70.85357
## 991  42.46925 13.94241 70.99610
## 992  42.35356 13.82575 70.88136
## 993  42.35357 13.82576 70.88137
## 994  42.40548 13.87850 70.93245
## 995  42.38148 13.85420 70.90876
## 996  42.53756 14.00976 71.06536
## 997  42.29078 13.76111 70.82046
## 998  42.21750 13.68444 70.75056
## 999  42.22532 13.69268 70.75795
## 1000 42.27006 13.73956 70.80056
## 1001 42.53042 14.00278 71.05807
## 1002 42.63255 14.10157 71.16353
## 1003 42.45145 13.92467 70.97823
## 1004 42.30595 13.77681 70.83508
## 1005 42.29735 13.76791 70.82678
## 1006 42.59404 14.06461 71.12347
## 1007 42.23167 13.69937 70.76398
## 1008 42.55512 14.02690 71.08334
## 1009 42.27725 13.74705 70.80746
## 1010 42.21153 13.67814 70.74492
## 1011 42.48117 13.95423 71.00810
## 1012 42.25971 13.72876 70.79066
## 1013 42.58156 14.05256 71.11056
## 1014 42.61669 14.08639 71.14699
## 1015 42.38555 13.85834 70.91277
## 1016 42.38556 13.85835 70.91278
## 1017 42.46328 13.93646 70.99010
## 1018 42.38457 13.85733 70.91180
## 1019 42.65279 14.12085 71.18474
## 1020 42.59020 14.06090 71.11949
## 1021 42.38025 13.85295 70.90755
## 1022 42.24050 13.70864 70.77235
## 1023 42.21542 13.68225 70.74859
## 1024 42.52045 13.99300 71.04790
## 1025 42.25979 13.72884 70.79074
## 1026 42.17352 13.63781 70.70923
## 1027 42.56725 14.03869 71.09581
## 1028 42.53803 14.01023 71.06584
## 1029 42.25973 13.72878 70.79068
## 1030 42.52253 13.99504 71.05002
## 1031 42.41906 13.89220 70.94593
## 1032 42.40260 13.87559 70.92960
## 1033 42.20967 13.67617 70.74317
## 1034 42.24217 13.71040 70.77395
## 1035 42.17326 13.63753 70.70899
## 1036 42.57424 14.04547 71.10300
## 1037 42.70052 14.16592 71.23512
## 1038 42.28025 13.75017 70.81033
## 1039 42.19716 13.66293 70.73138
## 1040 42.19716 13.66293 70.73138
## 1041 42.31647 13.78767 70.84526
## 1042 42.33361 13.80532 70.86191
## 1043 42.18547 13.65053 70.72041
## 1044 42.43134 13.90454 70.95815
## 1045 42.70158 14.16692 71.23625
## 1046 42.70210 14.16740 71.23680
## 1047 42.19837 13.66421 70.73252
## 1048 42.66564 14.13304 71.19825
## 1049 42.59259 14.06321 71.12196
## 1050 42.49333 13.96627 71.02038
## 1051 42.55410 14.02590 71.08229
## 1052 42.26990 13.73940 70.80041
## 1053 42.33929 13.81114 70.86744
## 1054 42.45566 13.92887 70.98245
## 1055 42.48523 13.95827 71.01220
## 1056 42.52233 13.99484 71.04982
## 1057 42.33613 13.80790 70.86436
## 1058 42.53433 14.00660 71.06206
## 1059 42.26679 13.73615 70.79743
## 1060 42.24842 13.71695 70.77989
## 1061 42.18731 13.65248 70.72214
## 1062 42.30893 13.77990 70.83797
## 1063 42.30895 13.77991 70.83798
## 1064 42.24831 13.71683 70.77979
## 1065 42.20582 13.67210 70.73953
## 1066 42.57577 14.04695 71.10458
## 1067 42.57578 14.04696 71.10460
## 1068 42.72164 14.18569 71.25759
## 1069 42.59764 14.06808 71.12720
## 1070 42.29540 13.76590 70.82491
## 1071 42.58837 14.05914 71.11760
## 1072 42.18541 13.65046 70.72036
## 1073 42.64427 14.11274 71.17580
## 1074 42.67118 14.13828 71.20408
## 1075 42.54451 14.01656 71.07247
## 1076 42.72470 14.18855 71.26085
## 1077 42.28854 13.75878 70.81830
## 1078 42.48532 13.95835 71.01228
## 1079 42.55158 14.02345 71.07971
## 1080 42.54363 14.01570 71.07157
## 1081 42.57262 14.04390 71.10133
## 1082 42.34709 13.81914 70.87504
## 1083 42.40042 13.87339 70.92744
## 1084 42.17445 13.63880 70.71010
## 1085 42.17925 13.64391 70.71459
## 1086 42.49110 13.96407 71.01813
## 1087 42.45581 13.92902 70.98260
## 1088 42.58758 14.05838 71.11678
## 1089 42.41429 13.88739 70.94119
## 1090 42.50104 13.97389 71.02819
## 1091 42.21304 13.67974 70.74635
## 1092 42.38400 13.85676 70.91124
## 1093 42.23251 13.70025 70.76477
## 1094 42.19323 13.65876 70.72769
## 1095 42.49935 13.97223 71.02648
## 1096 42.28362 13.75367 70.81357
## 1097 42.59747 14.06792 71.12703
## 1098 42.62884 14.09802 71.15966
## 1099 42.18193 13.64677 70.71710
## 1100 42.26455 13.73381 70.79529
## 1101 42.26453 13.73379 70.79526
## 1102 42.69028 14.15630 71.22427
## 1103 42.27400 13.74367 70.80434
## 1104 42.36932 13.84184 70.89681
## 1105 42.32460 13.79605 70.85315
## 1106 42.51000 13.98272 71.03728
## 1107 42.66948 14.13667 71.20229
## 1108 42.58789 14.05868 71.11711
## 1109 42.55440 14.02620 71.08260
## 1110 42.59004 14.06075 71.11933
## 1111 42.60456 14.07475 71.13438
## 1112 42.21134 13.67794 70.74474
## 1113 42.54079 14.01292 71.06866
## 1114 42.59593 14.06643 71.12543
## 1115 42.21311 13.67981 70.74641
## 1116 42.66608 14.13345 71.19871
## 1117 42.24041 13.70855 70.77227
## 1118 42.18635 13.65146 70.72124
## 1119 42.26406 13.73331 70.79482
## 1120 42.43460 13.90780 70.96139
## 1121 42.69120 14.15716 71.22523
## 1122 42.22854 13.69608 70.76101
## 1123 42.40281 13.87580 70.92981
## 1124 42.41740 13.89052 70.94428
## 1125 42.21935 13.68639 70.75231
## 1126 42.39808 13.87103 70.92514
## 1127 42.59481 14.06535 71.12427
## 1128 42.25370 13.72248 70.78492
## 1129 42.29927 13.76991 70.82864
## 1130 42.58300 14.05395 71.11205
## 1131 42.68655 14.15278 71.22031
## 1132 42.63723 14.10604 71.16843
## 1133 42.23241 13.70015 70.76468
## 1134 42.27548 13.74520 70.80575
## 1135 42.63937 14.10807 71.17066
## 1136 42.51852 13.99110 71.04593
## 1137 42.32837 13.79993 70.85681
## 1138 42.70581 14.17089 71.24074
## 1139 42.36301 13.83540 70.89061
## 1140 42.54855 14.02049 71.07660
## 1141 42.41227 13.88535 70.93919
## 1142 42.57069 14.04203 71.09935
## 1143 42.32806 13.79961 70.85651
## 1144 42.53567 14.00791 71.06342
## 1145 42.17077 13.63488 70.70666
## 1146 42.36018 13.83252 70.88785
## 1147 42.29868 13.76929 70.82807
## 1148 42.68342 14.14983 71.21700
## 1149 42.49598 13.96889 71.02306
## 1150 42.23887 13.70693 70.77080
## 1151 42.26508 13.73436 70.79579
## 1152 42.28136 13.75132 70.81140
## 1153 42.39804 13.87099 70.92510
## 1154 42.30905 13.78002 70.83809
## 1155 42.26324 13.73244 70.79403
## 1156 42.61893 14.08854 71.14933
## 1157 42.45221 13.92542 70.97899
## 1158 42.63113 14.10021 71.16206
## 1159 42.70214 14.16744 71.23684
## 1160 42.30376 13.77455 70.83297
## 1161 42.43540 13.90860 70.96219
## 1162 42.44791 13.92113 70.97469
## 1163 42.23807 13.70609 70.77005
## 1164 42.71597 14.18040 71.25155
## 1165 42.25363 13.72240 70.78486
## 1166 42.19039 13.65575 70.72503
## 1167 42.40622 13.87925 70.93319
## 1168 42.18217 13.64702 70.71732
## 1169 42.31614 13.78733 70.84494
## 1170 42.29365 13.76408 70.82322
## 1171 42.23912 13.70719 70.77104
## 1172 42.36281 13.83520 70.89042
## 1173 42.24417 13.71250 70.77585
## 1174 42.68763 14.15380 71.22146
## 1175 42.51656 13.98918 71.04395
## 1176 42.39665 13.86958 70.92373
## 1177 42.27051 13.74002 70.80099
## 1178 42.53133 14.00366 71.05899
## 1179 42.36412 13.83653 70.89170
## 1180 42.18440 13.64940 70.71941
## 1181 42.22390 13.69119 70.75661
## 1182 42.17561 13.64004 70.71118
## 1183 42.27336 13.74300 70.80372
## 1184 42.66031 14.12799 71.19264
## 1185 42.59907 14.06945 71.12868
## 1186 42.55266 14.02450 71.08082
## 1187 42.62801 14.09722 71.15879
## 1188 42.28410 13.75417 70.81403
## 1189 42.62384 14.09324 71.15444
## 1190 42.61120 14.08113 71.14128
## 1191 42.32849 13.80005 70.85693
## 1192 42.62265 14.09210 71.15320
## 1193 42.21175 13.67837 70.74513
## 1194 42.31285 13.78394 70.84176
## 1195 42.64609 14.11447 71.17770
## 1196 42.31252 13.78360 70.84144
## 1197 42.24008 13.70820 70.77195
## 1198 42.69481 14.16056 71.22906
## 1199 42.45943 13.93263 70.98624
## 1200 42.67618 14.14300 71.20936
## 1201 42.64835 14.11663 71.18008
## 1202 42.50511 13.97790 71.03231
## 1203 42.25886 13.72787 70.78985
## 1204 42.19146 13.65689 70.72603
## 1205 42.43836 13.91157 70.96515
## 1206 42.24768 13.71617 70.77918
## 1207 42.30665 13.77754 70.83576
## 1208 42.64917 14.11741 71.18094
## 1209 42.19063 13.65601 70.72526
## 1210 42.48207 13.95513 71.00901
## 1211 42.69531 14.16102 71.22959
## 1212 42.66387 14.13136 71.19638
## 1213 42.55622 14.02797 71.08447
## 1214 42.31247 13.78355 70.84139
## 1215 42.58958 14.06031 71.11886
## 1216 42.57298 14.04425 71.10171
## 1217 42.22232 13.68953 70.75512
## 1218 42.71496 14.17945 71.25048
## 1219 42.50297 13.97580 71.03015
## 1220 42.21374 13.68047 70.74700
## 1221 42.68255 14.14901 71.21609
## 1222 42.25024 13.71885 70.78163
## 1223 42.24928 13.71784 70.78071
## 1224 42.43762 13.91083 70.96441
## 1225 42.71975 14.18392 71.25557
## 1226 42.45544 13.92865 70.98223
## 1227 42.28154 13.75151 70.81157
## 1228 42.41075 13.88383 70.93768
## 1229 42.65136 14.11948 71.18323
## 1230 42.47087 13.94401 70.99773
## 1231 42.56016 14.03180 71.08852
## 1232 42.36240 13.83478 70.89002
## 1233 42.54889 14.02083 71.07696
## 1234 42.17939 13.64406 70.71472
## 1235 42.72014 14.18429 71.25599
## 1236 42.62416 14.09354 71.15477
## 1237 42.51406 13.98672 71.04140
## 1238 42.57288 14.04415 71.10161
## 1239 42.46957 13.94272 70.99642
## 1240 42.61912 14.08872 71.14953
## 1241 42.42882 13.90201 70.95564
## 1242 42.70245 14.16774 71.23717
## 1243 42.72267 14.18665 71.25868
## 1244 42.20615 13.67245 70.73985
## 1245 42.33529 13.80704 70.86354
## 1246 42.50986 13.98259 71.03714
## 1247 42.55470 14.02649 71.08291
## 1248 42.45976 13.93295 70.98656
## 1249 42.19866 13.66453 70.73280
## 1250 42.67250 14.13952 71.20547
## 1251 42.49693 13.96984 71.02403
## 1252 42.48248 13.95554 71.00943
## 1253 42.58489 14.05578 71.11401
## 1254 42.66499 14.13242 71.19756
## 1255 42.46353 13.93671 70.99035
## 1256 42.54407 14.01612 71.07201
## 1257 42.24633 13.71476 70.77791
## 1258 42.35218 13.82435 70.88002
## 1259 42.33523 13.80698 70.86349
## 1260 42.47547 13.94858 71.00236
## 1261 42.57047 14.04181 71.09912
## 1262 42.67602 14.14285 71.20919
## 1263 42.41993 13.89307 70.94679
## 1264 42.64974 14.11795 71.18153
## 1265 42.21162 13.67823 70.74500
## 1266 42.60616 14.07628 71.13604
## 1267 42.34449 13.81647 70.87251
## 1268 42.59171 14.06236 71.12106
## 1269 42.71425 14.17879 71.24972
## 1270 42.72498 14.18881 71.26116
## 1271 42.48996 13.96295 71.01698
## 1272 42.23030 13.69793 70.76268
## 1273 42.60277 14.07302 71.13252
## 1274 42.65178 14.11989 71.18368
## 1275 42.37345 13.84604 70.90086
## 1276 42.34723 13.81928 70.87518
## 1277 42.43348 13.90668 70.96028
## 1278 42.65574 14.12365 71.18783
## 1279 42.30147 13.77218 70.83076
## 1280 42.21635 13.68323 70.74948
## 1281 42.38939 13.86223 70.91655
## 1282 42.29658 13.76712 70.82604
## 1283 42.61852 14.08815 71.14890
## 1284 42.37411 13.84671 70.90151
## 1285 42.35581 13.82806 70.88357
## 1286 42.42220 13.89536 70.94905
## 1287 42.44931 13.92253 70.97609
## 1288 42.56358 14.03513 71.09203
## 1289 42.55732 14.02904 71.08560
## 1290 42.29708 13.76763 70.82652
## 1291 42.37195 13.84451 70.89938
## 1292 42.46493 13.93810 70.99175
## 1293 42.32190 13.79327 70.85053
## 1294 42.19213 13.65760 70.72666
## 1295 42.23184 13.69954 70.76413
## 1296 42.54854 14.02049 71.07659
## 1297 42.18757 13.65276 70.72238
## 1298 42.40978 13.88284 70.93672
## 1299 42.20590 13.67219 70.73962
## 1300 42.45325 13.92646 70.98004
## 1301 42.42456 13.89772 70.95139
## 1302 42.21116 13.67775 70.74457
## 1303 42.49437 13.96730 71.02143
## 1304 42.23292 13.70068 70.76516
## 1305 42.62279 14.09224 71.15335
## 1306 42.70927 14.17412 71.24441
## 1307 42.41601 13.88912 70.94290
## 1308 42.30550 13.77635 70.83465
## 1309 42.64827 14.11655 71.17999
## 1310 42.36190 13.83427 70.88952
## 1311 42.28911 13.75938 70.81885
## 1312 42.30968 13.78067 70.83869
## 1313 42.63414 14.10308 71.16520
## 1314 42.57679 14.04794 71.10564
## 1315 42.72574 14.18952 71.26197
## 1316 42.27380 13.74346 70.80414
## 1317 42.32448 13.79592 70.85303
## 1318 42.51420 13.98685 71.04154
## 1319 42.19078 13.65617 70.72539
## 1320 42.25720 13.72614 70.78827
## 1321 42.33223 13.80390 70.86057
## 1322 42.30242 13.77317 70.83168
## 1323 42.26816 13.73758 70.79874
## 1324 42.21300 13.67970 70.74631
## 1325 42.30435 13.77516 70.83354
## 1326 42.38398 13.85673 70.91122
## 1327 42.34654 13.81857 70.87450
## 1328 42.62965 14.09879 71.16050
## 1329 42.20468 13.67090 70.73846
## 1330 42.66776 14.13505 71.20048
## 1331 42.63906 14.10778 71.17034
## 1332 42.61330 14.08314 71.14346
## 1333 42.70510 14.17021 71.23998
## 1334 42.28618 13.75633 70.81603
## 1335 42.41447 13.88757 70.94137
## 1336 42.71977 14.18394 71.25559
## 1337 42.58717 14.05798 71.11636
## 1338 42.49921 13.97209 71.02634
## 1339 42.51012 13.98284 71.03740
## 1340 42.66542 14.13283 71.19802
## 1341 42.63165 14.10070 71.16259
## 1342 42.60849 14.07852 71.13846
## 1343 42.22661 13.69405 70.75918
## 1344 42.24357 13.71187 70.77528
## 1345 42.31717 13.78839 70.84594
## 1346 42.33927 13.81113 70.86742
## 1347 42.66143 14.12905 71.19382
## 1348 42.22731 13.69479 70.75984
## 1349 42.53209 14.00441 71.05977
## 1350 42.21219 13.67884 70.74554
## 1351 42.65257 14.12064 71.18451
## 1352 42.70186 14.16717 71.23654
## 1353 42.34983 13.82194 70.87772
## 1354 42.40348 13.87649 70.93048
## 1355 42.17735 13.64190 70.71281
## 1356 42.60189 14.07217 71.13161
## 1357 42.33795 13.80977 70.86614
## 1358 42.45471 13.92792 70.98150
## 1359 42.54672 14.01871 71.07472
## 1360 42.39255 13.86543 70.91967
## 1361 42.23012 13.69773 70.76250
## 1362 42.17485 13.63923 70.71048
## 1363 42.24372 13.71202 70.77542
## 1364 42.37338 13.84597 70.90079
## 1365 42.39414 13.86704 70.92124
## 1366 42.53884 14.01102 71.06667
## 1367 42.45286 13.92607 70.97965
## 1368 42.31071 13.78173 70.83969
## 1369 42.50483 13.97763 71.03203
## 1370 42.72350 14.18742 71.25957
## 1371 42.22090 13.68803 70.75377
## 1372 42.20669 13.67302 70.74036
## 1373 42.64836 14.11663 71.18008
## 1374 42.40239 13.87538 70.92939
## 1375 42.25146 13.72013 70.78279
## 1376 42.69554 14.16124 71.22984
## 1377 42.72491 14.18875 71.26108
## 1378 42.57030 14.04165 71.09895
## 1379 42.26971 13.73920 70.80023
## 1380 42.21626 13.68313 70.74939
## 1381 42.25517 13.72402 70.78633
## 1382 42.38793 13.86074 70.91511
## 1383 42.24365 13.71194 70.77535
## 1384 42.17483 13.63920 70.71045
## 1385 42.35787 13.83015 70.88558
## 1386 42.28442 13.75451 70.81434
## 1387 42.63203 14.10107 71.16299
## 1388 42.72573 14.18951 71.26195
## 1389 42.46946 13.94261 70.99631
## 1390 42.66156 14.12917 71.19395
## 1391 42.24790 13.71640 70.77940
## 1392 42.43255 13.90575 70.95935
## 1393 42.30530 13.77615 70.83446
## 1394 42.23255 13.70030 70.76481
## 1395 42.20608 13.67237 70.73978
## 1396 42.39653 13.86945 70.92360
## 1397 42.17775 13.64232 70.71318
## 1398 42.52009 13.99264 71.04753
## 1399 42.41826 13.89139 70.94513
## 1400 42.58986 14.06058 71.11915
## 1401 42.26014 13.72921 70.79107
## 1402 42.69213 14.15804 71.22623
## 1403 42.36717 13.83965 70.89470
## 1404 42.46858 13.94173 70.99542
## 1405 42.48577 13.95879 71.01274
## 1406 42.66979 14.13697 71.20262
## 1407 42.39482 13.86773 70.92191
## 1408 42.17851 13.64313 70.71390
## 1409 42.17448 13.63883 70.71013
## 1410 42.62650 14.09579 71.15722
## 1411 42.60333 14.07356 71.13310
## 1412 42.41197 13.88506 70.93889
## 1413 42.47449 13.94761 71.00137
## 1414 42.44233 13.91555 70.96912
## 1415 42.61185 14.08175 71.14196
## 1416 42.69153 14.15747 71.22559
## 1417 42.20264 13.66874 70.73654
## 1418 42.54305 14.01512 71.07097
## 1419 42.35043 13.82255 70.87830
## 1420 42.29772 13.76830 70.82715
## 1421 42.39845 13.87140 70.92550
## 1422 42.22046 13.68757 70.75336
## 1423 42.36880 13.84130 70.89629
## 1424 42.47361 13.94674 71.00048
## 1425 42.24072 13.70888 70.77257
## 1426 42.53699 14.00920 71.06477
## 1427 42.70933 14.17418 71.24448
## 1428 42.24008 13.70820 70.77195
## 1429 42.17845 13.64306 70.71384
## 1430 42.27996 13.74987 70.81005
## 1431 42.21607 13.68293 70.74920
## 1432 42.67603 14.14287 71.20920
## 1433 42.49096 13.96394 71.01799
## 1434 42.21174 13.67836 70.74512
## 1435 42.41729 13.89041 70.94417
## 1436 42.44872 13.92194 70.97550
## 1437 42.58621 14.05706 71.11537
## 1438 42.36870 13.84121 70.89620
## 1439 42.24535 13.71373 70.77697
## 1440 42.67285 14.13986 71.20584
## 1441 42.62107 14.09059 71.15156
## 1442 42.58382 14.05474 71.11289
## 1443 42.20590 13.67219 70.73961
## 1444 42.53489 14.00715 71.06263
## 1445 42.23266 13.70041 70.76491
## 1446 42.66746 14.13476 71.20017
## 1447 42.53560 14.00785 71.06335
## 1448 42.67976 14.14638 71.21313
## 1449 42.25407 13.72286 70.78528
## 1450 42.42588 13.89905 70.95271
## 1451 42.59071 14.06140 71.12002
## 1452 42.38170 13.85442 70.90897
## 1453 42.29639 13.76693 70.82586
## 1454 42.40914 13.88219 70.93608
## 1455 42.34931 13.82140 70.87721
## 1456 42.22022 13.68731 70.75313
## 1457 42.49625 13.96916 71.02334
## 1458 42.45694 13.93015 70.98374
## 1459 42.59201 14.06266 71.12137
## 1460 42.61748 14.08715 71.14782
## 1461 42.66437 14.13183 71.19690
## 1462 42.32899 13.80057 70.85742
## 1463 42.68247 14.14894 71.21600
## 1464 42.54969 14.02161 71.07777
## 1465 42.53795 14.01015 71.06575
## 1466 42.34528 13.81728 70.87327
## 1467 42.45612 13.92932 70.98291
## 1468 42.32980 13.80140 70.85820
## 1469 42.20309 13.66922 70.73697
## 1470 42.29002 13.76031 70.81972
## 1471 42.24106 13.70923 70.77289
## 1472 42.17478 13.63915 70.71040
## 1473 42.39990 13.87287 70.92694
## 1474 42.54564 14.01766 71.07362
## 1475 42.24556 13.71395 70.77717
## 1476 42.59675 14.06722 71.12627
## 1477 42.45281 13.92603 70.97960
## 1478 42.51994 13.99250 71.04739
## 1479 42.35910 13.83142 70.88679
## 1480 42.59499 14.06553 71.12446
## 1481 42.38584 13.85863 70.91305
## 1482 42.20694 13.67329 70.74060
## 1483 42.40617 13.87920 70.93314
## 1484 42.53482 14.00708 71.06256
## 1485 42.64129 14.10991 71.17268
## 1486 42.50983 13.98256 71.03711
## 1487 42.48686 13.95987 71.01384
## 1488 42.58208 14.05306 71.11110
## 1489 42.71884 14.18307 71.25460
## 1490 42.50311 13.97593 71.03029
## 1491 42.18412 13.64909 70.71915
## 1492 42.61413 14.08393 71.14432
## 1493 42.57527 14.04647 71.10407
## 1494 42.44263 13.91585 70.96941
## 1495 42.37823 13.85090 70.90556
## 1496 42.47180 13.94494 70.99867
## 1497 42.55336 14.02519 71.08154
## 1498 42.50017 13.97303 71.02731
## 1499 42.23399 13.70180 70.76617
## 1500 42.68493 14.15126 71.21861
## 1501 42.72566 14.18945 71.26188
## 1502 42.59593 14.06643 71.12542
## 1503 42.25313 13.72188 70.78438
## 1504 42.41040 13.88347 70.93733
## 1505 42.29490 13.76538 70.82442
## 1506 42.51023 13.98295 71.03751
## 1507 42.32229 13.79367 70.85091
## 1508 42.37292 13.84550 70.90034
## 1509 42.59059 14.06129 71.11990
## 1510 42.29072 13.76104 70.82040
## 1511 42.38342 13.85617 70.91067
## 1512 42.56299 14.03455 71.09143
## 1513 42.16997 13.63402 70.70591
## 1514 42.19111 13.65652 70.72571
## 1515 42.58564 14.05650 71.11477
## 1516 42.69804 14.16359 71.23248
## 1517 42.46758 13.94074 70.99441
## 1518 42.51441 13.98706 71.04176
## 1519 42.55745 14.02916 71.08573
## 1520 42.27187 13.74145 70.80230
## 1521 42.33612 13.80789 70.86435
## 1522 42.71589 14.18032 71.25147
## 1523 42.27014 13.73964 70.80063
## 1524 42.41278 13.88587 70.93969
## 1525 42.18623 13.65133 70.72112
## 1526 42.63602 14.10488 71.16716
## 1527 42.72698 14.19067 71.26329
## 1528 42.18178 13.64661 70.71696
## 1529 42.28316 13.75320 70.81313
## 1530 42.26990 13.73939 70.80040
## 1531 42.24428 13.71261 70.77595
## 1532 42.54310 14.01518 71.07102
## 1533 42.59807 14.06849 71.12764
## 1534 42.59185 14.06250 71.12120
## 1535 42.33354 13.80524 70.86184
## 1536 42.68958 14.15564 71.22353
## 1537 42.28894 13.75919 70.81868
## 1538 42.33210 13.80376 70.86044
## 1539 42.21968 13.68674 70.75261
## 1540 42.60072 14.07105 71.13039
## 1541 42.69147 14.15742 71.22553
## 1542 42.62755 14.09679 71.15831
## 1543 42.63902 14.10774 71.17030
## 1544 42.29327 13.76369 70.82286
## 1545 42.56088 14.03250 71.08926
## 1546 42.44190 13.91512 70.96868
## 1547 42.64626 14.11464 71.17789
## 1548 42.34832 13.82039 70.87624
## 1549 42.60387 14.07408 71.13367
## 1550 42.46732 13.94049 70.99416
## 1551 42.26093 13.73004 70.79183
## 1552 42.50761 13.98037 71.03485
## 1553 42.17792 13.64250 70.71335
## 1554 42.56915 14.04054 71.09777
## 1555 42.61250 14.08237 71.14263
## 1556 42.34274 13.81468 70.87080
## 1557 42.69273 14.15860 71.22686
## 1558 42.21232 13.67898 70.74567
## 1559 42.48555 13.95858 71.01252
## 1560 42.66533 14.13274 71.19792
## 1561 42.36521 13.83765 70.89277
## 1562 42.57880 14.04989 71.10771
## 1563 42.38141 13.85413 70.90869
## 1564 42.40354 13.87655 70.93054
## 1565 42.66992 14.13709 71.20276
## 1566 42.57375 14.04500 71.10251
## 1567 42.50731 13.98007 71.03455
## 1568 42.67139 14.13848 71.20430
## 1569 42.28183 13.75181 70.81185
## 1570 42.36448 13.83690 70.89206
## 1571 42.52006 13.99261 71.04751
## 1572 42.18776 13.65296 70.72256
## 1573 42.59407 14.06464 71.12351
## 1574 42.33404 13.80576 70.86232
## 1575 42.67062 14.13774 71.20349
## 1576 42.35943 13.83175 70.88711
## 1577 42.19394 13.65952 70.72836
## 1578 42.59839 14.06880 71.12798
## 1579 42.18543 13.65049 70.72038
## 1580 42.68314 14.14957 71.21671
## 1581 42.57355 14.04480 71.10230
## 1582 42.63991 14.10859 71.17123
## 1583 42.48473 13.95776 71.01169
## 1584 42.28324 13.75328 70.81321
## 1585 42.20903 13.67549 70.74256
## 1586 42.37038 13.84291 70.89784
## 1587 42.44990 13.92312 70.97668
## 1588 42.55372 14.02554 71.08191
## 1589 42.43298 13.90618 70.95978
## 1590 42.33076 13.80239 70.85913
## 1591 42.71601 14.18043 71.25158
## 1592 42.42818 13.90136 70.95500
## 1593 42.23685 13.70481 70.76889
## 1594 42.45348 13.92669 70.98027
## 1595 42.41584 13.88895 70.94273
## 1596 42.25225 13.72096 70.78355
## 1597 42.42149 13.89464 70.94834
## 1598 42.51050 13.98322 71.03779
## 1599 42.20302 13.66914 70.73690
## 1600 42.60842 14.07845 71.13838
## 1601 42.59897 14.06936 71.12858
## 1602 42.50517 13.97796 71.03238
## 1603 42.62868 14.09787 71.15949
## 1604 42.40838 13.88143 70.93533
## 1605 42.22297 13.69021 70.75573
## 1606 42.44415 13.91737 70.97093
## 1607 42.33433 13.80606 70.86261
## 1608 42.46310 13.93628 70.98992
## 1609 42.66251 14.13007 71.19495
## 1610 42.50585 13.97863 71.03306
## 1611 42.71866 14.18291 71.25441
## 1612 42.51046 13.98318 71.03775
## 1613 42.42910 13.90229 70.95591
## 1614 42.20241 13.66850 70.73633
## 1615 42.65661 14.12448 71.18875
## 1616 42.27876 13.74862 70.80890
## 1617 42.45387 13.92708 70.98066
## 1618 42.56508 14.03658 71.09358
## 1619 42.57156 14.04287 71.10025
## 1620 42.50418 13.97699 71.03138
## 1621 42.59928 14.06966 71.12890
## 1622 42.44178 13.91499 70.96856
## 1623 42.29145 13.76180 70.82110
## 1624 42.70478 14.16992 71.23965
## 1625 42.54196 14.01406 71.06986
## 1626 42.48445 13.95749 71.01141
## 1627 42.64455 14.11301 71.17609
## 1628 42.55312 14.02495 71.08129
## 1629 42.38161 13.85433 70.90889
## 1630 42.45102 13.92424 70.97781
## 1631 42.52888 14.00127 71.05649
## 1632 42.20714 13.67350 70.74078
## 1633 42.50766 13.98042 71.03490
## 1634 42.35130 13.82345 70.87916
## 1635 42.31024 13.78125 70.83924
## 1636 42.35734 13.82962 70.88506
## 1637 42.23339 13.70118 70.76560
## 1638 42.48067 13.95374 71.00760
## 1639 42.30902 13.77998 70.83805
## 1640 42.32889 13.80046 70.85732
## 1641 42.56037 14.03201 71.08874
## 1642 42.57675 14.04790 71.10560
## 1643 42.46626 13.93943 70.99309
## 1644 42.43942 13.91264 70.96621
## 1645 42.71010 14.17490 71.24530
## 1646 42.22762 13.69511 70.76013
## 1647 42.24057 13.70871 70.77242
## 1648 42.68214 14.14863 71.21565
## 1649 42.35131 13.82345 70.87916
## 1650 42.23152 13.69921 70.76383
## 1651 42.29604 13.76656 70.82552
## 1652 42.36048 13.83283 70.88814
## 1653 42.32373 13.79516 70.85231
## 1654 42.32668 13.79819 70.85517
## 1655 42.33240 13.80407 70.86072
## 1656 42.42630 13.89947 70.95312
## 1657 42.63451 14.10343 71.16558
## 1658 42.36399 13.83640 70.89158
## 1659 42.19255 13.65804 70.72705
## 1660 42.59460 14.06515 71.12405
## 1661 42.46056 13.93375 70.98737
## 1662 42.57917 14.05024 71.10809
## 1663 42.22297 13.69021 70.75573
## 1664 42.53199 14.00432 71.05967
## 1665 42.55039 14.02229 71.07849
## 1666 42.22340 13.69066 70.75614
## 1667 42.67652 14.14332 71.20971
## 1668 42.21355 13.68027 70.74683
## 1669 42.41071 13.88378 70.93764
## 1670 42.45852 13.93172 70.98532
## 1671 42.55034 14.02224 71.07844
## 1672 42.49738 13.97028 71.02448
## 1673 42.63078 14.09987 71.16168
## 1674 42.44886 13.92208 70.97564
## 1675 42.19403 13.65961 70.72844
## 1676 42.71009 14.17489 71.24528
## 1677 42.64988 14.11808 71.18168
## 1678 42.19289 13.65841 70.72738
## 1679 42.67527 14.14214 71.20840
## 1680 42.20851 13.67495 70.74207
## 1681 42.22766 13.69515 70.76018
## 1682 42.21814 13.68511 70.75116
## 1683 42.44262 13.91584 70.96940
## 1684 42.63636 14.10520 71.16752
## 1685 42.27273 13.74234 70.80311
## 1686 42.24289 13.71115 70.77463
## 1687 42.54920 14.02114 71.07727
## 1688 42.58810 14.05888 71.11733
## 1689 42.22901 13.69657 70.76145
## 1690 42.26409 13.73333 70.79485
## 1691 42.49362 13.96656 71.02067
## 1692 42.51435 13.98700 71.04170
## 1693 42.41443 13.88753 70.94133
## 1694 42.22781 13.69530 70.76031
## 1695 42.48378 13.95683 71.01074
## 1696 42.65584 14.12375 71.18794
## 1697 42.33323 13.80493 70.86154
## 1698 42.56908 14.04047 71.09769
## 1699 42.34214 13.81406 70.87021
## 1700 42.52350 13.99600 71.05101
## 1701 42.62819 14.09740 71.15898
## 1702 42.27037 13.73989 70.80086
## 1703 42.51364 13.98631 71.04098
## 1704 42.30909 13.78006 70.83812
## 1705 42.63290 14.10190 71.16390
## 1706 42.42474 13.89791 70.95158
## 1707 42.56449 14.03601 71.09297
## 1708 42.72297 14.18693 71.25900
## 1709 42.52089 13.99343 71.04835
## 1710 42.45236 13.92557 70.97914
## 1711 42.30343 13.77421 70.83265
## 1712 42.18651 13.65164 70.72139
## 1713 42.53319 14.00549 71.06090
## 1714 42.51491 13.98755 71.04227
## 1715 42.66692 14.13424 71.19959
## 1716 42.25875 13.72775 70.78974
## 1717 42.54586 14.01787 71.07384
## 1718 42.34782 13.81988 70.87576
## 1719 42.61756 14.08723 71.14790
## 1720 42.57494 14.04615 71.10373
## 1721 42.31382 13.78494 70.84270
## 1722 42.57697 14.04812 71.10582
## 1723 42.27024 13.73975 70.80073
## 1724 42.23985 13.70796 70.77174
## 1725 42.58934 14.06008 71.11861
## 1726 42.17601 13.64046 70.71155
## 1727 42.35101 13.82314 70.87887
## 1728 42.56399 14.03553 71.09246
## 1729 42.28790 13.75812 70.81768
## 1730 42.33304 13.80473 70.86135
## 1731 42.31408 13.78521 70.84295
## 1732 42.44786 13.92107 70.97464
## 1733 42.25296 13.72170 70.78422
## 1734 42.63365 14.10262 71.16469
## 1735 42.55692 14.02865 71.08519
## 1736 42.33235 13.80402 70.86068
## 1737 42.25242 13.72113 70.78370
## 1738 42.29156 13.76191 70.82120
## 1739 42.30892 13.77988 70.83795
## 1740 42.59143 14.06209 71.12076
## 1741 42.49505 13.96798 71.02213
## 1742 42.62631 14.09560 71.15701
## 1743 42.47916 13.95224 71.00607
## 1744 42.29518 13.76566 70.82469
## 1745 42.17635 13.64082 70.71187
## 1746 42.19074 13.65612 70.72535
## 1747 42.68721 14.15341 71.22102
## 1748 42.46807 13.94123 70.99491
## 1749 42.32973 13.80132 70.85813
## 1750 42.41777 13.89089 70.94464
## 1751 42.59816 14.06859 71.12774
## 1752 42.58433 14.05524 71.11342
## 1753 42.61519 14.08495 71.14543
## 1754 42.35962 13.83195 70.88730
## 1755 42.68223 14.14872 71.21575
## 1756 42.61005 14.08002 71.14009
## 1757 42.23892 13.70699 70.77086
## 1758 42.53477 14.00704 71.06251
## 1759 42.18257 13.64745 70.71770
## 1760 42.25639 13.72529 70.78749
## 1761 42.49376 13.96670 71.02082
## 1762 42.51616 13.98879 71.04354
## 1763 42.63187 14.10092 71.16282
## 1764 42.53127 14.00361 71.05894
## 1765 42.20411 13.67030 70.73793
## 1766 42.60420 14.07440 71.13401
## 1767 42.31456 13.78571 70.84342
## 1768 42.64052 14.10917 71.17187
## 1769 42.41690 13.89002 70.94378
## 1770 42.70241 14.16769 71.23712
## 1771 42.29254 13.76293 70.82215
## 1772 42.72591 14.18967 71.26214
## 1773 42.33835 13.81018 70.86652
## 1774 42.52258 13.99509 71.05007
## 1775 42.69482 14.16057 71.22907
## 1776 42.20975 13.67626 70.74325
## 1777 42.41270 13.88579 70.93962
## 1778 42.54700 14.01899 71.07502
## 1779 42.63514 14.10404 71.16625
## 1780 42.39540 13.86831 70.92248
## 1781 42.40347 13.87648 70.93047
## 1782 42.42965 13.90284 70.95646
## 1783 42.43011 13.90330 70.95692
## 1784 42.39752 13.87046 70.92458
## 1785 42.31233 13.78340 70.84125
## 1786 42.54582 14.01783 71.07381
## 1787 42.47722 13.95032 71.00412
## 1788 42.43542 13.90863 70.96221
## 1789 42.70362 14.16883 71.23841
## 1790 42.32625 13.79775 70.85475
## 1791 42.35158 13.82373 70.87943
## 1792 42.23426 13.70209 70.76643
## 1793 42.17953 13.64422 70.71485
## 1794 42.44963 13.92285 70.97641
## 1795 42.32250 13.79389 70.85111
## 1796 42.33485 13.80659 70.86312
## 1797 42.60814 14.07818 71.13810
## 1798 42.17981 13.64451 70.71511
## 1799 42.23575 13.70365 70.76784
## 1800 42.40612 13.87915 70.93309
## 1801 42.56122 14.03283 71.08960
## 1802 42.58059 14.05162 71.10956
## 1803 42.72159 14.18564 71.25753
## 1804 42.48547 13.95850 71.01244
## 1805 42.18135 13.64615 70.71656
## 1806 42.25418 13.72298 70.78539
## 1807 42.50899 13.98173 71.03625
## 1808 42.20257 13.66866 70.73648
## 1809 42.51649 13.98911 71.04387
## 1810 42.44458 13.91780 70.97137
## 1811 42.24763 13.71612 70.77914
## 1812 42.64588 14.11428 71.17749
## 1813 42.51959 13.99215 71.04702
## 1814 42.24601 13.71442 70.77760
## 1815 42.37464 13.84725 70.90203
## 1816 42.60651 14.07661 71.13640
## 1817 42.62729 14.09654 71.15804
## 1818 42.40377 13.87678 70.93076
## 1819 42.64712 14.11545 71.17878
## 1820 42.59979 14.07015 71.12943
## 1821 42.27207 13.74166 70.80249
## 1822 42.38709 13.85989 70.91428
## 1823 42.59453 14.06509 71.12398
## 1824 42.71599 14.18041 71.25157
## 1825 42.30051 13.77119 70.82983
## 1826 42.59401 14.06458 71.12344
## 1827 42.24324 13.71152 70.77496
## 1828 42.66378 14.13127 71.19629
## 1829 42.41792 13.89104 70.94479
## 1830 42.58618 14.05702 71.11534
## 1831 42.19278 13.65829 70.72727
## 1832 42.61310 14.08294 71.14325
## 1833 42.71097 14.17571 71.24622
## 1834 42.60802 14.07807 71.13797
## 1835 42.61149 14.08140 71.14158
## 1836 42.62614 14.09544 71.15684
## 1837 42.22070 13.68782 70.75359
## 1838 42.45570 13.92891 70.98250
## 1839 42.61560 14.08535 71.14586
## 1840 42.70772 14.17267 71.24276
## 1841 42.36770 13.84019 70.89522
## 1842 42.72142 14.18549 71.25736
## 1843 42.72623 14.18997 71.26248
## 1844 42.53678 14.00900 71.06456
## 1845 42.47777 13.95087 71.00468
## 1846 42.44747 13.92068 70.97425
## 1847 42.32598 13.79747 70.85449
## 1848 42.43188 13.90508 70.95869
## 1849 42.70224 14.16754 71.23695
## 1850 42.40354 13.87655 70.93054
## 1851 42.27010 13.73960 70.80059
## 1852 42.18430 13.64929 70.71932
## 1853 42.37111 13.84366 70.89856
## 1854 42.27887 13.74874 70.80901
## 1855 42.20112 13.66713 70.73512
## 1856 42.44252 13.91574 70.96930
## 1857 42.70446 14.16962 71.23931
## 1858 42.62376 14.09317 71.15436
## 1859 42.34745 13.81951 70.87540
## 1860 42.67598 14.14282 71.20915
## 1861 42.29474 13.76521 70.82427
## 1862 42.48844 13.96144 71.01544
## 1863 42.41283 13.88592 70.93974
## 1864 42.48573 13.95875 71.01270
## 1865 42.24188 13.71010 70.77367
## 1866 42.24251 13.71075 70.77427
## 1867 42.41958 13.89272 70.94644
## 1868 42.40097 13.87395 70.92799
## 1869 42.28088 13.75082 70.81093
## 1870 42.38301 13.85576 70.91027
## 1871 42.46888 13.94203 70.99572
## 1872 42.30784 13.77876 70.83691
## 1873 42.37990 13.85260 70.90720
## 1874 42.33979 13.81166 70.86792
## 1875 42.28123 13.75119 70.81128
## 1876 42.70985 14.17467 71.24503
## 1877 42.70592 14.17098 71.24085
## 1878 42.43596 13.90917 70.96275
## 1879 42.55974 14.03139 71.08808
## 1880 42.49558 13.96850 71.02266
## 1881 42.36167 13.83404 70.88931
## 1882 42.38272 13.85546 70.90998
## 1883 42.48074 13.95381 71.00767
## 1884 42.25554 13.72441 70.78668
## 1885 42.22824 13.69576 70.76072
## 1886 42.54366 14.01572 71.07159
## 1887 42.61678 14.08648 71.14709
## 1888 42.38938 13.86222 70.91654
## 1889 42.36795 13.84044 70.89546
## 1890 42.66784 14.13512 71.20056
## 1891 42.65536 14.12328 71.18743
## 1892 42.71125 14.17598 71.24652
## 1893 42.50112 13.97397 71.02827
## 1894 42.52650 13.99894 71.05407
## 1895 42.59378 14.06436 71.12320
## 1896 42.28458 13.75467 70.81449
## 1897 42.31346 13.78457 70.84235
## 1898 42.52856 14.00096 71.05617
## 1899 42.57925 14.05032 71.10817
## 1900 42.45017 13.92339 70.97696
## 1901 42.63199 14.10103 71.16295
## 1902 42.63663 14.10546 71.16779
## 1903 42.72355 14.18748 71.25963
## 1904 42.37978 13.85248 70.90709
## 1905 42.47652 13.94963 71.00342
## 1906 42.60740 14.07747 71.13733
## 1907 42.35136 13.82351 70.87922
## 1908 42.29947 13.77011 70.82883
## 1909 42.70263 14.16790 71.23736
## 1910 42.65809 14.12588 71.19030
## 1911 42.37092 13.84347 70.89838
## 1912 42.36985 13.84238 70.89733
## 1913 42.23356 13.70135 70.76576
## 1914 42.32929 13.80087 70.85770
## 1915 42.58311 14.05406 71.11216
## 1916 42.23107 13.69874 70.76341
## 1917 42.46288 13.93607 70.98970
## 1918 42.32379 13.79522 70.85236
## 1919 42.20367 13.66983 70.73751
## 1920 42.63673 14.10555 71.16790
## 1921 42.36713 13.83961 70.89466
## 1922 42.45619 13.92940 70.98299
## 1923 42.40823 13.88128 70.93518
## 1924 42.18999 13.65533 70.72465
## 1925 42.31532 13.78649 70.84415
## 1926 42.63318 14.10217 71.16419
## 1927 42.23373 13.70154 70.76593
## 1928 42.61513 14.08489 71.14536
## 1929 42.72735 14.19101 71.26368
## 1930 42.42421 13.89737 70.95104
## 1931 42.31252 13.78361 70.84144
## 1932 42.30339 13.77417 70.83262
## 1933 42.34023 13.81211 70.86835
## 1934 42.64172 14.11031 71.17312
## 1935 42.67963 14.14626 71.21300
## 1936 42.54085 14.01298 71.06872
## 1937 42.68497 14.15129 71.21864
## 1938 42.39510 13.86801 70.92219
## 1939 42.34324 13.81520 70.87129
## 1940 42.25346 13.72222 70.78469
## 1941 42.21214 13.67878 70.74549
## 1942 42.67867 14.14536 71.21199
## 1943 42.60514 14.07530 71.13498
## 1944 42.24750 13.71598 70.77901
## 1945 42.64345 14.11196 71.17494
## 1946 42.67406 14.14100 71.20712
## 1947 42.53524 14.00749 71.06298
## 1948 42.42711 13.90028 70.95393
## 1949 42.22435 13.69166 70.75704
## 1950 42.54002 14.01217 71.06787
## 1951 42.56232 14.03390 71.09074
## 1952 42.64628 14.11466 71.17791
## 1953 42.69194 14.15786 71.22602
## 1954 42.17221 13.63642 70.70801
## 1955 42.64443 14.11289 71.17596
## 1956 42.39841 13.87136 70.92546
## 1957 42.25632 13.72521 70.78742
## 1958 42.55395 14.02576 71.08215
## 1959 42.28498 13.75508 70.81488
## 1960 42.48460 13.95763 71.01156
## 1961 42.25798 13.72695 70.78901
## 1962 42.20202 13.66808 70.73596
## 1963 42.57818 14.04929 71.10707
## 1964 42.63795 14.10672 71.16918
## 1965 42.26246 13.73163 70.79329
## 1966 42.44343 13.91665 70.97021
## 1967 42.52736 13.99977 71.05494
## 1968 42.37525 13.84787 70.90263
## 1969 42.65249 14.12056 71.18442
## 1970 42.26394 13.73318 70.79470
## 1971 42.18521 13.65025 70.72017
## 1972 42.56427 14.03579 71.09274
## 1973 42.17263 13.63686 70.70840
## 1974 42.33156 13.80321 70.85991
## 1975 42.44093 13.91415 70.96771
## 1976 42.57392 14.04516 71.10268
## 1977 42.19893 13.66481 70.73305
## 1978 42.27618 13.74594 70.80643
## 1979 42.48696 13.95997 71.01394
## 1980 42.22531 13.69268 70.75795
## 1981 42.18670 13.65183 70.72157
## 1982 42.72145 14.18551 71.25739
## 1983 42.31387 13.78500 70.84275
## 1984 42.26777 13.73718 70.79837
## 1985 42.43400 13.90721 70.96080
## 1986 42.36000 13.83233 70.88766
## 1987 42.66200 14.12959 71.19442
## 1988 42.64946 14.11769 71.18124
## 1989 42.71931 14.18352 71.25511
## 1990 42.29307 13.76348 70.82266
## 1991 42.45066 13.92388 70.97745
## 1992 42.40533 13.87835 70.93231
## 1993 42.38171 13.85444 70.90899
## 1994 42.53240 14.00472 71.06009
## 1995 42.20869 13.67514 70.74224
## 1996 42.19879 13.66467 70.73292
## 1997 42.61332 14.08316 71.14349
## 1998 42.55455 14.02635 71.08276
## 1999 42.53611 14.00834 71.06387
## 2000 42.55812 14.02982 71.08642
## 2001 42.33311 13.80480 70.86142
## 2002 42.31913 13.79041 70.84784
## 2003 42.45767 13.93087 70.98447
## 2004 42.65859 14.12635 71.19083
## 2005 42.36378 13.83619 70.89137
## 2006 42.54823 14.02018 71.07627
## 2007 42.17506 13.63945 70.71067
## 2008 42.17552 13.63994 70.71109
## 2009 42.58369 14.05462 71.11276
## 2010 42.66652 14.13386 71.19917
## 2011 42.20513 13.67138 70.73889
## 2012 42.58923 14.05997 71.11849
## 2013 42.25986 13.72891 70.79080
## 2014 42.40385 13.87686 70.93085
## 2015 42.34648 13.81852 70.87445
## 2016 42.48584 13.95887 71.01282
## 2017 42.33729 13.80909 70.86548
## 2018 42.48027 13.95335 71.00719
## 2019 42.58796 14.05874 71.11717
## 2020 42.23044 13.69808 70.76281
## 2021 42.71905 14.18327 71.25482
## 2022 42.36246 13.83485 70.89008
## 2023 42.17015 13.63421 70.70608
## 2024 42.58083 14.05185 71.10981
## 2025 42.45608 13.92928 70.98287
## 2026 42.28680 13.75698 70.81663
## 2027 42.69602 14.16170 71.23035
## 2028 42.50709 13.97986 71.03432
## 2029 42.55683 14.02856 71.08509
## 2030 42.34674 13.81877 70.87470
## 2031 42.28557 13.75570 70.81544
## 2032 42.46769 13.94085 70.99453
## 2033 42.59305 14.06366 71.12244
## 2034 42.37555 13.84817 70.90292
## 2035 42.56995 14.04131 71.09859
## 2036 42.56227 14.03385 71.09068
## 2037 42.23515 13.70303 70.76728
## 2038 42.17140 13.63555 70.70725
## 2039 42.69822 14.16376 71.23267
## 2040 42.63555 14.10443 71.16667
## 2041 42.66906 14.13627 71.20185
## 2042 42.20135 13.66737 70.73533
## 2043 42.72187 14.18590 71.25783
## 2044 42.50547 13.97826 71.03268
## 2045 42.36494 13.83737 70.89251
## 2046 42.65440 14.12238 71.18643
## 2047 42.66285 14.13039 71.19530
## 2048 42.25117 13.71982 70.78251
## 2049 42.63924 14.10795 71.17053
## 2050 42.55223 14.02408 71.08037
## 2051 42.57505 14.04626 71.10384
## 2052 42.25490 13.72373 70.78607
## 2053 42.68745 14.15364 71.22127
## 2054 42.49279 13.96574 71.01984
## 2055 42.60441 14.07459 71.13422
## 2056 42.30245 13.77319 70.83170
## 2057 42.27511 13.74482 70.80540
## 2058 42.46579 13.93896 70.99262
## 2059 42.46222 13.93540 70.98903
## 2060 42.68684 14.15306 71.22062
## 2061 42.55652 14.02826 71.08478
## 2062 42.55968 14.03134 71.08803
## 2063 42.63835 14.10710 71.16960
## 2064 42.60952 14.07951 71.13953
## 2065 42.70019 14.16561 71.23477
## 2066 42.17005 13.63411 70.70599
## 2067 42.65990 14.12760 71.19221
## 2068 42.61067 14.08061 71.14072
## 2069 42.21638 13.68326 70.74950
## 2070 42.57510 14.04630 71.10389
## 2071 42.49521 13.96813 71.02228
## 2072 42.42047 13.89361 70.94733
## 2073 42.53762 14.00982 71.06542
## 2074 42.26188 13.73102 70.79273
## 2075 42.69774 14.16331 71.23217
## 2076 42.51996 13.99252 71.04740
## 2077 42.40497 13.87799 70.93195
## 2078 42.63584 14.10471 71.16697
## 2079 42.46377 13.93695 70.99059
## 2080 42.22880 13.69635 70.76125
## 2081 42.69467 14.16043 71.22891
## 2082 42.28060 13.75053 70.81067
## 2083 42.54940 14.02132 71.07747
## 2084 42.40275 13.87574 70.92975
## 2085 42.33104 13.80267 70.85940
## 2086 42.59279 14.06340 71.12217
## 2087 42.60297 14.07321 71.13273
## 2088 42.17374 13.63804 70.70943
## 2089 42.71070 14.17546 71.24593
## 2090 42.67671 14.14351 71.20992
## 2091 42.52125 13.99378 71.04872
## 2092 42.44507 13.91829 70.97185
## 2093 42.71894 14.18317 71.25471
## 2094 42.47877 13.95186 71.00569
## 2095 42.48488 13.95791 71.01184
## 2096 42.71789 14.18219 71.25360
## 2097 42.56344 14.03499 71.09189
## 2098 42.47532 13.94844 71.00221
## 2099 42.22074 13.68786 70.75362
## 2100 42.53719 14.00940 71.06498
## 2101 42.33993 13.81180 70.86806
## 2102 42.16979 13.63384 70.70575
## 2103 42.57967 14.05073 71.10862
## 2104 42.50150 13.97435 71.02866
## 2105 42.38234 13.85507 70.90960
## 2106 42.57799 14.04910 71.10688
## 2107 42.39059 13.86344 70.91774
## 2108 42.38748 13.86029 70.91467
## 2109 42.41347 13.88656 70.94038
## 2110 42.24748 13.71596 70.77900
## 2111 42.40968 13.88274 70.93662
## 2112 42.30468 13.77550 70.83386
## 2113 42.31233 13.78341 70.84126
## 2114 42.28525 13.75536 70.81513
## 2115 42.26893 13.73838 70.79948
## 2116 42.71320 14.17780 71.24860
## 2117 42.28977 13.76006 70.81948
## 2118 42.28398 13.75405 70.81391
## 2119 42.27354 13.74319 70.80389
## 2120 42.72383 14.18774 71.25993
## 2121 42.39823 13.87118 70.92528
## 2122 42.48651 13.95953 71.01350
## 2123 42.62547 14.09480 71.15614
## 2124 42.64388 14.11237 71.17539
## 2125 42.20687 13.67321 70.74053
## 2126 42.57598 14.04715 71.10480
## 2127 42.36747 13.83995 70.89498
## 2128 42.53862 14.01080 71.06644
## 2129 42.38362 13.85637 70.91086
## 2130 42.67769 14.14443 71.21095
## 2131 42.43686 13.91007 70.96365
## 2132 42.68448 14.15083 71.21812
## 2133 42.54126 14.01338 71.06914
## 2134 42.48043 13.95351 71.00736
## 2135 42.31441 13.78555 70.84327
## 2136 42.32055 13.79188 70.84922
## 2137 42.40958 13.88264 70.93652
## 2138 42.60245 14.07271 71.13219
## 2139 42.18943 13.65473 70.72413
## 2140 42.62438 14.09376 71.15501
## 2141 42.25295 13.72170 70.78421
## 2142 42.55247 14.02431 71.08062
## 2143 42.22166 13.68883 70.75449
## 2144 42.49687 13.96977 71.02396
## 2145 42.54761 14.01958 71.07564
## 2146 42.17312 13.63739 70.70886
## 2147 42.34712 13.81917 70.87507
## 2148 42.58644 14.05728 71.11561
## 2149 42.39085 13.86371 70.91800
## 2150 42.33175 13.80340 70.86009
## 2151 42.21991 13.68698 70.75283
## 2152 42.53140 14.00374 71.05906
## 2153 42.28187 13.75186 70.81189
## 2154 42.45319 13.92640 70.97998
## 2155 42.43747 13.91068 70.96426
## 2156 42.19065 13.65603 70.72527
## 2157 42.27197 13.74155 70.80239
## 2158 42.22014 13.68723 70.75306
## 2159 42.56141 14.03302 71.08980
## 2160 42.31421 13.78534 70.84308
## 2161 42.66202 14.12961 71.19444
## 2162 42.52635 13.99878 71.05391
## 2163 42.45101 13.92422 70.97779
## 2164 42.23203 13.69974 70.76431
## 2165 42.47389 13.94701 71.00076
## 2166 42.17633 13.64081 70.71186
## 2167 42.62254 14.09200 71.15309
## 2168 42.47798 13.95107 71.00488
## 2169 42.27564 13.74538 70.80591
## 2170 42.50677 13.97954 71.03400
## 2171 42.68313 14.14956 71.21670
## 2172 42.35593 13.82817 70.88368
## 2173 42.29526 13.76575 70.82477
## 2174 42.67955 14.14619 71.21292
## 2175 42.25476 13.72359 70.78594
## 2176 42.53613 14.00836 71.06389
## 2177 42.27382 13.74347 70.80416
## 2178 42.60496 14.07513 71.13479
## 2179 42.50062 13.97348 71.02777
## 2180 42.49056 13.96354 71.01758
## 2181 42.56758 14.03901 71.09615
## 2182 42.50584 13.97863 71.03306
## 2183 42.67487 14.14176 71.20797
## 2184 42.58050 14.05153 71.10947
## 2185 42.17318 13.63745 70.70891
## 2186 42.68853 14.15465 71.22241
## 2187 42.61632 14.08604 71.14661
## 2188 42.27659 13.74636 70.80682
## 2189 42.57779 14.04891 71.10667
## 2190 42.19110 13.65651 70.72569
## 2191 42.17970 13.64439 70.71500
## 2192 42.28721 13.75740 70.81702
## 2193 42.56883 14.04022 71.09744
## 2194 42.17569 13.64012 70.71126
## 2195 42.32032 13.79164 70.84900
## 2196 42.65391 14.12191 71.18591
## 2197 42.54631 14.01831 71.07430
## 2198 42.53558 14.00783 71.06333
## 2199 42.51307 13.98574 71.04040
## 2200 42.23284 13.70060 70.76508
## 2201 42.40031 13.87328 70.92733
## 2202 42.49382 13.96677 71.02088
## 2203 42.51499 13.98763 71.04235
## 2204 42.46909 13.94224 70.99594
## 2205 42.21691 13.68382 70.75000
## 2206 42.32232 13.79370 70.85094
## 2207 42.24377 13.71207 70.77546
## 2208 42.47567 13.94878 71.00256
## 2209 42.62485 14.09420 71.15549
## 2210 42.51572 13.98835 71.04309
## 2211 42.67193 14.13899 71.20487
## 2212 42.72204 14.18607 71.25802
## 2213 42.38071 13.85342 70.90800
## 2214 42.31749 13.78873 70.84625
## 2215 42.58892 14.05967 71.11817
## 2216 42.47773 13.95083 71.00464
## 2217 42.35868 13.83098 70.88637
## 2218 42.27045 13.73997 70.80093
## 2219 42.44267 13.91589 70.96945
## 2220 42.33792 13.80973 70.86610
## 2221 42.59091 14.06159 71.12023
## 2222 42.17176 13.63593 70.70758
## 2223 42.39723 13.87016 70.92429
## 2224 42.66624 14.13360 71.19887
## 2225 42.66877 14.13600 71.20154
## 2226 42.53106 14.00340 71.05871
## 2227 42.32849 13.80005 70.85693
## 2228 42.20022 13.66618 70.73427
## 2229 42.64342 14.11193 71.17490
## 2230 42.46396 13.93713 70.99078
## 2231 42.57821 14.04932 71.10710
## 2232 42.50766 13.98041 71.03490
## 2233 42.52009 13.99264 71.04754
## 2234 42.54437 14.01641 71.07232
## 2235 42.40934 13.88240 70.93628
## 2236 42.63585 14.10471 71.16698
## 2237 42.26739 13.73677 70.79800
## 2238 42.48261 13.95566 71.00955
## 2239 42.38406 13.85682 70.91130
## 2240 42.18730 13.65248 70.72213
## 2241 42.39770 13.87064 70.92476
## 2242 42.19409 13.65968 70.72850
## 2243 42.22753 13.69501 70.76005
## 2244 42.50354 13.97635 71.03072
## 2245 42.71412 14.17867 71.24958
## 2246 42.54043 14.01257 71.06829
## 2247 42.58442 14.05533 71.11352
## 2248 42.22118 13.68832 70.75403
## 2249 42.59425 14.06481 71.12369
## 2250 42.65344 14.12146 71.18542
## 2251 42.26523 13.73452 70.79593
## 2252 42.43119 13.90439 70.95800
## 2253 42.29391 13.76435 70.82347
## 2254 42.33072 13.80235 70.85910
## 2255 42.20666 13.67299 70.74033
## 2256 42.57845 14.04955 71.10736
## 2257 42.43643 13.90964 70.96322
## 2258 42.29882 13.76944 70.82820
## 2259 42.40373 13.87674 70.93072
## 2260 42.32374 13.79517 70.85232
## 2261 42.19668 13.66242 70.73093
## 2262 42.59238 14.06301 71.12175
## 2263 42.45540 13.92860 70.98219
## 2264 42.69525 14.16097 71.22952
## 2265 42.22736 13.69484 70.75989
## 2266 42.41613 13.88924 70.94301
## 2267 42.62708 14.09634 71.15782
## 2268 42.69504 14.16077 71.22930
## 2269 42.22038 13.68748 70.75328
## 2270 42.57744 14.04857 71.10631
## 2271 42.70003 14.16546 71.23460
## 2272 42.44279 13.91601 70.96958
## 2273 42.35256 13.82473 70.88038
## 2274 42.64910 14.11734 71.18086
## 2275 42.36092 13.83327 70.88857
## 2276 42.29374 13.76418 70.82331
## 2277 42.40428 13.87729 70.93127
## 2278 42.49506 13.96799 71.02214
## 2279 42.26496 13.73424 70.79568
## 2280 42.64024 14.10890 71.17158
## 2281 42.63758 14.10637 71.16879
## 2282 42.56245 14.03403 71.09087
## 2283 42.47300 13.94613 70.99987
## 2284 42.36966 13.84218 70.89713
## 2285 42.48960 13.96259 71.01662
## 2286 42.27230 13.74190 70.80271
## 2287 42.28989 13.76018 70.81959
## 2288 42.63200 14.10104 71.16296
## 2289 42.59259 14.06321 71.12196
## 2290 42.51739 13.98999 71.04479
## 2291 42.37432 13.84693 70.90172
## 2292 42.28564 13.75577 70.81551
## 2293 42.64719 14.11552 71.17886
## 2294 42.67034 14.13748 71.20320
## 2295 42.48731 13.96032 71.01430
## 2296 42.39242 13.86530 70.91955
## 2297 42.72788 14.19151 71.26425
## 2298 42.70753 14.17250 71.24257
## 2299 42.36276 13.83515 70.89037
## 2300 42.23360 13.70140 70.76580
## 2301 42.30250 13.77325 70.83175
## 2302 42.65478 14.12273 71.18682
## 2303 42.20446 13.67067 70.73826
## 2304 42.45354 13.92676 70.98033
## 2305 42.26505 13.73433 70.79576
## 2306 42.68836 14.15449 71.22223
## 2307 42.60305 14.07329 71.13282
## 2308 42.36282 13.83521 70.89043
## 2309 42.54315 14.01523 71.07107
## 2310 42.58544 14.05630 71.11457
## 2311 42.25281 13.72154 70.78407
## 2312 42.24115 13.70932 70.77297
## 2313 42.68557 14.15186 71.21928
## 2314 42.65825 14.12603 71.19047
## 2315 42.38514 13.85792 70.91237
## 2316 42.39828 13.87123 70.92533
## 2317 42.31538 13.78655 70.84421
## 2318 42.27997 13.74988 70.81006
## 2319 42.22280 13.69003 70.75557
## 2320 42.19174 13.65718 70.72629
## 2321 42.65192 14.12002 71.18382
## 2322 42.51022 13.98294 71.03750
## 2323 42.56747 14.03890 71.09603
## 2324 42.67398 14.14093 71.20704
## 2325 42.60930 14.07930 71.13931
## 2326 42.28062 13.75056 70.81069
## 2327 42.61931 14.08890 71.14972
## 2328 42.29235 13.76273 70.82196
## 2329 42.42386 13.89702 70.95070
## 2330 42.39388 13.86678 70.92099
## 2331 42.45616 13.92937 70.98295
## 2332 42.68886 14.15496 71.22276
## 2333 42.18619 13.65130 70.72109
## 2334 42.53736 14.00957 71.06515
## 2335 42.23120 13.69888 70.76353
## 2336 42.72398 14.18788 71.26009
## 2337 42.36058 13.83292 70.88823
## 2338 42.56651 14.03798 71.09505
## 2339 42.32420 13.79564 70.85276
## 2340 42.35514 13.82737 70.88291
## 2341 42.39925 13.87221 70.92629
## 2342 42.24945 13.71803 70.78088
## 2343 42.59481 14.06536 71.12427
## 2344 42.42626 13.89943 70.95309
## 2345 42.59125 14.06192 71.12058
## 2346 42.56609 14.03756 71.09461
## 2347 42.63142 14.10048 71.16235
## 2348 42.57610 14.04727 71.10493
## 2349 42.28281 13.75283 70.81279
## 2350 42.31104 13.78207 70.84001
## 2351 42.22945 13.69703 70.76187
## 2352 42.29623 13.76675 70.82570
## 2353 42.71260 14.17724 71.24796
## 2354 42.32956 13.80115 70.85797
## 2355 42.19933 13.66524 70.73343
## 2356 42.59020 14.06091 71.11949
## 2357 42.67225 14.13929 71.20521
## 2358 42.48009 13.95316 71.00701
## 2359 42.24705 13.71551 70.77859
## 2360 42.55182 14.02368 71.07995
## 2361 42.47649 13.94959 71.00338
## 2362 42.48978 13.96277 71.01680
## 2363 42.48113 13.95420 71.00806
## 2364 42.47756 13.95066 71.00447
## 2365 42.72757 14.19123 71.26392
## 2366 42.60365 14.07387 71.13343
## 2367 42.53747 14.00967 71.06526
## 2368 42.38207 13.85480 70.90934
## 2369 42.33073 13.80235 70.85910
## 2370 42.23425 13.70208 70.76642
## 2371 42.45641 13.92961 70.98320
## 2372 42.35228 13.82445 70.88011
## 2373 42.72569 14.18947 71.26190
## 2374 42.55145 14.02332 71.07957
## 2375 42.69876 14.16427 71.23326
## 2376 42.41203 13.88512 70.93895
## 2377 42.52384 13.99633 71.05136
## 2378 42.19887 13.66475 70.73299
## 2379 42.57110 14.04243 71.09978
## 2380 42.60856 14.07859 71.13854
## 2381 42.29141 13.76176 70.82106
## 2382 42.28935 13.75962 70.81907
## 2383 42.17282 13.63706 70.70857
## 2384 42.53421 14.00648 71.06193
## 2385 42.46837 13.94153 70.99521
## 2386 42.26445 13.73371 70.79519
## 2387 42.41093 13.88400 70.93786
## 2388 42.23051 13.69815 70.76287
## 2389 42.64470 14.11316 71.17625
## 2390 42.43754 13.91075 70.96433
## 2391 42.56091 14.03253 71.08929
## 2392 42.63983 14.10851 71.17115
## 2393 42.62779 14.09701 71.15856
## 2394 42.40184 13.87483 70.92886
## 2395 42.64824 14.11652 71.17996
## 2396 42.38122 13.85394 70.90850
## 2397 42.18932 13.65462 70.72402
## 2398 42.59811 14.06854 71.12769
## 2399 42.27775 13.74757 70.80793
## 2400 42.16988 13.63393 70.70583
## 2401 42.67162 14.13870 71.20455
## 2402 42.29492 13.76540 70.82445
## 2403 42.18686 13.65201 70.72172
## 2404 42.26365 13.73288 70.79443
## 2405 42.44546 13.91868 70.97224
## 2406 42.31004 13.78104 70.83904
## 2407 42.70169 14.16702 71.23636
## 2408 42.46281 13.93599 70.98962
## 2409 42.64028 14.10894 71.17162
## 2410 42.46487 13.93805 70.99170
## 2411 42.48485 13.95788 71.01181
## 2412 42.24878 13.71733 70.78024
## 2413 42.26897 13.73843 70.79952
## 2414 42.24977 13.71836 70.78118
## 2415 42.29324 13.76366 70.82283
## 2416 42.39677 13.86970 70.92383
## 2417 42.35943 13.83175 70.88711
## 2418 42.52817 14.00057 71.05577
## 2419 42.38701 13.85982 70.91421
## 2420 42.22274 13.68997 70.75551
## 2421 42.47908 13.95217 71.00600
## 2422 42.49102 13.96399 71.01805
## 2423 42.68995 14.15598 71.22391
## 2424 42.49788 13.97077 71.02499
## 2425 42.44199 13.91520 70.96877
## 2426 42.36774 13.84023 70.89526
## 2427 42.24857 13.71711 70.78004
## 2428 42.57501 14.04621 71.10380
## 2429 42.54446 14.01650 71.07241
## 2430 42.67861 14.14530 71.21192
## 2431 42.62831 14.09751 71.15910
## 2432 42.43733 13.91054 70.96412
## 2433 42.23843 13.70647 70.77039
## 2434 42.19092 13.65631 70.72552
## 2435 42.68376 14.15015 71.21736
## 2436 42.22228 13.68948 70.75508
## 2437 42.30786 13.77879 70.83694
## 2438 42.71077 14.17553 71.24601
## 2439 42.35407 13.82628 70.88187
## 2440 42.57216 14.04345 71.10086
## 2441 42.56553 14.03702 71.09404
## 2442 42.36068 13.83303 70.88834
## 2443 42.24196 13.71018 70.77375
## 2444 42.62702 14.09628 71.15775
## 2445 42.29258 13.76297 70.82219
## 2446 42.50445 13.97726 71.03165
## 2447 42.27058 13.74010 70.80106
## 2448 42.34300 13.81494 70.87105
## 2449 42.54342 14.01549 71.07135
## 2450 42.65658 14.12445 71.18872
## 2451 42.34181 13.81373 70.86990
## 2452 42.22053 13.68764 70.75342
## 2453 42.28605 13.75619 70.81590
## 2454 42.56172 14.03332 71.09013
## 2455 42.55257 14.02442 71.08073
## 2456 42.18159 13.64641 70.71678
## 2457 42.23421 13.70204 70.76638
## 2458 42.39863 13.87158 70.92568
## 2459 42.60680 14.07690 71.13671
## 2460 42.25833 13.72732 70.78935
## 2461 42.71914 14.18336 71.25493
## 2462 42.27487 13.74457 70.80517
## 2463 42.66305 14.13058 71.19551
## 2464 42.17100 13.63513 70.70688
## 2465 42.28438 13.75446 70.81430
## 2466 42.63539 14.10428 71.16650
## 2467 42.25228 13.72099 70.78357
## 2468 42.38343 13.85618 70.91068
## 2469 42.22347 13.69074 70.75620
## 2470 42.68246 14.14893 71.21600
## 2471 42.24090 13.70906 70.77273
## 2472 42.56699 14.03844 71.09554
## 2473 42.61114 14.08106 71.14121
## 2474 42.17942 13.64409 70.71475
## 2475 42.37163 13.84418 70.89907
## 2476 42.38119 13.85391 70.90848
## 2477 42.58743 14.05823 71.11663
## 2478 42.17433 13.63867 70.70998
## 2479 42.69819 14.16374 71.23265
## 2480 42.65218 14.12027 71.18409
## 2481 42.32504 13.79650 70.85357
## 2482 42.63424 14.10318 71.16530
## 2483 42.42420 13.89737 70.95104
## 2484 42.63950 14.10820 71.17080
## 2485 42.52991 14.00228 71.05754
## 2486 42.51060 13.98332 71.03789
## 2487 42.17104 13.63517 70.70692
## 2488 42.70766 14.17261 71.24270
## 2489 42.70420 14.16938 71.23903
## 2490 42.56892 14.04031 71.09752
## 2491 42.20785 13.67425 70.74145
## 2492 42.56432 14.03584 71.09279
## 2493 42.42067 13.89381 70.94753
## 2494 42.27158 13.74114 70.80202
## 2495 42.34485 13.81684 70.87285
## 2496 42.31597 13.78716 70.84478
## 2497 42.47125 13.94439 70.99811
## 2498 42.59775 14.06819 71.12731
## 2499 42.57931 14.05038 71.10824
## 2500 42.20328 13.66941 70.73714
## 2501 42.52784 14.00024 71.05543
## 2502 42.21932 13.68636 70.75228
## 2503 42.40840 13.88145 70.93535
## 2504 42.47285 13.94599 70.99972
## 2505 42.47772 13.95082 71.00463
## 2506 42.21180 13.67842 70.74517
## 2507 42.65179 14.11989 71.18368
## 2508 42.30138 13.77209 70.83067
## 2509 42.28508 13.75519 70.81497
## 2510 42.62869 14.09788 71.15950
## 2511 42.44597 13.91919 70.97275
## 2512 42.34183 13.81375 70.86991
## 2513 42.59976 14.07012 71.12939
## 2514 42.37675 13.84940 70.90411
## 2515 42.64452 14.11298 71.17606
## 2516 42.48202 13.95508 71.00896
## 2517 42.23034 13.69797 70.76271
## 2518 42.69700 14.16261 71.23138
## 2519 42.68797 14.15412 71.22182
## 2520 42.55720 14.02892 71.08548
## 2521 42.49376 13.96670 71.02082
## 2522 42.30187 13.77260 70.83115
## 2523 42.59096 14.06164 71.12028
## 2524 42.35897 13.83128 70.88665
## 2525 42.32680 13.79832 70.85529
## 2526 42.53063 14.00298 71.05828
## 2527 42.38788 13.86070 70.91507
## 2528 42.54387 14.01593 71.07181
## 2529 42.20861 13.67505 70.74216
## 2530 42.70092 14.16630 71.23554
## 2531 42.65676 14.12462 71.18891
## 2532 42.46667 13.93983 70.99350
## 2533 42.71378 14.17834 71.24921
## 2534 42.33248 13.80415 70.86081
## 2535 42.65923 14.12696 71.19150
## 2536 42.43469 13.90790 70.96149
## 2537 42.53851 14.01070 71.06633
## 2538 42.48438 13.95742 71.01134
## 2539 42.68736 14.15355 71.22117
## 2540 42.51993 13.99249 71.04738
## 2541 42.68315 14.14958 71.21671
## 2542 42.47341 13.94653 71.00028
## 2543 42.71965 14.18384 71.25547
## 2544 42.40166 13.87465 70.92868
## 2545 42.45716 13.93036 70.98395
## 2546 42.32291 13.79431 70.85151
## 2547 42.50201 13.97485 71.02917
## 2548 42.58164 14.05263 71.11064
## 2549 42.42473 13.89790 70.95156
## 2550 42.58416 14.05507 71.11324
## 2551 42.45255 13.92576 70.97934
## 2552 42.47072 13.94386 70.99757
## 2553 42.41754 13.89066 70.94442
## 2554 42.58553 14.05639 71.11466
## 2555 42.52116 13.99370 71.04863
## 2556 42.52980 14.00217 71.05743
## 2557 42.68415 14.15052 71.21778
## 2558 42.31258 13.78366 70.84150
## 2559 42.36156 13.83392 70.88919
## 2560 42.53757 14.00977 71.06536
## 2561 42.26021 13.72928 70.79113
## 2562 42.58187 14.05286 71.11088
## 2563 42.35817 13.83047 70.88588
## 2564 42.31008 13.78108 70.83908
## 2565 42.45917 13.93236 70.98597
## 2566 42.61059 14.08054 71.14065
## 2567 42.64613 14.11452 71.17775
## 2568 42.36852 13.84102 70.89602
## 2569 42.61476 14.08454 71.14498
## 2570 42.57092 14.04225 71.09958
## 2571 42.31155 13.78260 70.84051
## 2572 42.61504 14.08480 71.14527
## 2573 42.67040 14.13754 71.20326
## 2574 42.47254 13.94568 70.99941
## 2575 42.25173 13.72041 70.78305
## 2576 42.64522 14.11364 71.17679
## 2577 42.72715 14.19083 71.26347
## 2578 42.35928 13.83159 70.88696
## 2579 42.45431 13.92753 70.98110
## 2580 42.22654 13.69397 70.75911
## 2581 42.54338 14.01545 71.07131
## 2582 42.63794 14.10671 71.16917
## 2583 42.54099 14.01312 71.06886
## 2584 42.21113 13.67772 70.74454
## 2585 42.47908 13.95216 71.00599
## 2586 42.19164 13.65708 70.72620
## 2587 42.69462 14.16038 71.22886
## 2588 42.38672 13.85952 70.91392
## 2589 42.70065 14.16604 71.23525
## 2590 42.56841 14.03981 71.09700
## 2591 42.57297 14.04424 71.10170
## 2592 42.44463 13.91785 70.97141
## 2593 42.21240 13.67906 70.74574
## 2594 42.44710 13.92032 70.97388
## 2595 42.39241 13.86528 70.91953
## 2596 42.69892 14.16442 71.23342
## 2597 42.35992 13.83225 70.88759
## 2598 42.25596 13.72483 70.78708
## 2599 42.55141 14.02328 71.07954
## 2600 42.21340 13.68011 70.74668
## 2601 42.67995 14.14657 71.21334
## 2602 42.69232 14.15822 71.22643
## 2603 42.69003 14.15606 71.22399
## 2604 42.49163 13.96460 71.01867
## 2605 42.16967 13.63370 70.70563
## 2606 42.59649 14.06697 71.12600
## 2607 42.34492 13.81691 70.87293
## 2608 42.59565 14.06617 71.12514
## 2609 42.28018 13.75010 70.81026
## 2610 42.34206 13.81398 70.87013
## 2611 42.38964 13.86248 70.91680
## 2612 42.68549 14.15179 71.21919
## 2613 42.72321 14.18715 71.25926
## 2614 42.23798 13.70599 70.76996
## 2615 42.23209 13.69981 70.76437
## 2616 42.69310 14.15895 71.22725
## 2617 42.51121 13.98391 71.03851
## 2618 42.71962 14.18381 71.25544
## 2619 42.52213 13.99464 71.04961
## 2620 42.43413 13.90733 70.96093
## 2621 42.37153 13.84408 70.89897
## 2622 42.56606 14.03754 71.09459
## 2623 42.24933 13.71790 70.78076
## 2624 42.51055 13.98327 71.03784
## 2625 42.33297 13.80465 70.86128
## 2626 42.59442 14.06498 71.12386
## 2627 42.33526 13.80701 70.86351
## 2628 42.51023 13.98294 71.03751
## 2629 42.18888 13.65415 70.72361
## 2630 42.53427 14.00655 71.06200
## 2631 42.30788 13.77881 70.83695
## 2632 42.30262 13.77337 70.83187
## 2633 42.47660 13.94971 71.00350
## 2634 42.22454 13.69187 70.75722
## 2635 42.22354 13.69081 70.75627
## 2636 42.41343 13.88653 70.94034
## 2637 42.20996 13.67648 70.74344
## 2638 42.51687 13.98948 71.04426
## 2639 42.19563 13.66131 70.72994
## 2640 42.65889 14.12664 71.19114
## 2641 42.52295 13.99545 71.05045
## 2642 42.50409 13.97690 71.03128
## 2643 42.70249 14.16777 71.23721
## 2644 42.21932 13.68636 70.75228
## 2645 42.52941 14.00178 71.05703
## 2646 42.26941 13.73889 70.79994
## 2647 42.18868 13.65393 70.72342
## 2648 42.47501 13.94813 71.00190
## 2649 42.72741 14.19108 71.26375
## 2650 42.44205 13.91527 70.96884
## 2651 42.60792 14.07797 71.13787
## 2652 42.60911 14.07912 71.13911
## 2653 42.60288 14.07312 71.13263
## 2654 42.41093 13.88401 70.93786
## 2655 42.52627 13.99870 71.05383
## 2656 42.38443 13.85720 70.91167
## 2657 42.42856 13.90174 70.95537
## 2658 42.23540 13.70329 70.76752
## 2659 42.56537 14.03687 71.09388
## 2660 42.63747 14.10626 71.16868
## 2661 42.61054 14.08049 71.14060
## 2662 42.34075 13.81264 70.86886
## 2663 42.34398 13.81595 70.87200
## 2664 42.59681 14.06728 71.12633
## 2665 42.70979 14.17461 71.24497
## 2666 42.23762 13.70562 70.76962
## 2667 42.60030 14.07064 71.12996
## 2668 42.26769 13.73709 70.79829
## 2669 42.26364 13.73286 70.79441
## 2670 42.35137 13.82351 70.87922
## 2671 42.21122 13.67781 70.74463
## 2672 42.32635 13.79785 70.85484
## 2673 42.22238 13.68959 70.75517
## 2674 42.72337 14.18731 71.25944
## 2675 42.45499 13.92820 70.98178
## 2676 42.51095 13.98365 71.03824
## 2677 42.65131 14.11944 71.18318
## 2678 42.31156 13.78260 70.84051
## 2679 42.50470 13.97750 71.03190
## 2680 42.37972 13.85241 70.90702
## 2681 42.53843 14.01062 71.06625
## 2682 42.67771 14.14445 71.21097
## 2683 42.65468 14.12264 71.18672
## 2684 42.40092 13.87389 70.92794
## 2685 42.59928 14.06966 71.12890
## 2686 42.37694 13.84959 70.90430
## 2687 42.65112 14.11926 71.18298
## 2688 42.40815 13.88120 70.93510
## 2689 42.26437 13.73362 70.79511
## 2690 42.42832 13.90151 70.95514
## 2691 42.30445 13.77527 70.83364
## 2692 42.51701 13.98962 71.04440
## 2693 42.40626 13.87929 70.93323
## 2694 42.42756 13.90074 70.95438
## 2695 42.50920 13.98194 71.03647
## 2696 42.40994 13.88300 70.93687
## 2697 42.40038 13.87336 70.92741
## 2698 42.25702 13.72595 70.78809
## 2699 42.47287 13.94600 70.99974
## 2700 42.28798 13.75820 70.81776
## 2701 42.32356 13.79499 70.85214
## 2702 42.64511 14.11354 71.17668
## 2703 42.58545 14.05631 71.11458
## 2704 42.27558 13.74531 70.80585
## 2705 42.29149 13.76184 70.82113
## 2706 42.63426 14.10320 71.16532
## 2707 42.21783 13.68479 70.75087
## 2708 42.52013 13.99268 71.04758
## 2709 42.17060 13.63470 70.70650
## 2710 42.35128 13.82342 70.87913
## 2711 42.39332 13.86621 70.92044
## 2712 42.55286 14.02470 71.08102
## 2713 42.17681 13.64132 70.71230
## 2714 42.19788 13.66370 70.73206
## 2715 42.43690 13.91011 70.96369
## 2716 42.56511 14.03661 71.09360
## 2717 42.24094 13.70910 70.77277
## 2718 42.71412 14.17866 71.24957
## 2719 42.40101 13.87399 70.92803
## 2720 42.39453 13.86744 70.92163
## 2721 42.22943 13.69702 70.76185
## 2722 42.56390 14.03544 71.09237
## 2723 42.45257 13.92578 70.97936
## 2724 42.70125 14.16661 71.23590
## 2725 42.44356 13.91678 70.97034
## 2726 42.66286 14.13040 71.19532
## 2727 42.71564 14.18008 71.25119
## 2728 42.48266 13.95572 71.00961
## 2729 42.31629 13.78748 70.84509
## 2730 42.46139 13.93457 70.98820
## 2731 42.51024 13.98296 71.03753
## 2732 42.53419 14.00646 71.06191
## 2733 42.25484 13.72366 70.78601
## 2734 42.36141 13.83377 70.88905
## 2735 42.40467 13.87769 70.93165
## 2736 42.21962 13.68668 70.75257
## 2737 42.26789 13.73730 70.79848
## 2738 42.59144 14.06210 71.12078
## 2739 42.46583 13.93900 70.99266
## 2740 42.21750 13.68445 70.75056
## 2741 42.29772 13.76830 70.82715
## 2742 42.64060 14.10925 71.17196
## 2743 42.43227 13.90547 70.95908
## 2744 42.38740 13.86021 70.91459
## 2745 42.36648 13.83894 70.89402
## 2746 42.28872 13.75897 70.81847
## 2747 42.22272 13.68994 70.75549
## 2748 42.24658 13.71502 70.77814
## 2749 42.46778 13.94094 70.99462
## 2750 42.67529 14.14216 71.20841
## 2751 42.35982 13.83215 70.88749
## 2752 42.19790 13.66372 70.73208
## 2753 42.25671 13.72562 70.78779
## 2754 42.59125 14.06192 71.12058
## 2755 42.34440 13.81638 70.87242
## 2756 42.28959 13.75987 70.81931
## 2757 42.69494 14.16068 71.22920
## 2758 42.53917 14.01134 71.06700
## 2759 42.32315 13.79455 70.85174
## 2760 42.42800 13.90118 70.95482
## 2761 42.33843 13.81026 70.86660
## 2762 42.22385 13.69114 70.75657
## 2763 42.39695 13.86989 70.92402
## 2764 42.21252 13.67918 70.74585
## 2765 42.45740 13.93060 70.98420
## 2766 42.68979 14.15583 71.22374
## 2767 42.69825 14.16379 71.23271
## 2768 42.60893 14.07894 71.13892
## 2769 42.20295 13.66907 70.73684
## 2770 42.29513 13.76562 70.82465
## 2771 42.27530 13.74502 70.80559
## 2772 42.57724 14.04838 71.10611
## 2773 42.43335 13.90655 70.96015
## 2774 42.65323 14.12126 71.18519
## 2775 42.18210 13.64695 70.71726
## 2776 42.24918 13.71775 70.78062
## 2777 42.21060 13.67716 70.74404
## 2778 42.53586 14.00810 71.06362
## 2779 42.54348 14.01555 71.07141
## 2780 42.68217 14.14866 71.21569
## 2781 42.60393 14.07414 71.13373
## 2782 42.40768 13.88072 70.93463
## 2783 42.45535 13.92856 70.98214
## 2784 42.66455 14.13200 71.19709
## 2785 42.39855 13.87150 70.92560
## 2786 42.61775 14.08741 71.14810
## 2787 42.21053 13.67708 70.74397
## 2788 42.69814 14.16369 71.23260
## 2789 42.60339 14.07361 71.13316
## 2790 42.60879 14.07881 71.13878
## 2791 42.17942 13.64410 70.71475
## 2792 42.72378 14.18769 71.25987
## 2793 42.45351 13.92672 70.98030
## 2794 42.20203 13.66809 70.73596
## 2795 42.65990 14.12760 71.19221
## 2796 42.38466 13.85743 70.91189
## 2797 42.42218 13.89533 70.94903
## 2798 42.26729 13.73668 70.79791
## 2799 42.41101 13.88408 70.93794
## 2800 42.27539 13.74512 70.80567
## 2801 42.69194 14.15786 71.22603
## 2802 42.41159 13.88467 70.93851
## 2803 42.67124 14.13834 71.20415
## 2804 42.68209 14.14858 71.21559
## 2805 42.65104 14.11918 71.18290
## 2806 42.20315 13.66928 70.73703
## 2807 42.46990 13.94304 70.99675
## 2808 42.65992 14.12762 71.19223
## 2809 42.49121 13.96418 71.01824
## 2810 42.25787 13.72683 70.78890
## 2811 42.45748 13.93068 70.98428
## 2812 42.23539 13.70328 70.76750
## 2813 42.39257 13.86545 70.91970
## 2814 42.71353 14.17811 71.24895
## 2815 42.54373 14.01580 71.07167
## 2816 42.48274 13.95580 71.00969
## 2817 42.50111 13.97396 71.02826
## 2818 42.37683 13.84948 70.90418
## 2819 42.52454 13.99701 71.05207
## 2820 42.36581 13.83826 70.89336
## 2821 42.62003 14.08959 71.15047
## 2822 42.22503 13.69238 70.75768
## 2823 42.45921 13.93241 70.98601
## 2824 42.47990 13.95298 71.00683
## 2825 42.41416 13.88726 70.94106
## 2826 42.25884 13.72785 70.78983
## 2827 42.30220 13.77293 70.83146
## 2828 42.72333 14.18727 71.25939
## 2829 42.58676 14.05758 71.11593
## 2830 42.35829 13.83058 70.88599
## 2831 42.25845 13.72744 70.78946
## 2832 42.69386 14.15967 71.22806
## 2833 42.51189 13.98458 71.03919
## 2834 42.25587 13.72474 70.78699
## 2835 42.38812 13.86093 70.91530
## 2836 42.62530 14.09463 71.15596
## 2837 42.56339 14.03495 71.09184
## 2838 42.44484 13.91806 70.97162
## 2839 42.48971 13.96270 71.01673
## 2840 42.56115 14.03277 71.08953
## 2841 42.68535 14.15165 71.21904
## 2842 42.72052 14.18464 71.25639
## 2843 42.32935 13.80094 70.85777
## 2844 42.56365 14.03520 71.09211
## 2845 42.68668 14.15291 71.22046
## 2846 42.56638 14.03785 71.09491
## 2847 42.59696 14.06742 71.12649
## 2848 42.56765 14.03908 71.09622
## 2849 42.40486 13.87788 70.93184
## 2850 42.68564 14.15193 71.21935
## 2851 42.21218 13.67882 70.74553
## 2852 42.69632 14.16198 71.23066
## 2853 42.50972 13.98245 71.03699
## 2854 42.28784 13.75805 70.81763
## 2855 42.56489 14.03640 71.09338
## 2856 42.45033 13.92355 70.97712
## 2857 42.21418 13.68094 70.74742
## 2858 42.41467 13.88777 70.94157
## 2859 42.72298 14.18694 71.25902
## 2860 42.17246 13.63668 70.70824
## 2861 42.47355 13.94667 71.00042
## 2862 42.52187 13.99439 71.04935
## 2863 42.56169 14.03329 71.09009
## 2864 42.21004 13.67656 70.74351
## 2865 42.72705 14.19073 71.26336
## 2866 42.28790 13.75811 70.81768
## 2867 42.28604 13.75619 70.81590
## 2868 42.48802 13.96102 71.01501
## 2869 42.60025 14.07059 71.12990
## 2870 42.53966 14.01182 71.06750
## 2871 42.69331 14.15915 71.22747
## 2872 42.20194 13.66800 70.73588
## 2873 42.49973 13.97260 71.02686
## 2874 42.56581 14.03730 71.09433
## 2875 42.58705 14.05786 71.11624
## 2876 42.26713 13.73650 70.79775
## 2877 42.56144 14.03305 71.08983
## 2878 42.40219 13.87519 70.92920
## 2879 42.29494 13.76542 70.82446
## 2880 42.20545 13.67171 70.73918
## 2881 42.19841 13.66426 70.73256
## 2882 42.47073 13.94387 70.99759
## 2883 42.18359 13.64853 70.71865
## 2884 42.50473 13.97753 71.03193
## 2885 42.70326 14.16849 71.23803
## 2886 42.26544 13.73474 70.79614
## 2887 42.36732 13.83979 70.89484
## 2888 42.68557 14.15187 71.21928
## 2889 42.71557 14.18002 71.25112
## 2890 42.36573 13.83818 70.89329
## 2891 42.43396 13.90716 70.96076
## 2892 42.35503 13.82725 70.88280
## 2893 42.55948 14.03114 71.08782
## 2894 42.46324 13.93643 70.99006
## 2895 42.21368 13.68041 70.74695
## 2896 42.58050 14.05153 71.10946
## 2897 42.21542 13.68225 70.74859
## 2898 42.21439 13.68116 70.74762
## 2899 42.60763 14.07770 71.13757
## 2900 42.69329 14.15913 71.22745
## 2901 42.33330 13.80500 70.86161
## 2902 42.56598 14.03746 71.09450
## 2903 42.72785 14.19149 71.26422
## 2904 42.67552 14.14238 71.20866
## 2905 42.27156 13.74112 70.80200
## 2906 42.58492 14.05581 71.11404
## 2907 42.61506 14.08483 71.14530
## 2908 42.50429 13.97710 71.03149
## 2909 42.59501 14.06554 71.12447
## 2910 42.33534 13.80709 70.86359
## 2911 42.69466 14.16041 71.22890
## 2912 42.53066 14.00301 71.05831
## 2913 42.21292 13.67961 70.74623
## 2914 42.40480 13.87781 70.93178
## 2915 42.64139 14.11000 71.17278
## 2916 42.26542 13.73472 70.79611
## 2917 42.56877 14.04017 71.09737
## 2918 42.20627 13.67258 70.73996
## 2919 42.42730 13.90048 70.95413
## 2920 42.40467 13.87769 70.93166
## 2921 42.47171 13.94485 70.99857
## 2922 42.62964 14.09878 71.16049
## 2923 42.35517 13.82740 70.88294
## 2924 42.22300 13.69025 70.75576
## 2925 42.33159 13.80323 70.85994
## 2926 42.52298 13.99548 71.05048
## 2927 42.53928 14.01145 71.06712
## 2928 42.27031 13.73982 70.80080
## 2929 42.53330 14.00560 71.06101
## 2930 42.19905 13.66494 70.73317
## 2931 42.53078 14.00313 71.05843
## 2932 42.54274 14.01483 71.07065
## 2933 42.29615 13.76668 70.82563
## 2934 42.31947 13.79077 70.84817
## 2935 42.46501 13.93819 70.99184
## 2936 42.20558 13.67185 70.73931
## 2937 42.69799 14.16355 71.23244
## 2938 42.18658 13.65170 70.72145
## 2939 42.59194 14.06258 71.12129
## 2940 42.37558 13.84821 70.90296
## 2941 42.48971 13.96269 71.01672
## 2942 42.48469 13.95773 71.01166
## 2943 42.18760 13.65279 70.72241
## 2944 42.52227 13.99478 71.04975
## 2945 42.23353 13.70132 70.76574
## 2946 42.24894 13.71749 70.78038
## 2947 42.22690 13.69434 70.75945
## 2948 42.69890 14.16440 71.23339
## 2949 42.39694 13.86988 70.92401
## 2950 42.38690 13.85970 70.91410
## 2951 42.22188 13.68906 70.75470
## 2952 42.61204 14.08193 71.14216
## 2953 42.49563 13.96855 71.02271
## 2954 42.72312 14.18707 71.25916
## 2955 42.44358 13.91680 70.97036
## 2956 42.67485 14.14175 71.20795
## 2957 42.33669 13.80847 70.86490
## 2958 42.58555 14.05642 71.11469
## 2959 42.18032 13.64505 70.71559
## 2960 42.34096 13.81286 70.86907
## 2961 42.55058 14.02247 71.07868
## 2962 42.23556 13.70346 70.76767
## 2963 42.68342 14.14983 71.21700
## 2964 42.70586 14.17093 71.24079
## 2965 42.25468 13.72350 70.78586
## 2966 42.69810 14.16365 71.23255
## 2967 42.22635 13.69377 70.75893
## 2968 42.45395 13.92716 70.98074
## 2969 42.23943 13.70752 70.77134
## 2970 42.67895 14.14562 71.21228
## 2971 42.47320 13.94633 71.00007
## 2972 42.69186 14.15778 71.22593
## 2973 42.49988 13.97275 71.02702
## 2974 42.63785 14.10662 71.16908
## 2975 42.37147 13.84403 70.89892
## 2976 42.70648 14.17151 71.24145
## 2977 42.42539 13.89856 70.95222
## 2978 42.45910 13.93230 70.98590
## 2979 42.27459 13.74428 70.80490
## 2980 42.30875 13.77971 70.83779
## 2981 42.29570 13.76621 70.82519
## 2982 42.28569 13.75582 70.81555
## 2983 42.23187 13.69958 70.76416
## 2984 42.57699 14.04814 71.10585
## 2985 42.59771 14.06815 71.12727
## 2986 42.19122 13.65663 70.72580
## 2987 42.41399 13.88708 70.94089
## 2988 42.64112 14.10974 71.17249
## 2989 42.67229 14.13932 71.20525
## 2990 42.34335 13.81531 70.87140
## 2991 42.51965 13.99221 71.04709
## 2992 42.38210 13.85483 70.90937
## 2993 42.38056 13.85326 70.90785
## 2994 42.58852 14.05928 71.11776
## 2995 42.68598 14.15225 71.21972
## 2996 42.65629 14.12417 71.18841
## 2997 42.60284 14.07309 71.13260
## 2998 42.22873 13.69628 70.76119
## 2999 42.55451 14.02630 71.08271
## 3000 42.54040 14.01254 71.06826
## 3001 42.69909 14.16458 71.23360
## 3002 42.17255 13.63678 70.70833
## 3003 42.57642 14.04758 71.10526
## 3004 42.67174 14.13881 71.20467
## 3005 42.48701 13.96002 71.01399
## 3006 42.72236 14.18636 71.25835
## 3007 42.65736 14.12519 71.18953
## 3008 42.48940 13.96239 71.01641
## 3009 42.71290 14.17752 71.24828
## 3010 42.32157 13.79293 70.85021
## 3011 42.42598 13.89915 70.95281
## 3012 42.55398 14.02579 71.08217
## 3013 42.23755 13.70554 70.76955
## 3014 42.29115 13.76149 70.82081
## 3015 42.49513 13.96806 71.02221
## 3016 42.23365 13.70145 70.76585
## 3017 42.63384 14.10279 71.16488
## 3018 42.60562 14.07576 71.13547
## 3019 42.25759 13.72654 70.78863
## 3020 42.38622 13.85902 70.91343
## 3021 42.53245 14.00477 71.06014
## 3022 42.30775 13.77867 70.83682
## 3023 42.60692 14.07701 71.13683
## 3024 42.66382 14.13131 71.19633
## 3025 42.34208 13.81400 70.87015
## 3026 42.69331 14.15915 71.22748
## 3027 42.38223 13.85497 70.90950
## 3028 42.22292 13.69016 70.75569
## 3029 42.28720 13.75739 70.81701
## 3030 42.41724 13.89036 70.94412
## 3031 42.22481 13.69215 70.75747
## 3032 42.32825 13.79981 70.85670
## 3033 42.63693 14.10574 71.16811
## 3034 42.27885 13.74872 70.80899
## 3035 42.42664 13.89981 70.95346
## 3036 42.27078 13.74031 70.80125
## 3037 42.35618 13.82843 70.88393
## 3038 42.63961 14.10831 71.17092
## 3039 42.25845 13.72744 70.78946
## 3040 42.30615 13.77702 70.83528
## 3041 42.64360 14.11211 71.17510
## 3042 42.24863 13.71717 70.78009
## 3043 42.36876 13.84126 70.89625
## 3044 42.24478 13.71313 70.77642
## 3045 42.37173 13.84429 70.89917
## 3046 42.70017 14.16560 71.23475
## 3047 42.46239 13.93557 70.98920
## 3048 42.70853 14.17343 71.24363
## 3049 42.24316 13.71144 70.77489
## 3050 42.48265 13.95571 71.00960
## 3051 42.60082 14.07115 71.13050
## 3052 42.20555 13.67181 70.73928
## 3053 42.63652 14.10536 71.16768
## 3054 42.50036 13.97322 71.02750
## 3055 42.66002 14.12771 71.19233
## 3056 42.27632 13.74608 70.80656
## 3057 42.19513 13.66078 70.72948
## 3058 42.59815 14.06858 71.12773
## 3059 42.44385 13.91706 70.97063
## 3060 42.67301 14.14001 71.20601
## 3061 42.46351 13.93670 70.99033
## 3062 42.40190 13.87489 70.92891
## 3063 42.72669 14.19041 71.26298
## 3064 42.57592 14.04710 71.10474
## 3065 42.18078 13.64554 70.71602
## 3066 42.66578 14.13317 71.19839
## 3067 42.29322 13.76363 70.82280
## 3068 42.45549 13.92870 70.98228
## 3069 42.72546 14.18926 71.26167
## 3070 42.41232 13.88540 70.93923
## 3071 42.71757 14.18189 71.25326
## 3072 42.32998 13.80158 70.85837
## 3073 42.51730 13.98990 71.04469
## 3074 42.61276 14.08262 71.14290
## 3075 42.35554 13.82778 70.88330
## 3076 42.30330 13.77408 70.83253
## 3077 42.45785 13.93105 70.98464
## 3078 42.27853 13.74838 70.80868
## 3079 42.49810 13.97099 71.02521
## 3080 42.28182 13.75180 70.81184
## 3081 42.27478 13.74448 70.80508
## 3082 42.25949 13.72853 70.79045
## 3083 42.37362 13.84621 70.90103
## 3084 42.64882 14.11707 71.18057
## 3085 42.51149 13.98419 71.03879
## 3086 42.49025 13.96323 71.01727
## 3087 42.35720 13.82947 70.88493
## 3088 42.32756 13.79909 70.85602
## 3089 42.41018 13.88325 70.93711
## 3090 42.65776 14.12557 71.18996
## 3091 42.22485 13.69219 70.75751
## 3092 42.68306 14.14949 71.21662
## 3093 42.33845 13.81028 70.86662
## 3094 42.31557 13.78675 70.84440
## 3095 42.42572 13.89890 70.95255
## 3096 42.65422 14.12221 71.18624
## 3097 42.56133 14.03294 71.08972
## 3098 42.72715 14.19083 71.26346
## 3099 42.42278 13.89593 70.94962
## 3100 42.28977 13.76006 70.81948
## 3101 42.54240 14.01450 71.07031
## 3102 42.27415 13.74382 70.80448
## 3103 42.30586 13.77672 70.83500
## 3104 42.42178 13.89493 70.94863
## 3105 42.37172 13.84428 70.89916
## 3106 42.22101 13.68815 70.75388
## 3107 42.48398 13.95702 71.01094
## 3108 42.27881 13.74867 70.80895
## 3109 42.28044 13.75037 70.81052
## 3110 42.48697 13.95998 71.01395
## 3111 42.71171 14.17641 71.24701
## 3112 42.55141 14.02329 71.07954
## 3113 42.43852 13.91173 70.96531
## 3114 42.58421 14.05512 71.11330
## 3115 42.61761 14.08727 71.14795
## 3116 42.32832 13.79988 70.85677
## 3117 42.69310 14.15895 71.22725
## 3118 42.57941 14.05048 71.10834
## 3119 42.18424 13.64922 70.71926
## 3120 42.28182 13.75180 70.81184
## 3121 42.23005 13.69767 70.76244
## 3122 42.40384 13.87685 70.93084
## 3123 42.65805 14.12584 71.19026
## 3124 42.23965 13.70775 70.77155
## 3125 42.55126 14.02314 71.07938
## 3126 42.44528 13.91850 70.97206
## 3127 42.26129 13.73041 70.79217
## 3128 42.32020 13.79152 70.84888
## 3129 42.44436 13.91758 70.97114
## 3130 42.36377 13.83618 70.89136
## 3131 42.48779 13.96080 71.01478
## 3132 42.28774 13.75795 70.81753
## 3133 42.68269 14.14915 71.21624
## 3134 42.19750 13.66330 70.73171
## 3135 42.31835 13.78961 70.84709
## 3136 42.61736 14.08703 71.14769
## 3137 42.56381 14.03535 71.09227
## 3138 42.27963 13.74953 70.80974
## 3139 42.57175 14.04306 71.10045
## 3140 42.65844 14.12621 71.19067
## 3141 42.20626 13.67257 70.73995
## 3142 42.32361 13.79503 70.85219
## 3143 42.44303 13.91625 70.96981
## 3144 42.29513 13.76561 70.82464
## 3145 42.31969 13.79099 70.84838
## 3146 42.35499 13.82722 70.88276
## 3147 42.27653 13.74630 70.80676
## 3148 42.59230 14.06294 71.12167
## 3149 42.61962 14.08920 71.15004
## 3150 42.39177 13.86464 70.91891
## 3151 42.29127 13.76161 70.82092
## 3152 42.59191 14.06256 71.12126
## 3153 42.49315 13.96610 71.02020
## 3154 42.67074 14.13786 71.20361
## 3155 42.54791 14.01987 71.07594
## 3156 42.65531 14.12324 71.18738
## 3157 42.64506 14.11349 71.17662
## 3158 42.20736 13.67373 70.74099
## 3159 42.61125 14.08117 71.14133
## 3160 42.29030 13.76061 70.81999
## 3161 42.27087 13.74041 70.80134
## 3162 42.60388 14.07409 71.13368
## 3163 42.29491 13.76538 70.82443
## 3164 42.31144 13.78248 70.84039
## 3165 42.40701 13.88005 70.93397
## 3166 42.21590 13.68275 70.74904
## 3167 42.19920 13.66510 70.73331
## 3168 42.33493 13.80667 70.86319
## 3169 42.45432 13.92753 70.98111
## 3170 42.36886 13.84137 70.89636
## 3171 42.21484 13.68163 70.74804
## 3172 42.69311 14.15896 71.22726
## 3173 42.21899 13.68601 70.75196
## 3174 42.17599 13.64044 70.71154
## 3175 42.50494 13.97773 71.03214
## 3176 42.55497 14.02676 71.08319
## 3177 42.56893 14.04033 71.09754
## 3178 42.38903 13.86186 70.91620
## 3179 42.69207 14.15798 71.22616
## 3180 42.17064 13.63474 70.70654
## 3181 42.40321 13.87621 70.93021
## 3182 42.63493 14.10383 71.16602
## 3183 42.22680 13.69425 70.75936
## 3184 42.35281 13.82498 70.88063
## 3185 42.20615 13.67246 70.73985
## 3186 42.21526 13.68208 70.74844
## 3187 42.45888 13.93208 70.98568
## 3188 42.65945 14.12717 71.19173
## 3189 42.67895 14.14562 71.21228
## 3190 42.30681 13.77770 70.83591
## 3191 42.37508 13.84769 70.90246
## 3192 42.62734 14.09659 71.15809
## 3193 42.71043 14.17521 71.24565
## 3194 42.56662 14.03808 71.09516
## 3195 42.29166 13.76202 70.82131
## 3196 42.19445 13.66006 70.72884
## 3197 42.21048 13.67703 70.74393
## 3198 42.44706 13.92028 70.97384
## 3199 42.56337 14.03492 71.09181
## 3200 42.60989 14.07986 71.13991
## 3201 42.63888 14.10761 71.17016
## 3202 42.69289 14.15876 71.22703
## 3203 42.32104 13.79238 70.84969
## 3204 42.34867 13.82075 70.87658
## 3205 42.44775 13.92097 70.97453
## 3206 42.35737 13.82965 70.88509
## 3207 42.67945 14.14609 71.21281
## 3208 42.59869 14.06909 71.12829
## 3209 42.47720 13.95030 71.00410
## 3210 42.50774 13.98050 71.03499
## 3211 42.42750 13.90068 70.95432
## 3212 42.68706 14.15327 71.22086
## 3213 42.50842 13.98117 71.03567
## 3214 42.61612 14.08584 71.14640
## 3215 42.28861 13.75886 70.81837
## 3216 42.49382 13.96677 71.02088
## 3217 42.41919 13.89233 70.94606
## 3218 42.18519 13.65023 70.72015
## 3219 42.53795 14.01014 71.06575
## 3220 42.45313 13.92634 70.97992
## 3221 42.42789 13.90107 70.95471
## 3222 42.57108 14.04241 71.09975
## 3223 42.68463 14.15098 71.21829
## 3224 42.45626 13.92946 70.98305
## 3225 42.66586 14.13325 71.19848
## 3226 42.31229 13.78336 70.84121
## 3227 42.28273 13.75274 70.81271
## 3228 42.32809 13.79965 70.85654
## 3229 42.38769 13.86050 70.91488
## 3230 42.71558 14.18002 71.25113
## 3231 42.36569 13.83814 70.89324
## 3232 42.63090 14.09999 71.16181
## 3233 42.39044 13.86330 70.91759
## 3234 42.25625 13.72514 70.78735
## 3235 42.23304 13.70081 70.76528
## 3236 42.33684 13.80863 70.86505
## 3237 42.60081 14.07113 71.13049
## 3238 42.27633 13.74610 70.80657
## 3239 42.49294 13.96589 71.01999
## 3240 42.63893 14.10766 71.17021
## 3241 42.52918 14.00156 71.05680
## 3242 42.35574 13.82799 70.88350
## 3243 42.30802 13.77895 70.83708
## 3244 42.17205 13.63625 70.70786
## 3245 42.68175 14.14826 71.21524
## 3246 42.31560 13.78678 70.84443
## 3247 42.44831 13.92153 70.97509
## 3248 42.32769 13.79922 70.85615
## 3249 42.50819 13.98094 71.03544
## 3250 42.43471 13.90791 70.96150
## 3251 42.28579 13.75592 70.81565
## 3252 42.47296 13.94609 70.99983
## 3253 42.39087 13.86373 70.91801
## 3254 42.58162 14.05261 71.11062
## 3255 42.22104 13.68817 70.75390
## 3256 42.61886 14.08847 71.14925
## 3257 42.67195 14.13901 71.20489
## 3258 42.20115 13.66716 70.73514
## 3259 42.50368 13.97650 71.03087
## 3260 42.39148 13.86434 70.91861
## 3261 42.62942 14.09857 71.16026
## 3262 42.39329 13.86618 70.92040
## 3263 42.40894 13.88200 70.93589
## 3264 42.30140 13.77211 70.83069
## 3265 42.28194 13.75192 70.81195
## 3266 42.21157 13.67818 70.74496
## 3267 42.34890 13.82099 70.87681
## 3268 42.60108 14.07140 71.13077
## 3269 42.45250 13.92572 70.97929
## 3270 42.55695 14.02868 71.08522
## 3271 42.46413 13.93731 70.99095
## 3272 42.29650 13.76704 70.82597
## 3273 42.37328 13.84586 70.90069
## 3274 42.71940 14.18360 71.25520
## 3275 42.39333 13.86622 70.92044
## 3276 42.70276 14.16802 71.23750
## 3277 42.18073 13.64549 70.71598
## 3278 42.52530 13.99775 71.05284
## 3279 42.27449 13.74418 70.80481
## 3280 42.65842 14.12620 71.19065
## 3281 42.59592 14.06642 71.12541
## 3282 42.64579 14.11419 71.17740
## 3283 42.38143 13.85415 70.90871
## 3284 42.48862 13.96162 71.01562
## 3285 42.19837 13.66421 70.73252
## 3286 42.28340 13.75344 70.81336
## 3287 42.72057 14.18469 71.25644
## 3288 42.38056 13.85326 70.90785
## 3289 42.54257 14.01466 71.07047
## 3290 42.22606 13.69347 70.75866
## 3291 42.33188 13.80354 70.86023
## 3292 42.25157 13.72025 70.78290
## 3293 42.19035 13.65571 70.72499
## 3294 42.71534 14.17981 71.25088
## 3295 42.30615 13.77702 70.83528
## 3296 42.61010 14.08006 71.14013
## 3297 42.58828 14.05906 71.11751
## 3298 42.28228 13.75228 70.81228
## 3299 42.43358 13.90679 70.96038
## 3300 42.48784 13.96084 71.01483
## 3301 42.54339 14.01546 71.07131
## 3302 42.54730 14.01928 71.07532
## 3303 42.49557 13.96849 71.02265
## 3304 42.24915 13.71771 70.78059
## 3305 42.28761 13.75782 70.81741
## 3306 42.19053 13.65590 70.72516
## 3307 42.39275 13.86563 70.91987
## 3308 42.47537 13.94848 71.00225
## 3309 42.51644 13.98906 71.04382
## 3310 42.32230 13.79368 70.85092
## 3311 42.63629 14.10514 71.16744
## 3312 42.70213 14.16743 71.23682
## 3313 42.49569 13.96861 71.02277
## 3314 42.20911 13.67558 70.74264
## 3315 42.59537 14.06589 71.12484
## 3316 42.67819 14.14490 71.21148
## 3317 42.45256 13.92577 70.97934
## 3318 42.62556 14.09489 71.15624
## 3319 42.72717 14.19085 71.26349
## 3320 42.17356 13.63785 70.70926
## 3321 42.37173 13.84429 70.89917
## 3322 42.44553 13.91875 70.97231
## 3323 42.22294 13.69018 70.75570
## 3324 42.30407 13.77487 70.83327
## 3325 42.54834 14.02029 71.07639
## 3326 42.57211 14.04341 71.10082
## 3327 42.18133 13.64613 70.71654
## 3328 42.36108 13.83343 70.88872
## 3329 42.64933 14.11756 71.18110
## 3330 42.68411 14.15049 71.21774
## 3331 42.72350 14.18743 71.25958
## 3332 42.71000 14.17481 71.24519
## 3333 42.66581 14.13320 71.19843
## 3334 42.49247 13.96542 71.01951
## 3335 42.56842 14.03982 71.09701
## 3336 42.43117 13.90436 70.95797
## 3337 42.46347 13.93665 70.99029
## 3338 42.37942 13.85211 70.90673
## 3339 42.35882 13.83112 70.88651
## 3340 42.44608 13.91930 70.97287
## 3341 42.64288 14.11142 71.17434
## 3342 42.18972 13.65504 70.72439
## 3343 42.72672 14.19043 71.26301
## 3344 42.41949 13.89263 70.94636
## 3345 42.66253 14.13009 71.19497
## 3346 42.47319 13.94632 71.00006
## 3347 42.28886 13.75912 70.81861
## 3348 42.50045 13.97331 71.02759
## 3349 42.35299 13.82517 70.88081
## 3350 42.34166 13.81357 70.86974
## 3351 42.63820 14.10696 71.16944
## 3352 42.26336 13.73257 70.79415
## 3353 42.19003 13.65537 70.72469
## 3354 42.57893 14.05002 71.10785
## 3355 42.59669 14.06717 71.12622
## 3356 42.32667 13.79818 70.85516
## 3357 42.34530 13.81730 70.87329
## 3358 42.54202 14.01412 71.06992
## 3359 42.25491 13.72374 70.78608
## 3360 42.55842 14.03011 71.08673
## 3361 42.34664 13.81867 70.87460
## 3362 42.61615 14.08587 71.14642
## 3363 42.60586 14.07599 71.13573
## 3364 42.71072 14.17549 71.24596
## 3365 42.50374 13.97655 71.03092
## 3366 42.25802 13.72699 70.78904
## 3367 42.51470 13.98735 71.04205
## 3368 42.56064 14.03227 71.08901
## 3369 42.52461 13.99708 71.05214
## 3370 42.60880 14.07882 71.13879
## 3371 42.60615 14.07627 71.13602
## 3372 42.59504 14.06557 71.12450
## 3373 42.21906 13.68609 70.75204
## 3374 42.72759 14.19124 71.26393
## 3375 42.17002 13.63408 70.70596
## 3376 42.63000 14.09913 71.16087
## 3377 42.17273 13.63697 70.70849
## 3378 42.33630 13.80807 70.86452
## 3379 42.70289 14.16814 71.23763
## 3380 42.29688 13.76743 70.82633
## 3381 42.42805 13.90123 70.95487
## 3382 42.61340 14.08323 71.14357
## 3383 42.28546 13.75558 70.81533
## 3384 42.17136 13.63551 70.70721
## 3385 42.44304 13.91626 70.96982
## 3386 42.50034 13.97320 71.02748
## 3387 42.38361 13.85637 70.91086
## 3388 42.39956 13.87252 70.92660
## 3389 42.50170 13.97454 71.02885
## 3390 42.53172 14.00405 71.05939
## 3391 42.44053 13.91374 70.96731
## 3392 42.29509 13.76558 70.82461
## 3393 42.43683 13.91004 70.96362
## 3394 42.67680 14.14359 71.21001
## 3395 42.51553 13.98816 71.04290
## 3396 42.34166 13.81358 70.86975
## 3397 42.72397 14.18787 71.26008
## 3398 42.22235 13.68956 70.75515
## 3399 42.48294 13.95600 71.00989
## 3400 42.62722 14.09647 71.15796
## 3401 42.44795 13.92117 70.97473
## 3402 42.63316 14.10215 71.16418
## 3403 42.37812 13.85079 70.90546
## 3404 42.42833 13.90151 70.95515
## 3405 42.71481 14.17931 71.25031
## 3406 42.18703 13.65219 70.72188
## 3407 42.30184 13.77257 70.83112
## 3408 42.27389 13.74355 70.80423
## 3409 42.36064 13.83298 70.88829
## 3410 42.52365 13.99614 71.05116
## 3411 42.52682 13.99925 71.05439
## 3412 42.54850 14.02045 71.07655
## 3413 42.58750 14.05830 71.11670
## 3414 42.43052 13.90371 70.95733
## 3415 42.58747 14.05827 71.11667
## 3416 42.33559 13.80735 70.86384
## 3417 42.45132 13.92453 70.97810
## 3418 42.62722 14.09647 71.15797
## 3419 42.57391 14.04515 71.10267
## 3420 42.41507 13.88818 70.94197
## 3421 42.38998 13.86283 70.91714
## 3422 42.45451 13.92772 70.98130
## 3423 42.23119 13.69886 70.76351
## 3424 42.24257 13.71081 70.77432
## 3425 42.38185 13.85457 70.90912
## 3426 42.19695 13.66271 70.73119
## 3427 42.17465 13.63902 70.71029
## 3428 42.23215 13.69987 70.76443
## 3429 42.20685 13.67319 70.74051
## 3430 42.41890 13.89203 70.94577
## 3431 42.37559 13.84822 70.90297
## 3432 42.16961 13.63365 70.70558
## 3433 42.40031 13.87328 70.92733
## 3434 42.67330 14.14028 71.20632
## 3435 42.55502 14.02680 71.08324
## 3436 42.18977 13.65510 70.72445
## 3437 42.30936 13.78033 70.83838
## 3438 42.31819 13.78945 70.84693
## 3439 42.44272 13.91594 70.96950
## 3440 42.44505 13.91827 70.97183
## 3441 42.47585 13.94896 71.00274
## 3442 42.70165 14.16699 71.23632
## 3443 42.55974 14.03139 71.08808
## 3444 42.38619 13.85898 70.91340
## 3445 42.50942 13.98215 71.03668
## 3446 42.56437 14.03589 71.09284
## 3447 42.68945 14.15551 71.22338
## 3448 42.18083 13.64559 70.71607
## 3449 42.42202 13.89518 70.94887
## 3450 42.35155 13.82370 70.87940
## 3451 42.28027 13.75019 70.81035
## 3452 42.41780 13.89093 70.94468
## 3453 42.52491 13.99737 71.05244
## 3454 42.19609 13.66181 70.73038
## 3455 42.65291 14.12096 71.18487
## 3456 42.33403 13.80574 70.86231
## 3457 42.25167 13.72035 70.78299
## 3458 42.60538 14.07553 71.13523
## 3459 42.32708 13.79860 70.85556
## 3460 42.48282 13.95587 71.00976
## 3461 42.58377 14.05470 71.11285
## 3462 42.22556 13.69294 70.75818
## 3463 42.22725 13.69472 70.75978
## 3464 42.22836 13.69588 70.76083
## 3465 42.65555 14.12346 71.18763
## 3466 42.28908 13.75934 70.81881
## 3467 42.58431 14.05522 71.11340
## 3468 42.24930 13.71787 70.78073
## 3469 42.19880 13.66467 70.73293
## 3470 42.60860 14.07862 71.13857
## 3471 42.63659 14.10542 71.16776
## 3472 42.45000 13.92322 70.97678
## 3473 42.52511 13.99758 71.05265
## 3474 42.17586 13.64030 70.71142
## 3475 42.59355 14.06413 71.12296
## 3476 42.60657 14.07667 71.13646
## 3477 42.66652 14.13387 71.19917
## 3478 42.56267 14.03424 71.09110
## 3479 42.31503 13.78619 70.84387
## 3480 42.58275 14.05371 71.11180
## 3481 42.61627 14.08599 71.14656
## 3482 42.19898 13.66486 70.73310
## 3483 42.41374 13.88684 70.94065
## 3484 42.56448 14.03600 71.09295
## 3485 42.48939 13.96238 71.01640
## 3486 42.24423 13.71256 70.77591
## 3487 42.65539 14.12332 71.18747
## 3488 42.65085 14.11900 71.18270
## 3489 42.68405 14.15043 71.21767
## 3490 42.57393 14.04517 71.10269
## 3491 42.44157 13.91478 70.96835
## 3492 42.35309 13.82527 70.88090
## 3493 42.49410 13.96703 71.02116
## 3494 42.37124 13.84379 70.89869
## 3495 42.64221 14.11078 71.17364
## 3496 42.46199 13.93518 70.98881
## 3497 42.23200 13.69972 70.76429
## 3498 42.55661 14.02835 71.08487
## 3499 42.31089 13.78192 70.83986
## 3500 42.38853 13.86136 70.91571
## 3501 42.49797 13.97086 71.02508
## 3502 42.67394 14.14089 71.20699
## 3503 42.35393 13.82613 70.88173
## 3504 42.36790 13.84039 70.89541
## 3505 42.54516 14.01719 71.07313
## 3506 42.66861 14.13585 71.20138
## 3507 42.70118 14.16654 71.23581
## 3508 42.17494 13.63933 70.71056
## 3509 42.22206 13.68925 70.75487
## 3510 42.41725 13.89038 70.94413
## 3511 42.54873 14.02067 71.07678
## 3512 42.59492 14.06546 71.12438
## 3513 42.21377 13.68050 70.74703
## 3514 42.17758 13.64213 70.71302
## 3515 42.44546 13.91868 70.97224
## 3516 42.31809 13.78934 70.84683
## 3517 42.28853 13.75877 70.81829
## 3518 42.43993 13.91314 70.96671
## 3519 42.61959 14.08917 71.15001
## 3520 42.64981 14.11801 71.18161
## 3521 42.47389 13.94702 71.00077
## 3522 42.46597 13.93914 70.99280
## 3523 42.52200 13.99452 71.04948
## 3524 42.20987 13.67638 70.74335
## 3525 42.64320 14.11172 71.17467
## 3526 42.55545 14.02722 71.08368
## 3527 42.46544 13.93862 70.99227
## 3528 42.47743 13.95053 71.00433
## 3529 42.31859 13.78986 70.84731
## 3530 42.64684 14.11518 71.17849
## 3531 42.35441 13.82662 70.88219
## 3532 42.19278 13.65829 70.72727
## 3533 42.68945 14.15552 71.22339
## 3534 42.69250 14.15839 71.22662
## 3535 42.25304 13.72179 70.78430
## 3536 42.63570 14.10457 71.16683
## 3537 42.20511 13.67135 70.73887
## 3538 42.46208 13.93527 70.98889
## 3539 42.25788 13.72684 70.78891
## 3540 42.57618 14.04735 71.10501
## 3541 42.30456 13.77538 70.83375
## 3542 42.23264 13.70039 70.76489
## 3543 42.66486 14.13230 71.19742
## 3544 42.61938 14.08897 71.14979
## 3545 42.40505 13.87807 70.93203
## 3546 42.41492 13.88803 70.94182
## 3547 42.71240 14.17706 71.24775
## 3548 42.23706 13.70503 70.76908
## 3549 42.41171 13.88479 70.93863
## 3550 42.18246 13.64732 70.71759
## 3551 42.51136 13.98406 71.03865
## 3552 42.29914 13.76977 70.82851
## 3553 42.44949 13.92270 70.97627
## 3554 42.25508 13.72392 70.78624
## 3555 42.70667 14.17169 71.24165
## 3556 42.18588 13.65096 70.72080
## 3557 42.19220 13.65768 70.72673
## 3558 42.47971 13.95279 71.00663
## 3559 42.37399 13.84659 70.90140
## 3560 42.27446 13.74415 70.80478
## 3561 42.60098 14.07130 71.13066
## 3562 42.69570 14.16139 71.23000
## 3563 42.23725 13.70523 70.76926
## 3564 42.71552 14.17997 71.25107
## 3565 42.71114 14.17588 71.24641
## 3566 42.61254 14.08240 71.14267
## 3567 42.53075 14.00310 71.05840
## 3568 42.64291 14.11145 71.17437
## 3569 42.49217 13.96513 71.01921
## 3570 42.24271 13.71097 70.77446
## 3571 42.60339 14.07362 71.13317
## 3572 42.17193 13.63612 70.70775
## 3573 42.69773 14.16330 71.23216
## 3574 42.52620 13.99864 71.05376
## 3575 42.46969 13.94284 70.99654
## 3576 42.67551 14.14237 71.20865
## 3577 42.23323 13.70101 70.76546
## 3578 42.30353 13.77432 70.83275
## 3579 42.65724 14.12507 71.18941
## 3580 42.60225 14.07251 71.13198
## 3581 42.25449 13.72330 70.78567
## 3582 42.29309 13.76350 70.82268
## 3583 42.56536 14.03685 71.09386
## 3584 42.45143 13.92465 70.97821
## 3585 42.35031 13.82243 70.87818
## 3586 42.67608 14.14291 71.20925
## 3587 42.36589 13.83835 70.89344
## 3588 42.62797 14.09719 71.15875
## 3589 42.35136 13.82350 70.87921
## 3590 42.34691 13.81896 70.87487
## 3591 42.17646 13.64094 70.71197
## 3592 42.49831 13.97120 71.02543
## 3593 42.49711 13.97002 71.02421
## 3594 42.69446 14.16023 71.22870
## 3595 42.59925 14.06963 71.12887
## 3596 42.22758 13.69506 70.76009
## 3597 42.30035 13.77103 70.82968
## 3598 42.67025 14.13740 71.20311
## 3599 42.21909 13.68611 70.75206
## 3600 42.42725 13.90043 70.95408
## 3601 42.55826 14.02996 71.08657
## 3602 42.55674 14.02847 71.08500
## 3603 42.19412 13.65971 70.72853
## 3604 42.23803 13.70605 70.77001
## 3605 42.61894 14.08855 71.14933
## 3606 42.44503 13.91825 70.97181
## 3607 42.63193 14.10097 71.16288
## 3608 42.17679 13.64129 70.71228
## 3609 42.67163 14.13871 71.20456
## 3610 42.26963 13.73911 70.80015
## 3611 42.58702 14.05783 71.11620
## 3612 42.27975 13.74964 70.80985
## 3613 42.47768 13.95078 71.00458
## 3614 42.31952 13.79082 70.84822
## 3615 42.30349 13.77428 70.83271
## 3616 42.45948 13.93268 70.98629
## 3617 42.21543 13.68225 70.74860
## 3618 42.63482 14.10373 71.16590
## 3619 42.22854 13.69607 70.76100
## 3620 42.31441 13.78556 70.84327
## 3621 42.56198 14.03357 71.09038
## 3622 42.23511 13.70299 70.76724
## 3623 42.69412 14.15991 71.22833
## 3624 42.67923 14.14588 71.21257
## 3625 42.27814 13.74797 70.80830
## 3626 42.69199 14.15791 71.22608
## 3627 42.71337 14.17796 71.24878
## 3628 42.57796 14.04907 71.10684
## 3629 42.65620 14.12408 71.18831
## 3630 42.54385 14.01591 71.07179
## 3631 42.50584 13.97863 71.03306
## 3632 42.65927 14.12700 71.19155
## 3633 42.29392 13.76436 70.82348
## 3634 42.44971 13.92293 70.97650
## 3635 42.58761 14.05841 71.11682
## 3636 42.35272 13.82489 70.88054
## 3637 42.55105 14.02293 71.07916
## 3638 42.71791 14.18221 71.25361
## 3639 42.37633 13.84897 70.90369
## 3640 42.65994 14.12763 71.19225
## 3641 42.46848 13.94164 70.99533
## 3642 42.66804 14.13531 71.20077
## 3643 42.67172 14.13879 71.20465
## 3644 42.18040 13.64514 70.71566
## 3645 42.26819 13.73761 70.79877
## 3646 42.30178 13.77250 70.83106
## 3647 42.21092 13.67749 70.74434
## 3648 42.71657 14.18095 71.25218
## 3649 42.26947 13.73895 70.80000
## 3650 42.19212 13.65758 70.72665
## 3651 42.45409 13.92731 70.98088
## 3652 42.17980 13.64450 70.71510
## 3653 42.64152 14.11012 71.17292
## 3654 42.34187 13.81379 70.86995
## 3655 42.65944 14.12716 71.19172
## 3656 42.38800 13.86081 70.91518
## 3657 42.26400 13.73324 70.79476
## 3658 42.51616 13.98878 71.04353
## 3659 42.28873 13.75897 70.81848
## 3660 42.44190 13.91512 70.96868
## 3661 42.56314 14.03470 71.09158
## 3662 42.61834 14.08797 71.14871
## 3663 42.65839 14.12616 71.19061
## 3664 42.32620 13.79770 70.85471
## 3665 42.19114 13.65655 70.72573
## 3666 42.25629 13.72519 70.78740
## 3667 42.72183 14.18586 71.25779
## 3668 42.55690 14.02863 71.08516
## 3669 42.43653 13.90974 70.96332
## 3670 42.21499 13.68180 70.74819
## 3671 42.43239 13.90559 70.95919
## 3672 42.66721 14.13452 71.19990
## 3673 42.27682 13.74660 70.80704
## 3674 42.39076 13.86361 70.91790
## 3675 42.30797 13.77890 70.83704
## 3676 42.53731 14.00952 71.06510
## 3677 42.30069 13.77137 70.83000
## 3678 42.41910 13.89223 70.94597
## 3679 42.67834 14.14504 71.21164
## 3680 42.31609 13.78728 70.84490
## 3681 42.23314 13.70091 70.76537
## 3682 42.62056 14.09010 71.15102
## 3683 42.48472 13.95775 71.01168
## 3684 42.62595 14.09526 71.15664
## 3685 42.34144 13.81334 70.86953
## 3686 42.43698 13.91019 70.96377
## 3687 42.55002 14.02193 71.07811
## 3688 42.22052 13.68763 70.75341
## 3689 42.50919 13.98193 71.03646
## 3690 42.64044 14.10910 71.17179
## 3691 42.20782 13.67422 70.74142
## 3692 42.26139 13.73052 70.79227
## 3693 42.54422 14.01627 71.07217
## 3694 42.61513 14.08489 71.14536
## 3695 42.43542 13.90863 70.96222
## 3696 42.46991 13.94306 70.99676
## 3697 42.64438 14.11285 71.17591
## 3698 42.71528 14.17975 71.25082
## 3699 42.30713 13.77804 70.83623
## 3700 42.39124 13.86410 70.91837
## 3701 42.17789 13.64246 70.71331
## 3702 42.60823 14.07826 71.13819
## 3703 42.37842 13.85109 70.90575
## 3704 42.19717 13.66295 70.73140
## 3705 42.64271 14.11126 71.17417
## 3706 42.37494 13.84755 70.90232
## 3707 42.26938 13.73885 70.79991
## 3708 42.56096 14.03258 71.08934
## 3709 42.30254 13.77329 70.83179
## 3710 42.57119 14.04252 71.09987
## 3711 42.52776 14.00017 71.05535
## 3712 42.30508 13.77591 70.83424
## 3713 42.48521 13.95824 71.01217
## 3714 42.36976 13.84228 70.89724
## 3715 42.49742 13.97032 71.02453
## 3716 42.19013 13.65548 70.72478
## 3717 42.48816 13.96117 71.01516
## 3718 42.42249 13.89564 70.94933
## 3719 42.36911 13.84162 70.89660
## 3720 42.60698 14.07707 71.13689
## 3721 42.72216 14.18618 71.25815
## 3722 42.42331 13.89647 70.95015
## 3723 42.69741 14.16300 71.23182
## 3724 42.49027 13.96325 71.01729
## 3725 42.18362 13.64856 70.71868
## 3726 42.56170 14.03330 71.09010
## 3727 42.26933 13.73880 70.79986
## 3728 42.70594 14.17100 71.24087
## 3729 42.59218 14.06282 71.12155
## 3730 42.69020 14.15622 71.22418
## 3731 42.62812 14.09733 71.15891
## 3732 42.69097 14.15694 71.22499
## 3733 42.59400 14.06457 71.12343
## 3734 42.53235 14.00467 71.06003
## 3735 42.60247 14.07273 71.13221
## 3736 42.34554 13.81755 70.87353
## 3737 42.26853 13.73796 70.79909
## 3738 42.45203 13.92525 70.97882
## 3739 42.24390 13.71221 70.77559
## 3740 42.30038 13.77105 70.82971
## 3741 42.21766 13.68461 70.75071
## 3742 42.68143 14.14796 71.21490
## 3743 42.31832 13.78959 70.84706
## 3744 42.42581 13.89898 70.95264
## 3745 42.65728 14.12511 71.18945
## 3746 42.54219 14.01429 71.07009
## 3747 42.72462 14.18847 71.26077
## 3748 42.65325 14.12128 71.18522
## 3749 42.19411 13.65970 70.72852
## 3750 42.25703 13.72596 70.78810
## 3751 42.56063 14.03226 71.08900
## 3752 42.36194 13.83431 70.88957
## 3753 42.20716 13.67352 70.74080
## 3754 42.54091 14.01304 71.06878
## 3755 42.33072 13.80235 70.85910
## 3756 42.23110 13.69877 70.76343
## 3757 42.68218 14.14866 71.21569
## 3758 42.29846 13.76906 70.82785
## 3759 42.51339 13.98606 71.04072
## 3760 42.69498 14.16071 71.22924
## 3761 42.54130 14.01342 71.06918
## 3762 42.42354 13.89670 70.95038
## 3763 42.41745 13.89057 70.94433
## 3764 42.62411 14.09349 71.15472
## 3765 42.19351 13.65906 70.72796
## 3766 42.62425 14.09363 71.15487
## 3767 42.52087 13.99341 71.04833
## 3768 42.58181 14.05280 71.11082
## 3769 42.38611 13.85890 70.91332
## 3770 42.59854 14.06895 71.12813
## 3771 42.68037 14.14696 71.21379
## 3772 42.30919 13.78016 70.83822
## 3773 42.26194 13.73109 70.79279
## 3774 42.65692 14.12477 71.18907
## 3775 42.23168 13.69937 70.76398
## 3776 42.57131 14.04263 71.09999
## 3777 42.21581 13.68266 70.74896
## 3778 42.51109 13.98380 71.03839
## 3779 42.71439 14.17892 71.24986
## 3780 42.67950 14.14613 71.21286
## 3781 42.69838 14.16391 71.23285
## 3782 42.72252 14.18651 71.25853
## 3783 42.18206 13.64690 70.71722
## 3784 42.38336 13.85611 70.91061
## 3785 42.64819 14.11647 71.17991
## 3786 42.69005 14.15608 71.22402
## 3787 42.69158 14.15752 71.22564
## 3788 42.41495 13.88806 70.94185
## 3789 42.36242 13.83480 70.89003
## 3790 42.31505 13.78621 70.84389
## 3791 42.22333 13.69059 70.75607
## 3792 42.36201 13.83438 70.88963
## 3793 42.68946 14.15552 71.22339
## 3794 42.21348 13.68020 70.74676
## 3795 42.43368 13.90688 70.96048
## 3796 42.28466 13.75475 70.81457
## 3797 42.35334 13.82553 70.88115
## 3798 42.24362 13.71191 70.77532
## 3799 42.31668 13.78789 70.84546
## 3800 42.69429 14.16007 71.22852
## 3801 42.68449 14.15085 71.21814
## 3802 42.42291 13.89607 70.94976
## 3803 42.33203 13.80369 70.86037
## 3804 42.30560 13.77645 70.83475
## 3805 42.45366 13.92688 70.98045
## 3806 42.25345 13.72221 70.78468
## 3807 42.41553 13.88864 70.94242
## 3808 42.32579 13.79728 70.85431
## 3809 42.53707 14.00928 71.06485
## 3810 42.71893 14.18316 71.25470
## 3811 42.66825 14.13551 71.20100
## 3812 42.52565 13.99810 71.05320
## 3813 42.40607 13.87909 70.93304
## 3814 42.61968 14.08926 71.15011
## 3815 42.54162 14.01373 71.06951
## 3816 42.39588 13.86880 70.92296
## 3817 42.50873 13.98147 71.03599
## 3818 42.40758 13.88063 70.93454
## 3819 42.21491 13.68171 70.74811
## 3820 42.30612 13.77699 70.83525
## 3821 42.33733 13.80913 70.86553
## 3822 42.48480 13.95784 71.01177
## 3823 42.66231 14.12988 71.19474
## 3824 42.69508 14.16081 71.22935
## 3825 42.35082 13.82295 70.87869
## 3826 42.51952 13.99208 71.04695
## 3827 42.53329 14.00559 71.06099
## 3828 42.33441 13.80614 70.86269
## 3829 42.35004 13.82215 70.87792
## 3830 42.59520 14.06573 71.12467
## 3831 42.21745 13.68439 70.75051
## 3832 42.38625 13.85904 70.91346
## 3833 42.52314 13.99564 71.05064
## 3834 42.59627 14.06676 71.12578
## 3835 42.43863 13.91184 70.96542
## 3836 42.49159 13.96456 71.01863
## 3837 42.17831 13.64292 70.71371
## 3838 42.57836 14.04946 71.10726
## 3839 42.23263 13.70038 70.76489
## 3840 42.24313 13.71140 70.77485
## 3841 42.47250 13.94564 70.99937
## 3842 42.32151 13.79287 70.85015
## 3843 42.52860 14.00099 71.05620
## 3844 42.26675 13.73611 70.79739
## 3845 42.49934 13.97222 71.02647
## 3846 42.51371 13.98638 71.04105
## 3847 42.66430 14.13177 71.19684
## 3848 42.23071 13.69836 70.76306
## 3849 42.48532 13.95835 71.01229
## 3850 42.26037 13.72945 70.79129
## 3851 42.41939 13.89253 70.94626
## 3852 42.60854 14.07857 71.13851
## 3853 42.57722 14.04836 71.10608
## 3854 42.41260 13.88569 70.93952
## 3855 42.27934 13.74922 70.80946
## 3856 42.31527 13.78644 70.84411
## 3857 42.49835 13.97123 71.02546
## 3858 42.39179 13.86466 70.91892
## 3859 42.49701 13.96991 71.02410
## 3860 42.34815 13.82022 70.87608
## 3861 42.51184 13.98453 71.03914
## 3862 42.17861 13.64323 70.71398
## 3863 42.62587 14.09518 71.15656
## 3864 42.57552 14.04671 71.10433
## 3865 42.64757 14.11588 71.17926
## 3866 42.37139 13.84394 70.89883
## 3867 42.54332 14.01539 71.07124
## 3868 42.43070 13.90389 70.95751
## 3869 42.32652 13.79802 70.85501
## 3870 42.27337 13.74301 70.80373
## 3871 42.46379 13.93697 70.99060
## 3872 42.25671 13.72562 70.78779
## 3873 42.70810 14.17303 71.24318
## 3874 42.55049 14.02239 71.07859
## 3875 42.40798 13.88103 70.93493
## 3876 42.47666 13.94976 71.00355
## 3877 42.54934 14.02127 71.07742
## 3878 42.67517 14.14205 71.20829
## 3879 42.72643 14.19016 71.26270
## 3880 42.36136 13.83372 70.88900
## 3881 42.38128 13.85400 70.90856
## 3882 42.31238 13.78346 70.84130
## 3883 42.72483 14.18867 71.26099
## 3884 42.37605 13.84868 70.90341
## 3885 42.46685 13.94002 70.99369
## 3886 42.35855 13.83085 70.88625
## 3887 42.38078 13.85349 70.90807
## 3888 42.24176 13.70996 70.77355
## 3889 42.60941 14.07941 71.13942
## 3890 42.17159 13.63576 70.70743
## 3891 42.50965 13.98238 71.03692
## 3892 42.18897 13.65425 70.72370
## 3893 42.20347 13.66962 70.73733
## 3894 42.26503 13.73431 70.79574
## 3895 42.63592 14.10478 71.16706
## 3896 42.64025 14.10891 71.17158
## 3897 42.42443 13.89759 70.95126
## 3898 42.22188 13.68907 70.75470
## 3899 42.62783 14.09706 71.15861
## 3900 42.48160 13.95466 71.00853
## 3901 42.19805 13.66388 70.73222
## 3902 42.55823 14.02992 71.08653
## 3903 42.25239 13.72111 70.78368
## 3904 42.20714 13.67350 70.74078
## 3905 42.28123 13.75118 70.81127
## 3906 42.48736 13.96037 71.01435
## 3907 42.61237 14.08224 71.14249
## 3908 42.21359 13.68032 70.74687
## 3909 42.64997 14.11816 71.18177
## 3910 42.33439 13.80611 70.86266
## 3911 42.72418 14.18806 71.26030
## 3912 42.35029 13.82241 70.87817
## 3913 42.63060 14.09971 71.16150
## 3914 42.49417 13.96711 71.02124
## 3915 42.54161 14.01372 71.06950
## 3916 42.45988 13.93308 70.98669
## 3917 42.26427 13.73352 70.79502
## 3918 42.71087 14.17562 71.24611
## 3919 42.65217 14.12026 71.18409
## 3920 42.42972 13.90291 70.95653
## 3921 42.66268 14.13023 71.19513
## 3922 42.38638 13.85917 70.91358
## 3923 42.72257 14.18656 71.25858
## 3924 42.27852 13.74837 70.80867
## 3925 42.25869 13.72769 70.78969
## 3926 42.68714 14.15334 71.22094
## 3927 42.24290 13.71116 70.77464
## 3928 42.52181 13.99434 71.04929
## 3929 42.68749 14.15367 71.22131
## 3930 42.53644 14.00867 71.06421
## 3931 42.39435 13.86725 70.92145
## 3932 42.66383 14.13132 71.19634
## 3933 42.38833 13.86115 70.91551
## 3934 42.39934 13.87230 70.92638
## 3935 42.42660 13.89978 70.95343
## 3936 42.18905 13.65433 70.72377
## 3937 42.30050 13.77118 70.82982
## 3938 42.24271 13.71096 70.77446
## 3939 42.57682 14.04797 71.10567
## 3940 42.26935 13.73882 70.79988
## 3941 42.46677 13.93994 70.99360
## 3942 42.37390 13.84650 70.90131
## 3943 42.56533 14.03682 71.09383
## 3944 42.22139 13.68854 70.75423
## 3945 42.22798 13.69549 70.76048
## 3946 42.62351 14.09292 71.15409
## 3947 42.46764 13.94080 70.99447
## 3948 42.63423 14.10317 71.16529
## 3949 42.30140 13.77211 70.83069
## 3950 42.33459 13.80632 70.86286
## 3951 42.46382 13.93700 70.99064
## 3952 42.38634 13.85913 70.91354
## 3953 42.60942 14.07942 71.13943
## 3954 42.70614 14.17119 71.24109
## 3955 42.62557 14.09489 71.15624
## 3956 42.25491 13.72374 70.78608
## 3957 42.25350 13.72227 70.78474
## 3958 42.17981 13.64451 70.71511
## 3959 42.32746 13.79900 70.85593
## 3960 42.26001 13.72907 70.79095
## 3961 42.29303 13.76344 70.82262
## 3962 42.24718 13.71565 70.77871
## 3963 42.63369 14.10265 71.16472
## 3964 42.54242 14.01451 71.07032
## 3965 42.17148 13.63563 70.70732
## 3966 42.43548 13.90869 70.96227
## 3967 42.44541 13.91863 70.97219
## 3968 42.58995 14.06067 71.11924
## 3969 42.29649 13.76702 70.82595
## 3970 42.27912 13.74899 70.80924
## 3971 42.57777 14.04889 71.10665
## 3972 42.26181 13.73095 70.79266
## 3973 42.62998 14.09911 71.16084
## 3974 42.64144 14.11005 71.17284
## 3975 42.67431 14.14124 71.20738
## 3976 42.52309 13.99559 71.05059
## 3977 42.62717 14.09643 71.15792
## 3978 42.39424 13.86713 70.92134
## 3979 42.41343 13.88653 70.94034
## 3980 42.27803 13.74786 70.80820
## 3981 42.61115 14.08108 71.14123
## 3982 42.21377 13.68050 70.74703
## 3983 42.39601 13.86893 70.92309
## 3984 42.37481 13.84743 70.90220
## 3985 42.63996 14.10864 71.17128
## 3986 42.47726 13.95036 71.00416
## 3987 42.23424 13.70206 70.76641
## 3988 42.46563 13.93880 70.99246
## 3989 42.71129 14.17602 71.24657
## 3990 42.32986 13.80146 70.85826
## 3991 42.50102 13.97387 71.02817
## 3992 42.43713 13.91034 70.96392
## 3993 42.61711 14.08679 71.14743
## 3994 42.24429 13.71262 70.77596
## 3995 42.71983 14.18400 71.25565
## 3996 42.34927 13.82136 70.87717
## 3997 42.70938 14.17423 71.24454
## 3998 42.72092 14.18502 71.25682
## 3999 42.28307 13.75310 70.81304
## 4000 42.72335 14.18729 71.25942
## 4001 42.36684 13.83931 70.89438
## 4002 42.32133 13.79269 70.84998
## 4003 42.56223 14.03382 71.09065
## 4004 42.24878 13.71733 70.78024
## 4005 42.52453 13.99700 71.05206
## 4006 42.68725 14.15344 71.22106
## 4007 42.53031 14.00267 71.05795
## 4008 42.71560 14.18004 71.25115
## 4009 42.42712 13.90030 70.95394
## 4010 42.46357 13.93675 70.99039
## 4011 42.54088 14.01300 71.06875
## 4012 42.59856 14.06896 71.12815
## 4013 42.29050 13.76082 70.82019
## 4014 42.58449 14.05539 71.11359
## 4015 42.58477 14.05566 71.11388
## 4016 42.62969 14.09884 71.16055
## 4017 42.72698 14.19067 71.26329
## 4018 42.43334 13.90654 70.96013
## 4019 42.70599 14.17105 71.24093
## 4020 42.41353 13.88662 70.94043
## 4021 42.72640 14.19013 71.26267
## 4022 42.17929 13.64396 70.71463
## 4023 42.65898 14.12673 71.19124
## 4024 42.34682 13.81886 70.87478
## 4025 42.33422 13.80594 70.86250
## 4026 42.18772 13.65292 70.72252
## 4027 42.66459 14.13204 71.19714
## 4028 42.57206 14.04335 71.10076
## 4029 42.24884 13.71738 70.78029
## 4030 42.35675 13.82902 70.88449
## 4031 42.49709 13.96999 71.02419
## 4032 42.55186 14.02373 71.08000
## 4033 42.70335 14.16858 71.23812
## 4034 42.25621 13.72510 70.78732
## 4035 42.31539 13.78656 70.84422
## 4036 42.23056 13.69820 70.76292
## 4037 42.17841 13.64301 70.71380
## 4038 42.36187 13.83425 70.88950
## 4039 42.45592 13.92912 70.98271
## 4040 42.54052 14.01266 71.06838
## 4041 42.51175 13.98444 71.03905
## 4042 42.27675 13.74652 70.80697
## 4043 42.20981 13.67632 70.74330
## 4044 42.57827 14.04937 71.10716
## 4045 42.33296 13.80464 70.86127
## 4046 42.39303 13.86592 70.92015
## 4047 42.49400 13.96694 71.02107
## 4048 42.47205 13.94519 70.99891
## 4049 42.71348 14.17807 71.24890
## 4050 42.69081 14.15680 71.22483
## 4051 42.19425 13.65984 70.72865
## 4052 42.26061 13.72970 70.79152
## 4053 42.64363 14.11213 71.17512
## 4054 42.39257 13.86545 70.91970
## 4055 42.45748 13.93069 70.98428
## 4056 42.67922 14.14588 71.21257
## 4057 42.66292 14.13046 71.19538
## 4058 42.31254 13.78362 70.84146
## 4059 42.40934 13.88240 70.93628
## 4060 42.72096 14.18506 71.25687
## 4061 42.27787 13.74769 70.80804
## 4062 42.58597 14.05682 71.11512
## 4063 42.52786 14.00027 71.05545
## 4064 42.41820 13.89133 70.94507
## 4065 42.27992 13.74983 70.81001
## 4066 42.20439 13.67059 70.73819
## 4067 42.52457 13.99704 71.05210
## 4068 42.27611 13.74586 70.80636
## 4069 42.57945 14.05052 71.10839
## 4070 42.27006 13.73956 70.80056
## 4071 42.63521 14.10411 71.16632
## 4072 42.31768 13.78892 70.84644
## 4073 42.44237 13.91559 70.96916
## 4074 42.19430 13.65991 70.72870
## 4075 42.30191 13.77263 70.83118
## 4076 42.62229 14.09175 71.15282
## 4077 42.26078 13.72987 70.79168
## 4078 42.18931 13.65460 70.72401
## 4079 42.35189 13.82405 70.87973
## 4080 42.19731 13.66309 70.73153
## 4081 42.29885 13.76947 70.82824
## 4082 42.29866 13.76927 70.82805
## 4083 42.54716 14.01914 71.07518
## 4084 42.72741 14.19108 71.26375
## 4085 42.28776 13.75797 70.81755
## 4086 42.19628 13.66201 70.73056
## 4087 42.30483 13.77565 70.83400
## 4088 42.18793 13.65314 70.72272
## 4089 42.20712 13.67348 70.74076
## 4090 42.57682 14.04797 71.10567
## 4091 42.26070 13.72980 70.79161
## 4092 42.34102 13.81292 70.86912
## 4093 42.51760 13.99020 71.04500
## 4094 42.34658 13.81862 70.87455
## 4095 42.43204 13.90523 70.95884
## 4096 42.52226 13.99477 71.04974
## 4097 42.37708 13.84973 70.90443
## 4098 42.17716 13.64169 70.71264
## 4099 42.40614 13.87917 70.93311
## 4100 42.27749 13.74730 70.80768
## 4101 42.33832 13.81015 70.86649
## 4102 42.33451 13.80623 70.86278
## 4103 42.67178 14.13884 71.20471
## 4104 42.60169 14.07198 71.13140
## 4105 42.41513 13.88824 70.94202
## 4106 42.35717 13.82944 70.88490
## 4107 42.53236 14.00468 71.06004
## 4108 42.56671 14.03816 71.09525
## 4109 42.46322 13.93641 70.99004
## 4110 42.47943 13.95251 71.00635
## 4111 42.51591 13.98854 71.04329
## 4112 42.26886 13.73831 70.79941
## 4113 42.65465 14.12261 71.18669
## 4114 42.18495 13.64998 70.71993
## 4115 42.38353 13.85628 70.91077
## 4116 42.55290 14.02474 71.08106
## 4117 42.66742 14.13472 71.20012
## 4118 42.32330 13.79471 70.85189
## 4119 42.41814 13.89127 70.94502
## 4120 42.70318 14.16841 71.23794
## 4121 42.70319 14.16843 71.23795
## 4122 42.58822 14.05900 71.11745
## 4123 42.60358 14.07380 71.13336
## 4124 42.34250 13.81443 70.87056
## 4125 42.28933 13.75960 70.81906
## 4126 42.43757 13.91078 70.96436
## 4127 42.70341 14.16863 71.23819
## 4128 42.56096 14.03259 71.08934
## 4129 42.40573 13.87876 70.93271
## 4130 42.40574 13.87877 70.93272

Predicciones y sus Intervalos de Confianza

predict(modelo_RL_Simple, data.frame(seq(1,4188)), interval='confidence', level = 0.95)
## Warning: 'newdata' had 4188 rows but variables found have 4130 rows
##           fit      lwr      upr
## 1    42.62063 41.98251 43.25875
## 2    42.66883 41.93464 43.40303
## 3    42.53671 42.03287 43.04055
## 4    42.24664 41.56141 42.93187
## 5    42.37414 41.89221 42.85607
## 6    42.62638 41.97735 43.27540
## 7    42.21293 41.45819 42.96767
## 8    42.53506 42.03326 43.03686
## 9    42.19120 41.38966 42.99273
## 10   42.31470 41.75338 42.87601
## 11   42.64249 41.96203 43.32295
## 12   42.49756 42.03341 42.96172
## 13   42.64479 41.95975 43.32982
## 14   42.67066 41.93264 43.40867
## 15   42.58480 42.01045 43.15916
## 16   42.60112 41.99871 43.20353
## 17   42.29901 41.71161 42.88641
## 18   42.35232 41.84535 42.85929
## 19   42.39270 41.92756 42.85783
## 20   42.31556 41.75562 42.87550
## 21   42.60220 41.99787 43.20654
## 22   42.53253 42.03379 43.03127
## 23   42.63247 41.97170 43.29324
## 24   42.62121 41.98200 43.26042
## 25   42.56462 42.02231 43.10693
## 26   42.61361 41.98859 43.23862
## 27   42.18306 41.36369 43.00244
## 28   42.46728 42.01987 42.91469
## 29   42.18499 41.36986 43.00012
## 30   42.42422 41.97680 42.87164
## 31   42.29764 41.70790 42.88739
## 32   42.31517 41.75461 42.87573
## 33   42.17129 41.32580 43.01678
## 34   42.42182 41.97356 42.87007
## 35   42.39914 41.93878 42.85950
## 36   42.21806 41.47416 42.96196
## 37   42.27846 41.65445 42.90247
## 38   42.62314 41.98028 43.26600
## 39   42.49580 42.03298 42.95863
## 40   42.55668 42.02606 43.08729
## 41   42.62331 41.98013 43.26649
## 42   42.61297 41.98913 43.23681
## 43   42.56060 42.02427 43.09693
## 44   42.37025 41.88426 42.85624
## 45   42.36536 41.87401 42.85672
## 46   42.56470 42.02227 43.10712
## 47   42.57336 42.01757 43.12914
## 48   42.35114 41.84267 42.85961
## 49   42.28274 41.66655 42.89892
## 50   42.61868 41.98423 43.25312
## 51   42.17118 41.32544 43.01692
## 52   42.19267 41.39433 42.99100
## 53   42.40380 41.94653 42.86107
## 54   42.57338 42.01755 43.12921
## 55   42.56616 42.02152 43.11081
## 56   42.66776 41.93580 43.39971
## 57   42.56711 42.02102 43.11320
## 58   42.38712 41.91740 42.85684
## 59   42.61775 41.98504 43.25045
## 60   42.37966 41.90317 42.85614
## 61   42.46196 42.01610 42.90783
## 62   42.47162 42.02263 42.92060
## 63   42.49511 42.03280 42.95742
## 64   42.37388 41.89169 42.85607
## 65   42.65801 41.94621 43.36980
## 66   42.55998 42.02457 43.09539
## 67   42.38956 41.92190 42.85722
## 68   42.17314 41.33178 43.01450
## 69   42.34693 41.83299 42.86087
## 70   42.49530 42.03285 42.95775
## 71   42.38538 41.91415 42.85661
## 72   42.54547 42.03037 43.06057
## 73   42.32176 41.77159 42.87193
## 74   42.49403 42.03250 42.95555
## 75   42.27605 41.64756 42.90453
## 76   42.64550 41.95904 43.33197
## 77   42.52363 42.03509 43.01217
## 78   42.33335 41.80056 42.86613
## 79   42.61928 41.98370 43.25487
## 80   42.35404 41.84924 42.85884
## 81   42.30174 41.71900 42.88448
## 82   42.46170 42.01590 42.90750
## 83   42.25907 41.59834 42.91981
## 84   42.46301 42.01687 42.90914
## 85   42.29645 41.70465 42.88826
## 86   42.63456 41.96972 43.29939
## 87   42.54951 42.02895 43.07006
## 88   42.34124 41.81963 42.86286
## 89   42.43828 41.99400 42.88255
## 90   42.63297 41.97123 43.29470
## 91   42.49361 42.03238 42.95484
## 92   42.20921 41.44656 42.97186
## 93   42.20536 41.43448 42.97624
## 94   42.19965 41.41646 42.98283
## 95   42.28401 41.67013 42.89789
## 96   42.18172 41.35939 43.00405
## 97   42.39772 41.93635 42.85908
## 98   42.31088 41.74339 42.87838
## 99   42.64693 41.95760 43.33626
## 100  42.38328 41.91018 42.85639
## 101  42.26201 41.60696 42.91706
## 102  42.41496 41.96383 42.86609
## 103  42.47739 42.02587 42.92890
## 104  42.62039 41.98273 43.25805
## 105  42.19041 41.38715 42.99366
## 106  42.19176 41.39146 42.99206
## 107  42.54050 42.03189 43.04912
## 108  42.47982 42.02709 42.93255
## 109  42.44408 42.00022 42.88794
## 110  42.19960 41.41631 42.98289
## 111  42.28174 41.66375 42.89974
## 112  42.32832 41.78812 42.86851
## 113  42.31549 41.75544 42.87554
## 114  42.56422 42.02251 43.10592
## 115  43.20731 41.16193 45.25269
## 116  42.65297 41.95146 43.35448
## 117  42.40258 41.94453 42.86063
## 118  42.50242 42.03438 42.97046
## 119  42.62810 41.97577 43.28044
## 120  42.33156 41.79616 42.86695
## 121  42.62529 41.97834 43.27225
## 122  42.45187 42.00774 42.89600
## 123  42.26270 41.60899 42.91642
## 124  42.32543 41.78089 42.86997
## 125  42.44152 41.99754 42.88550
## 126  42.45169 42.00758 42.89580
## 127  42.45396 42.00960 42.89831
## 128  42.50403 42.03464 42.97343
## 129  42.37836 41.90063 42.85609
## 130  42.55068 42.02851 43.07284
## 131  42.46790 42.02028 42.91552
## 132  42.35018 41.84047 42.85988
## 133  42.35197 41.84457 42.85938
## 134  42.36376 41.87060 42.85693
## 135  42.47653 42.02542 42.92763
## 136  42.29933 41.71248 42.88618
## 137  42.17098 41.32480 43.01716
## 138  42.45032 42.00632 42.89431
## 139  42.28267 41.66635 42.89898
## 140  42.62060 41.98255 43.25865
## 141  42.21119 41.45275 42.96963
## 142  42.34395 41.82602 42.86188
## 143  42.48146 42.02786 42.93506
## 144  42.48349 42.02876 42.93822
## 145  42.45651 42.01178 42.90124
## 146  42.59945 41.99999 43.19890
## 147  42.59854 42.00068 43.19641
## 148  42.31060 41.74264 42.87856
## 149  42.31533 41.75504 42.87563
## 150  42.61425 41.98805 43.24045
## 151  42.61157 41.99030 43.23285
## 152  42.42992 41.98414 42.87570
## 153  43.50100 40.69896 46.30305
## 154  42.58870 42.00781 43.16959
## 155  42.36448 41.87212 42.85683
## 156  42.59948 41.99996 43.19900
## 157  42.53000 42.03425 43.02576
## 158  42.45816 42.01313 42.90319
## 159  42.38532 41.91403 42.85660
## 160  42.53824 42.03249 43.04399
## 161  42.39265 41.92748 42.85782
## 162  42.80803 41.75964 43.85643
## 163  42.17621 41.34167 43.01075
## 164  42.39470 41.93111 42.85829
## 165  42.65685 41.94742 43.36628
## 166  42.57388 42.01726 43.13051
## 167  42.20339 41.42829 42.97850
## 168  42.28510 41.67318 42.89701
## 169  42.32683 41.78442 42.86925
## 170  42.29282 41.69467 42.89097
## 171  42.23012 41.51135 42.94890
## 172  42.55151 42.02819 43.07483
## 173  42.53955 42.03215 43.04696
## 174  42.56377 42.02274 43.10479
## 175  42.35917 41.86063 42.85770
## 176  42.19561 41.40368 42.98754
## 177  42.47584 42.02505 42.92662
## 178  42.23806 41.53553 42.94059
## 179  42.47635 42.02532 42.92737
## 180  42.55090 42.02843 43.07337
## 181  42.56050 42.02432 43.09667
## 182  42.50962 42.03525 42.98399
## 183  42.33213 41.79758 42.86669
## 184  42.42496 41.97779 42.87214
## 185  42.18719 41.37690 42.99749
## 186  42.29662 41.70509 42.88814
## 187  42.23940 41.53961 42.93920
## 188  42.43764 41.99329 42.88199
## 189  42.33592 41.80684 42.86500
## 190  42.57472 42.01677 43.13266
## 191  44.39979 39.25746 49.54213
## 192  42.65166 41.95280 43.35053
## 193  42.61471 41.98765 43.24177
## 194  42.38826 41.91951 42.85701
## 195  42.31853 41.76330 42.87375
## 196  42.56219 42.02352 43.10086
## 197  42.21186 41.45485 42.96887
## 198  42.54433 42.03074 43.05793
## 199  42.17945 41.35211 43.00680
## 200  42.34174 41.82081 42.86268
## 201  42.35918 41.86065 42.85770
## 202  42.52298 42.03515 43.01082
## 203  42.31197 41.74624 42.87769
## 204  42.58489 42.01039 43.15938
## 205  42.52394 42.03506 43.01283
## 206  42.39352 41.92903 42.85801
## 207  42.54931 42.02902 43.06960
## 208  42.44065 41.99661 42.88469
## 209  42.37380 41.89152 42.85608
## 210  42.56630 42.02145 43.11115
## 211  42.59504 42.00329 43.18678
## 212  42.21541 41.46590 42.96491
## 213  42.66317 41.94074 43.38560
## 214  42.38044 41.90470 42.85618
## 215  42.36067 41.86392 42.85742
## 216  42.33775 41.81126 42.86424
## 217  42.43021 41.98451 42.87592
## 218  42.60679 41.99423 43.21934
## 219  42.50151 42.03422 42.96879
## 220  42.63547 41.96885 43.30210
## 221  42.29371 41.69712 42.89030
## 222  42.47531 42.02476 42.92585
## 223  42.61430 41.98800 43.24061
## 224  42.37569 41.89534 42.85605
## 225  42.64611 41.95842 43.33381
## 226  42.49053 42.03143 42.94962
## 227  42.51625 42.03547 42.99703
## 228  42.39958 41.93952 42.85964
## 229  42.31178 41.74575 42.87781
## 230  42.63397 41.97028 43.29766
## 231  42.40118 41.94221 42.86015
## 232  42.47170 42.02268 42.92071
## 233  42.40156 41.94284 42.86028
## 234  42.19751 41.40971 42.98531
## 235  42.55689 42.02596 43.08782
## 236  42.44701 42.00316 42.89086
## 237  42.19617 41.40546 42.98688
## 238  42.59527 42.00312 43.18743
## 239  42.50239 42.03438 42.97040
## 240  42.58564 42.00989 43.16138
## 241  42.42542 41.97839 42.87245
## 242  42.47729 42.02582 42.92877
## 243  42.30879 41.73786 42.87972
## 244  42.64041 41.96407 43.31676
## 245  42.51383 42.03546 42.99220
## 246  42.40277 41.94485 42.86070
## 247  42.30941 41.73952 42.87931
## 248  42.28857 41.68288 42.89425
## 249  42.22858 41.50663 42.95054
## 250  42.38803 41.91908 42.85697
## 251  42.34942 41.83873 42.86010
## 252  42.51164 42.03538 42.98790
## 253  42.55278 42.02769 43.07787
## 254  42.41728 41.96721 42.86736
## 255  42.25413 41.58373 42.92452
## 256  42.27504 41.64470 42.90539
## 257  42.43772 41.99338 42.88206
## 258  42.35557 41.85267 42.85847
## 259  42.29993 41.71410 42.88575
## 260  42.51118 42.03535 42.98700
## 261  42.48465 42.02925 42.94006
## 262  42.54825 42.02941 43.06708
## 263  42.33369 41.80141 42.86598
## 264  42.54431 42.03074 43.05788
## 265  42.56255 42.02334 43.10176
## 266  42.17461 41.33650 43.01271
## 267  42.43549 41.99084 42.88015
## 268  42.48735 42.03031 42.94438
## 269  42.58827 42.00811 43.16842
## 270  42.36225 41.86734 42.85716
## 271  42.62675 41.97701 43.27648
## 272  42.29839 41.70993 42.88685
## 273  42.25505 41.58645 42.92364
## 274  42.19965 41.41647 42.98283
## 275  42.41327 41.96134 42.86521
## 276  42.62824 41.97565 43.28083
## 277  43.40895 40.84493 45.97297
## 278  42.46612 42.01908 42.91315
## 279  42.46820 42.02048 42.91592
## 280  42.49832 42.03358 42.96307
## 281  42.63228 41.97188 43.29267
## 282  42.37482 41.89357 42.85606
## 283  42.31329 41.74972 42.87687
## 284  42.41533 41.96438 42.86628
## 285  42.49250 42.03206 42.95294
## 286  42.24403 41.55357 42.93449
## 287  42.56137 42.02391 43.09883
## 288  42.66439 41.93944 43.38934
## 289  42.42826 41.98206 42.87447
## 290  42.47862 42.02650 42.93074
## 291  42.49901 42.03373 42.96428
## 292  42.60928 41.99220 43.22636
## 293  42.29304 41.69528 42.89080
## 294  42.35407 41.84930 42.85883
## 295  42.45926 42.01401 42.90450
## 296  42.47069 42.02207 42.91932
## 297  42.34380 41.82566 42.86193
## 298  42.57823 42.01466 43.14180
## 299  42.49342 42.03233 42.95451
## 300  42.46541 42.01859 42.91222
## 301  42.28281 41.66675 42.89887
## 302  42.82389 41.73768 43.91010
## 303  42.23832 41.53632 42.94032
## 304  42.53305 42.03368 43.03241
## 305  42.53378 42.03353 43.03402
## 306  42.51138 42.03537 42.98740
## 307  42.38672 41.91666 42.85678
## 308  42.58843 42.00800 43.16886
## 309  42.50922 42.03522 42.98321
## 310  42.62449 41.97906 43.26993
## 311  42.25007 41.57165 42.92848
## 312  42.30830 41.73656 42.88004
## 313  42.40408 41.94699 42.86118
## 314  42.41085 41.95767 42.86403
## 315  42.17134 41.32598 43.01671
## 316  42.38294 41.90953 42.85636
## 317  42.66273 41.94121 43.38425
## 318  42.29528 41.70143 42.88913
## 319  42.36336 41.86972 42.85699
## 320  42.17185 41.32762 43.01609
## 321  42.41492 41.96377 42.86606
## 322  42.37883 41.90156 42.85610
## 323  42.28848 41.68264 42.89432
## 324  42.54928 42.02904 43.06953
## 325  42.63435 41.96992 43.29879
## 326  42.58439 42.01072 43.15806
## 327  42.32243 41.77330 42.87157
## 328  42.17036 41.32279 43.01793
## 329  42.43843 41.99418 42.88269
## 330  42.45988 42.01450 42.90526
## 331  42.66508 41.93869 43.39148
## 332  42.56862 42.02021 43.11703
## 333  42.58592 42.00970 43.16215
## 334  42.29402 41.69796 42.89007
## 335  42.40423 41.94722 42.86123
## 336  42.45807 42.01306 42.90307
## 337  42.55186 42.02806 43.07566
## 338  42.20385 41.42971 42.97798
## 339  42.58935 42.00735 43.17135
## 340  42.48232 42.02825 42.93639
## 341  42.33599 41.80700 42.86498
## 342  42.40525 41.94887 42.86162
## 343  42.50093 42.03412 42.96774
## 344  42.43359 41.98861 42.87858
## 345  42.43396 41.98905 42.87888
## 346  42.21829 41.47486 42.96172
## 347  42.52299 42.03515 43.01084
## 348  42.31176 41.74569 42.87783
## 349  42.32950 41.79106 42.86793
## 350  42.53464 42.03335 43.03593
## 351  42.44259 41.99868 42.88651
## 352  42.65332 41.95109 43.35555
## 353  42.60438 41.99615 43.21262
## 354  42.35654 41.85483 42.85825
## 355  42.55101 42.02838 43.07364
## 356  42.33691 41.80924 42.86459
## 357  42.54010 42.03200 43.04820
## 358  42.47770 42.02603 42.92936
## 359  42.28490 41.67262 42.89717
## 360  42.61516 41.98727 43.24306
## 361  42.50788 42.03510 42.98066
## 362  42.42446 41.97712 42.87180
## 363  42.66398 41.93987 43.38810
## 364  42.61825 41.98461 43.25189
## 365  42.67133 41.93191 43.41075
## 366  42.57815 42.01471 43.14159
## 367  42.58367 42.01119 43.15616
## 368  42.58186 42.01237 43.15134
## 369  42.19090 41.38872 42.99308
## 370  42.62547 41.97818 43.27276
## 371  42.24339 41.55163 42.93514
## 372  42.45070 42.00667 42.89473
## 373  42.89795 41.63203 44.16388
## 374  42.21876 41.47632 42.96120
## 375  42.36573 41.87480 42.85667
## 376  42.63250 41.97168 43.29331
## 377  42.35505 41.85151 42.85859
## 378  42.61757 41.98519 43.24995
## 379  42.57570 42.01619 43.13521
## 380  42.49763 42.03342 42.96183
## 381  42.20094 41.42055 42.98133
## 382  42.63721 41.96718 43.30724
## 383  42.49887 42.03370 42.96404
## 384  42.54639 42.03006 43.06271
## 385  42.52294 42.03515 43.01073
## 386  42.51949 42.03538 43.00359
## 387  42.63146 41.97265 43.29027
## 388  42.47615 42.02521 42.92708
## 389  42.65693 41.94734 43.36652
## 390  42.31595 41.75664 42.87526
## 391  42.48379 42.02889 42.93869
## 392  42.37008 41.88391 42.85625
## 393  42.65304 41.95138 43.35471
## 394  42.59684 42.00196 43.19172
## 395  42.58821 42.00814 43.16828
## 396  42.48624 42.02989 42.94259
## 397  42.41002 41.95639 42.86364
## 398  42.30170 41.71889 42.88450
## 399  42.17282 41.33074 43.01490
## 400  42.41972 41.97066 42.86878
## 401  42.42564 41.97868 42.87261
## 402  42.52690 42.03471 43.01909
## 403  42.40945 41.95552 42.86339
## 404  42.33089 41.79450 42.86727
## 405  42.39922 41.93890 42.85953
## 406  42.37508 41.89410 42.85605
## 407  42.43748 41.99311 42.88185
## 408  42.49500 42.03277 42.95722
## 409  42.19695 41.40794 42.98597
## 410  44.41431 39.23406 49.59456
## 411  42.50793 42.03511 42.98075
## 412  42.39521 41.93200 42.85842
## 413  42.58363 42.01122 43.15605
## 414  42.55091 42.02842 43.07340
## 415  42.29861 41.71052 42.88670
## 416  42.50913 42.03522 42.98305
## 417  42.40469 41.94797 42.86140
## 418  42.32099 41.76963 42.87236
## 419  42.17037 41.32284 43.01791
## 420  42.55578 42.02645 43.08511
## 421  42.31655 41.75820 42.87490
## 422  42.19747 41.40957 42.98536
## 423  42.29787 41.70852 42.88723
## 424  42.56690 42.02113 43.11267
## 425  42.55263 42.02775 43.07750
## 426  42.64995 41.95455 43.34535
## 427  42.25262 41.57924 42.92599
## 428  42.17237 41.32930 43.01544
## 429  42.33908 41.81446 42.86370
## 430  42.63862 41.96581 43.31143
## 431  42.54997 42.02878 43.07115
## 432  42.57813 42.01472 43.14154
## 433  42.36409 41.87131 42.85688
## 434  42.42237 41.97431 42.87043
## 435  42.17368 41.33350 43.01385
## 436  42.38275 41.90916 42.85634
## 437  42.42364 41.97602 42.87125
## 438  42.43199 41.98669 42.87730
## 439  42.35078 41.84185 42.85971
## 440  42.41176 41.95905 42.86446
## 441  42.24283 41.54994 42.93571
## 442  42.42100 41.97244 42.86956
## 443  42.31050 41.74238 42.87862
## 444  42.41006 41.95646 42.86366
## 445  42.34521 41.82899 42.86144
## 446  42.39898 41.93850 42.85946
## 447  42.68890 41.91214 43.46567
## 448  42.52462 42.03499 43.01425
## 449  42.55005 42.02875 43.07134
## 450  42.44833 42.00444 42.89222
## 451  42.61228 41.98971 43.23484
## 452  42.63493 41.96937 43.30048
## 453  42.43280 41.98766 42.87793
## 454  42.31331 41.74976 42.87686
## 455  42.50204 42.03432 42.96976
## 456  42.45493 42.01044 42.89942
## 457  42.38781 41.91869 42.85694
## 458  42.20444 41.43158 42.97730
## 459  42.17649 41.34257 43.01041
## 460  42.36502 41.87328 42.85676
## 461  42.52672 42.03474 43.01870
## 462  42.49134 42.03170 42.95098
## 463  42.62902 41.97492 43.28312
## 464  42.30779 41.73522 42.88037
## 465  42.48370 42.02885 42.93855
## 466  42.20951 41.44750 42.97152
## 467  42.50954 42.03525 42.98383
## 468  42.18155 41.35883 43.00426
## 469  42.54092 42.03177 43.05007
## 470  42.40480 41.94815 42.86145
## 471  42.64129 41.96321 43.31937
## 472  42.63454 41.96974 43.29934
## 473  42.40991 41.95622 42.86359
## 474  42.56949 42.01974 43.11923
## 475  42.35252 41.84581 42.85923
## 476  42.17652 41.34266 43.01037
## 477  42.46732 42.01989 42.91474
## 478  42.31824 41.76257 42.87392
## 479  42.42243 41.97440 42.87047
## 480  42.64239 41.96212 43.32266
## 481  42.20097 41.42065 42.98129
## 482  42.37000 41.88375 42.85626
## 483  42.65924 41.94491 43.37357
## 484  42.52844 42.03450 43.02239
## 485  42.67012 41.93324 43.40699
## 486  42.19643 41.40628 42.98658
## 487  42.45209 42.00794 42.89623
## 488  42.64319 41.96134 43.32504
## 489  42.52170 42.03525 43.00815
## 490  42.45599 42.01134 42.90064
## 491  42.23625 41.53005 42.94246
## 492  42.53958 42.03214 43.04701
## 493  42.55298 42.02761 43.07835
## 494  42.27874 41.65525 42.90224
## 495  42.43834 41.99408 42.88261
## 496  42.34774 41.83487 42.86061
## 497  42.39841 41.93753 42.85928
## 498  42.64323 41.96130 43.32516
## 499  42.47315 42.02354 42.92276
## 500  42.58633 42.00943 43.16322
## 501  42.47529 42.02475 42.92582
## 502  42.32843 41.78841 42.86845
## 503  42.45013 42.00615 42.89412
## 504  42.33289 41.79943 42.86634
## 505  42.63971 41.96475 43.31467
## 506  42.23601 41.52930 42.94271
## 507  42.32071 41.76890 42.87252
## 508  42.40896 41.95475 42.86317
## 509  42.48393 42.02895 42.93891
## 510  42.25194 41.57722 42.92665
## 511  42.46574 42.01882 42.91266
## 512  42.59348 42.00443 43.18252
## 513  42.19167 41.39116 42.99217
## 514  42.24691 41.56220 42.93161
## 515  42.45662 42.01187 42.90137
## 516  42.21066 41.45109 42.97023
## 517  42.20733 41.44067 42.97400
## 518  42.46144 42.01570 42.90717
## 519  42.34188 41.82114 42.86262
## 520  42.46135 42.01563 42.90706
## 521  42.21349 41.45993 42.96705
## 522  42.19506 41.40193 42.98818
## 523  42.17981 41.35326 43.00636
## 524  42.65262 41.95181 43.35344
## 525  42.43998 41.99589 42.88408
## 526  42.38688 41.91695 42.85680
## 527  42.48236 42.02827 42.93645
## 528  42.17106 41.32505 43.01706
## 529  42.50764 42.03508 42.98021
## 530  42.20355 41.42879 42.97832
## 531  42.31302 41.74901 42.87704
## 532  42.42210 41.97394 42.87025
## 533  42.38341 41.91042 42.85640
## 534  42.29756 41.70768 42.88745
## 535  42.31931 41.76533 42.87330
## 536  42.30295 41.72227 42.88363
## 537  43.08495 41.35133 44.81856
## 538  42.36558 41.87448 42.85669
## 539  42.51019 42.03529 42.98509
## 540  42.31356 41.75042 42.87670
## 541  42.54755 42.02966 43.06545
## 542  42.38079 41.90538 42.85620
## 543  42.29315 41.69557 42.89073
## 544  42.61392 41.98833 43.23950
## 545  42.42604 41.97919 42.87288
## 546  42.28935 41.68505 42.89364
## 547  42.41521 41.96421 42.86622
## 548  42.66398 41.93988 43.38807
## 549  42.61393 41.98832 43.23953
## 550  42.65033 41.95416 43.34649
## 551  42.40098 41.94187 42.86009
## 552  42.31524 41.75478 42.87569
## 553  42.58931 42.00738 43.17123
## 554  42.41079 41.95758 42.86400
## 555  42.29994 41.71413 42.88574
## 556  42.18380 41.36605 43.00155
## 557  42.38650 41.91625 42.85675
## 558  42.55601 42.02635 43.08568
## 559  42.29337 41.69619 42.89055
## 560  42.37507 41.89409 42.85605
## 561  42.47782 42.02609 42.92954
## 562  42.33241 41.79826 42.86656
## 563  42.39107 41.92465 42.85750
## 564  42.48161 42.02793 42.93529
## 565  42.65217 41.95227 43.35208
## 566  42.55845 42.02527 43.09163
## 567  42.39982 41.93993 42.85971
## 568  42.38883 41.92056 42.85710
## 569  42.62427 41.97926 43.26929
## 570  42.59264 42.00503 43.18024
## 571  42.18792 41.37922 42.99662
## 572  42.62106 41.98214 43.25998
## 573  42.39353 41.92905 42.85802
## 574  42.30159 41.71859 42.88458
## 575  42.37197 41.88779 42.85614
## 576  42.46762 42.02010 42.91514
## 577  42.19373 41.39773 42.98974
## 578  42.24952 41.57003 42.92902
## 579  42.41240 41.96003 42.86478
## 580  42.41618 41.96562 42.86675
## 581  42.62509 41.97852 43.27166
## 582  42.22693 41.50156 42.95231
## 583  42.50680 42.03499 42.97862
## 584  42.35257 41.84593 42.85922
## 585  42.85020 41.70069 43.99970
## 586  42.34384 41.82576 42.86192
## 587  42.60425 41.99625 43.21225
## 588  42.58228 42.01210 43.15246
## 589  42.26484 41.61523 42.91445
## 590  42.23826 41.53614 42.94038
## 591  42.58993 42.00695 43.17291
## 592  42.35236 41.84544 42.85928
## 593  42.62929 41.97467 43.28390
## 594  42.29596 41.70331 42.88862
## 595  42.32547 41.78097 42.86996
## 596  42.60056 41.99914 43.20199
## 597  42.64909 41.95542 43.34275
## 598  42.52748 42.03464 43.02033
## 599  42.36993 41.88359 42.85627
## 600  42.54495 42.03054 43.05936
## 601  42.36352 41.87007 42.85696
## 602  43.02664 41.44032 44.61297
## 603  42.47224 42.02301 42.92148
## 604  42.17311 41.33168 43.01454
## 605  42.57567 42.01621 43.13513
## 606  42.29525 41.70134 42.88915
## 607  42.46277 42.01670 42.90884
## 608  42.32573 41.78164 42.86982
## 609  42.38386 41.91127 42.85644
## 610  42.26320 41.61044 42.91596
## 611  42.30669 41.73229 42.88109
## 612  42.44037 41.99630 42.88443
## 613  42.53118 42.03404 43.02833
## 614  42.48717 42.03025 42.94409
## 615  42.20610 41.43680 42.97540
## 616  42.48435 42.02913 42.93958
## 617  42.64896 41.95555 43.34236
## 618  42.36566 41.87465 42.85668
## 619  42.62454 41.97902 43.27007
## 620  42.49130 42.03169 42.95092
## 621  42.55812 42.02542 43.09083
## 622  42.30153 41.71844 42.88462
## 623  42.42227 41.97418 42.87036
## 624  42.20172 41.42300 42.98043
## 625  42.58338 42.01139 43.15537
## 626  42.55416 42.02713 43.08120
## 627  42.20355 41.42877 42.97832
## 628  42.31757 41.76084 42.87431
## 629  42.31414 41.75194 42.87635
## 630  42.35322 41.84738 42.85905
## 631  42.25582 41.58873 42.92290
## 632  42.17636 41.34216 43.01056
## 633  42.55015 42.02871 43.07159
## 634  42.45771 42.01277 42.90265
## 635  42.32908 41.79003 42.86813
## 636  42.53904 42.03229 43.04578
## 637  42.37006 41.88387 42.85626
## 638  42.17144 41.32628 43.01660
## 639  42.59439 42.00376 43.18502
## 640  42.33876 41.81370 42.86383
## 641  42.37712 41.89818 42.85606
## 642  42.61731 41.98542 43.24921
## 643  42.44324 41.99935 42.88713
## 644  42.57980 42.01368 43.14591
## 645  42.66010 41.94401 43.37620
## 646  42.40396 41.94678 42.86113
## 647  42.41206 41.95951 42.86461
## 648  42.39692 41.93497 42.85886
## 649  42.40215 41.94382 42.86048
## 650  42.54165 42.03156 43.05174
## 651  42.39555 41.93260 42.85850
## 652  42.52914 42.03439 43.02389
## 653  42.43300 41.98791 42.87810
## 654  42.39095 41.92443 42.85748
## 655  43.39541 40.86633 45.92449
## 656  42.58260 42.01189 43.15331
## 657  42.24277 41.54978 42.93576
## 658  42.39073 41.92402 42.85743
## 659  42.18063 41.35588 43.00538
## 660  42.38230 41.90831 42.85630
## 661  42.64147 41.96303 43.31992
## 662  42.36223 41.86729 42.85716
## 663  42.66249 41.94147 43.38352
## 664  42.51696 42.03546 42.99846
## 665  42.55296 42.02762 43.07831
## 666  42.60494 41.99571 43.21417
## 667  42.56042 42.02436 43.09649
## 668  42.58583 42.00976 43.16191
## 669  42.46539 42.01858 42.91220
## 670  42.17581 41.34039 43.01123
## 671  42.50190 42.03429 42.96950
## 672  42.20493 41.43311 42.97674
## 673  42.25070 41.57354 42.92786
## 674  42.29438 41.69897 42.88980
## 675  42.49888 42.03370 42.96405
## 676  42.57069 42.01908 43.12230
## 677  42.65365 41.95075 43.35655
## 678  42.21440 41.46277 42.96603
## 679  42.29910 41.71185 42.88634
## 680  42.33810 41.81211 42.86410
## 681  42.50706 42.03502 42.97909
## 682  42.40600 41.95008 42.86192
## 683  42.32153 41.77100 42.87206
## 684  42.45163 42.00752 42.89574
## 685  42.58763 42.00854 43.16672
## 686  42.61492 41.98747 43.24237
## 687  42.28482 41.67241 42.89723
## 688  42.37211 41.88808 42.85614
## 689  42.19054 41.38758 42.99350
## 690  42.66822 41.93530 43.40115
## 691  42.55718 42.02584 43.08852
## 692  42.33557 41.80599 42.86515
## 693  42.53043 42.03417 43.02668
## 694  42.48237 42.02827 42.93647
## 695  42.20810 41.44307 42.97313
## 696  42.46666 42.01945 42.91387
## 697  42.47782 42.02609 42.92955
## 698  42.62171 41.98156 43.26186
## 699  42.43514 41.99043 42.87986
## 700  42.59911 42.00025 43.19798
## 701  42.55612 42.02630 43.08595
## 702  42.30597 41.73037 42.88158
## 703  42.32761 41.78636 42.86886
## 704  42.46957 42.02136 42.91778
## 705  42.47032 42.02184 42.91881
## 706  42.63279 41.97139 43.29419
## 707  42.37155 41.88694 42.85616
## 708  42.41401 41.96243 42.86559
## 709  42.51404 42.03546 42.99263
## 710  42.18431 41.36770 43.00093
## 711  42.38121 41.90619 42.85622
## 712  42.31848 41.76318 42.87378
## 713  42.25346 41.58175 42.92517
## 714  42.54602 42.03018 43.06186
## 715  42.43517 41.99046 42.87987
## 716  42.42351 41.97586 42.87117
## 717  42.34465 41.82766 42.86163
## 718  42.64388 41.96065 43.32710
## 719  42.40537 41.94908 42.86167
## 720  42.39252 41.92725 42.85779
## 721  42.49039 42.03139 42.94939
## 722  42.51593 42.03548 42.99639
## 723  42.27408 41.64193 42.90623
## 724  42.21793 41.47375 42.96211
## 725  42.55741 42.02574 43.08908
## 726  42.20955 41.44761 42.97148
## 727  42.31407 41.75176 42.87639
## 728  42.29181 41.69189 42.89174
## 729  42.38083 41.90546 42.85620
## 730  42.48978 42.03118 42.94838
## 731  42.26713 41.62187 42.91238
## 732  42.57736 42.01519 43.13952
## 733  42.19805 41.41143 42.98468
## 734  42.58812 42.00821 43.16804
## 735  42.23721 41.53296 42.94146
## 736  42.30738 41.73411 42.88064
## 737  42.29120 41.69021 42.89220
## 738  42.63606 41.96829 43.30382
## 739  42.33587 41.80671 42.86503
## 740  42.55929 42.02489 43.09370
## 741  42.44776 42.00389 42.89163
## 742  42.17177 41.32734 43.01619
## 743  42.38641 41.91608 42.85674
## 744  42.64642 41.95811 43.33473
## 745  42.44285 41.99894 42.88675
## 746  42.54881 42.02921 43.06842
## 747  42.61023 41.99141 43.22905
## 748  42.53131 42.03402 43.02861
## 749  42.57883 42.01429 43.14337
## 750  42.34155 41.82036 42.86275
## 751  42.39002 41.92273 42.85730
## 752  42.41620 41.96564 42.86675
## 753  42.41645 41.96600 42.86689
## 754  42.61564 41.98686 43.24441
## 755  42.55375 42.02730 43.08021
## 756  42.19595 41.40475 42.98714
## 757  42.32643 41.78340 42.86946
## 758  42.44415 42.00029 42.88801
## 759  42.32943 41.79090 42.86797
## 760  42.61363 41.98857 43.23869
## 761  42.21540 41.46587 42.96492
## 762  42.25223 41.57808 42.92637
## 763  42.38435 41.91222 42.85649
## 764  42.35095 41.84223 42.85966
## 765  42.61659 41.98604 43.24715
## 766  42.59704 42.00181 43.19227
## 767  42.44220 41.99826 42.88614
## 768  42.49120 42.03165 42.95075
## 769  42.44430 42.00044 42.88815
## 770  42.30104 41.71713 42.88496
## 771  42.61687 41.98580 43.24794
## 772  42.44227 41.99833 42.88620
## 773  42.44281 41.99890 42.88672
## 774  42.54318 42.03110 43.05526
## 775  42.37856 41.90103 42.85609
## 776  42.56914 42.01993 43.11834
## 777  42.27547 41.64592 42.90502
## 778  42.49181 42.03185 42.95178
## 779  42.48506 42.02942 42.94070
## 780  42.66836 41.93515 43.40158
## 781  42.45045 42.00644 42.89446
## 782  42.51396 42.03546 42.99247
## 783  42.21628 41.46861 42.96394
## 784  42.65833 41.94587 43.37079
## 785  42.17319 41.33194 43.01444
## 786  42.43003 41.98427 42.87578
## 787  42.30542 41.72890 42.88195
## 788  42.21600 41.46775 42.96425
## 789  42.61783 41.98497 43.25069
## 790  42.29293 41.69496 42.89089
## 791  42.34634 41.83163 42.86106
## 792  42.59994 41.99962 43.20026
## 793  42.29277 41.69452 42.89101
## 794  42.57234 42.01815 43.12653
## 795  42.20686 41.43917 42.97454
## 796  42.56934 42.01982 43.11887
## 797  42.53995 42.03204 43.04787
## 798  42.30805 41.73589 42.88020
## 799  42.45935 42.01408 42.90461
## 800  42.54724 42.02977 43.06470
## 801  42.21164 41.45417 42.96912
## 802  42.52257 42.03518 43.00995
## 803  42.55087 42.02844 43.07329
## 804  42.33051 41.79357 42.86745
## 805  42.54577 42.03027 43.06127
## 806  42.48382 42.02890 42.93874
## 807  42.47452 42.02432 42.92471
## 808  42.62010 41.98298 43.25723
## 809  42.35157 41.84364 42.85949
## 810  42.55173 42.02811 43.07536
## 811  42.63788 41.96653 43.30922
## 812  42.47204 42.02288 42.92119
## 813  42.47693 42.02563 42.92823
## 814  42.24638 41.56061 42.93214
## 815  42.59751 42.00146 43.19355
## 816  42.59887 42.00043 43.19732
## 817  42.18350 41.36509 43.00191
## 818  42.45747 42.01257 42.90236
## 819  42.23007 41.51118 42.94896
## 820  42.42439 41.97703 42.87175
## 821  42.29359 41.69679 42.89039
## 822  42.36274 41.86841 42.85708
## 823  42.45903 42.01383 42.90423
## 824  42.21101 41.45219 42.96983
## 825  42.66481 41.93899 43.39063
## 826  42.18179 41.35960 43.00397
## 827  42.59650 42.00221 43.19078
## 828  42.62001 41.98306 43.25697
## 829  42.37471 41.89336 42.85606
## 830  42.66444 41.93938 43.38951
## 831  42.51009 42.03529 42.98489
## 832  42.59668 42.00207 43.19130
## 833  42.46179 42.01597 42.90762
## 834  42.52104 42.03530 43.00679
## 835  42.35458 41.85045 42.85871
## 836  42.32046 41.76825 42.87266
## 837  42.63147 41.97264 43.29029
## 838  42.53169 42.03395 43.02943
## 839  42.39733 41.93568 42.85898
## 840  42.45182 42.00769 42.89594
## 841  42.34775 41.83489 42.86061
## 842  42.60461 41.99597 43.21324
## 843  42.37042 41.88460 42.85623
## 844  42.19142 41.39038 42.99246
## 845  42.54689 42.02989 43.06390
## 846  42.43987 41.99576 42.88398
## 847  42.29417 41.69838 42.88996
## 848  42.78048 41.79706 43.76390
## 849  42.65520 41.94914 43.36126
## 850  42.26887 41.62694 42.91081
## 851  42.48315 42.02862 42.93768
## 852  42.44935 42.00541 42.89329
## 853  42.42404 41.97656 42.87152
## 854  42.28044 41.66007 42.90082
## 855  42.29135 41.69062 42.89209
## 856  42.48469 42.02927 42.94010
## 857  42.17228 41.32901 43.01556
## 858  42.20115 41.42122 42.98108
## 859  42.33462 41.80367 42.86557
## 860  42.45057 42.00655 42.89458
## 861  42.29665 41.70518 42.88812
## 862  42.60628 41.99464 43.21792
## 863  42.58863 42.00785 43.16941
## 864  42.58257 42.01192 43.15322
## 865  42.43860 41.99437 42.88284
## 866  42.58846 42.00797 43.16894
## 867  42.50295 42.03447 42.97144
## 868  42.69916 41.90018 43.49813
## 869  42.40053 41.94112 42.85994
## 870  42.20037 41.41876 42.98199
## 871  42.20037 41.41876 42.98199
## 872  42.20037 41.41876 42.98199
## 873  42.29801 41.70891 42.88712
## 874  42.47824 42.02631 42.93017
## 875  42.71063 41.88648 43.53478
## 876  42.38510 41.91363 42.85658
## 877  42.44767 42.00380 42.89153
## 878  42.24429 41.55436 42.93423
## 879  42.24430 41.55439 42.93422
## 880  42.26536 41.61675 42.91398
## 881  42.32694 41.78467 42.86920
## 882  42.19201 41.39226 42.99176
## 883  42.47316 42.02355 42.92278
## 884  42.71962 41.87551 43.56373
## 885  42.65077 41.95371 43.34782
## 886  42.41353 41.96172 42.86534
## 887  42.42240 41.97436 42.87045
## 888  42.67790 41.92463 43.43117
## 889  42.45044 42.00643 42.89445
## 890  42.39272 41.92761 42.85784
## 891  42.69129 41.90938 43.47320
## 892  42.28601 41.67575 42.89627
## 893  42.72130 41.87344 43.56916
## 894  42.27036 41.63125 42.90948
## 895  42.35630 41.85429 42.85831
## 896  42.66134 41.94269 43.37999
## 897  42.48071 42.02751 42.93390
## 898  42.48072 42.02752 42.93392
## 899  42.22500 41.49560 42.95439
## 900  42.69511 41.90494 43.48528
## 901  42.53398 42.03349 43.03448
## 902  42.67625 41.92647 43.42602
## 903  42.67626 41.92646 43.42605
## 904  42.44773 42.00386 42.89160
## 905  42.43921 41.99504 42.88338
## 906  42.36683 41.87711 42.85655
## 907  42.55527 42.02666 43.08387
## 908  42.45006 42.00608 42.89404
## 909  42.45007 42.00609 42.89405
## 910  42.45008 42.00610 42.89406
## 911  42.69787 41.90170 43.49403
## 912  42.59588 42.00267 43.18908
## 913  42.65968 41.94446 43.37490
## 914  42.65969 41.94444 43.37493
## 915  42.59160 42.00577 43.17743
## 916  42.59161 42.00576 43.17746
## 917  42.40403 41.94690 42.86116
## 918  42.40404 41.94692 42.86116
## 919  42.20245 41.42531 42.97959
## 920  42.43984 41.99573 42.88395
## 921  42.49559 42.03292 42.95826
## 922  42.31960 41.76605 42.87314
## 923  42.36027 41.86304 42.85750
## 924  42.69787 41.90170 43.49404
## 925  42.58421 42.01084 43.15757
## 926  42.26237 41.60802 42.91673
## 927  42.46258 42.01656 42.90860
## 928  42.33730 41.81016 42.86443
## 929  42.33731 41.81019 42.86442
## 930  42.52581 42.03485 43.01676
## 931  42.52654 42.03476 43.01832
## 932  42.63894 41.96551 43.31237
## 933  42.48929 42.03102 42.94757
## 934  42.26886 41.62690 42.91082
## 935  42.61828 41.98458 43.25198
## 936  42.61829 41.98457 43.25201
## 937  42.33925 41.81486 42.86363
## 938  42.57982 42.01367 43.14597
## 939  42.25443 41.58461 42.92424
## 940  42.68610 41.91535 43.45686
## 941  42.53195 42.03390 43.02999
## 942  42.54113 42.03171 43.05056
## 943  42.37563 41.89521 42.85605
## 944  42.44101 41.99700 42.88502
## 945  42.32039 41.76808 42.87270
## 946  42.28967 41.68594 42.89339
## 947  42.20711 41.43998 42.97425
## 948  42.27432 41.64261 42.90602
## 949  42.25652 41.59080 42.92223
## 950  42.61048 41.99121 43.22974
## 951  42.64088 41.96361 43.31815
## 952  42.42618 41.97938 42.87298
## 953  42.42718 41.98068 42.87369
## 954  42.67564 41.92715 43.42414
## 955  42.72484 41.86906 43.58062
## 956  42.27075 41.63236 42.90914
## 957  42.21948 41.47855 42.96041
## 958  42.21750 41.47242 42.96258
## 959  42.39953 41.93944 42.85962
## 960  42.17153 41.32656 43.01649
## 961  42.56103 42.02407 43.09799
## 962  42.66057 41.94351 43.37762
## 963  42.58652 42.00930 43.16373
## 964  42.58553 42.00996 43.16110
## 965  42.63108 41.97300 43.28916
## 966  42.63109 41.97299 43.28920
## 967  42.70709 41.89074 43.52343
## 968  42.45617 42.01149 42.90084
## 969  42.70887 41.88860 43.52914
## 970  42.68117 41.92095 43.44139
## 971  42.50254 42.03440 42.97068
## 972  42.43399 41.98907 42.87890
## 973  42.24377 41.55277 42.93476
## 974  42.54027 42.03195 43.04860
## 975  42.61696 41.98572 43.24821
## 976  42.29614 41.70378 42.88849
## 977  42.39786 41.93660 42.85913
## 978  42.30320 41.72295 42.88346
## 979  42.30322 41.72298 42.88345
## 980  42.60912 41.99233 43.22592
## 981  42.33344 41.80078 42.86609
## 982  42.31259 41.74788 42.87730
## 983  42.69078 41.90997 43.47160
## 984  42.22315 41.48990 42.95640
## 985  42.41769 41.96779 42.86759
## 986  42.41770 41.96781 42.86760
## 987  42.18780 41.37885 42.99676
## 988  42.67819 41.92430 43.43208
## 989  42.39476 41.93121 42.85830
## 990  42.32503 41.77989 42.87018
## 991  42.46925 42.02116 42.91735
## 992  42.35356 41.84815 42.85896
## 993  42.35357 41.84817 42.85896
## 994  42.40548 41.94924 42.86171
## 995  42.38148 41.90672 42.85624
## 996  42.53756 42.03267 43.04246
## 997  42.29078 41.68904 42.89253
## 998  42.21750 41.47241 42.96259
## 999  42.22532 41.49659 42.95405
## 1000 42.27006 41.63037 42.90975
## 1001 42.53042 42.03418 43.02667
## 1002 42.63255 41.97162 43.29348
## 1003 42.45145 42.00736 42.89554
## 1004 42.30595 41.73030 42.88159
## 1005 42.29735 41.70708 42.88761
## 1006 42.59404 42.00402 43.18407
## 1007 42.23167 41.51610 42.94725
## 1008 42.55512 42.02673 43.08351
## 1009 42.27725 41.65101 42.90350
## 1010 42.21153 41.45382 42.96924
## 1011 42.48117 42.02772 42.93461
## 1012 42.25971 41.60021 42.91921
## 1013 42.58156 42.01257 43.15055
## 1014 42.61669 41.98595 43.24743
## 1015 42.38555 41.91448 42.85663
## 1016 42.38556 41.91450 42.85663
## 1017 42.46328 42.01707 42.90949
## 1018 42.38457 41.91262 42.85652
## 1019 42.65279 41.95163 43.35396
## 1020 42.59020 42.00676 43.17363
## 1021 42.38025 41.90433 42.85617
## 1022 42.24050 41.54292 42.93808
## 1023 42.21542 41.46595 42.96489
## 1024 42.52045 42.03533 43.00556
## 1025 42.25979 41.60045 42.91913
## 1026 42.17352 41.33301 43.01403
## 1027 42.56725 42.02095 43.11356
## 1028 42.53803 42.03255 43.04352
## 1029 42.25973 41.60027 42.91919
## 1030 42.52253 42.03519 43.00987
## 1031 42.41906 41.96974 42.86839
## 1032 42.40260 41.94456 42.86064
## 1033 42.20967 41.44800 42.97134
## 1034 42.24217 41.54798 42.93637
## 1035 42.17326 41.33217 43.01435
## 1036 42.57424 42.01706 43.13142
## 1037 42.70052 41.89857 43.50246
## 1038 42.28025 41.65953 42.90098
## 1039 42.19716 41.40859 42.98573
## 1040 42.19716 41.40859 42.98572
## 1041 42.31647 41.75797 42.87496
## 1042 42.33361 41.80121 42.86601
## 1043 42.18547 41.37139 42.99955
## 1044 42.43134 41.98590 42.87679
## 1045 42.70158 41.89731 43.50586
## 1046 42.70210 41.89670 43.50750
## 1047 42.19837 41.41242 42.98432
## 1048 42.66564 41.93809 43.39320
## 1049 42.59259 42.00507 43.18010
## 1050 42.49333 42.03230 42.95435
## 1051 42.55410 42.02715 43.08104
## 1052 42.26990 41.62992 42.90989
## 1053 42.33929 41.81496 42.86362
## 1054 42.45566 42.01106 42.90025
## 1055 42.48523 42.02949 42.94098
## 1056 42.52233 42.03520 43.00946
## 1057 42.33613 41.80735 42.86492
## 1058 42.53433 42.03342 43.03524
## 1059 42.26679 41.62090 42.91268
## 1060 42.24842 41.56674 42.93011
## 1061 42.18731 41.37727 42.99735
## 1062 42.30893 41.73824 42.87963
## 1063 42.30895 41.73827 42.87962
## 1064 42.24831 41.56640 42.93022
## 1065 42.20582 41.43591 42.97573
## 1066 42.57577 42.01615 43.13538
## 1067 42.57578 42.01614 43.13541
## 1068 42.72164 41.87301 43.57028
## 1069 42.59764 42.00135 43.19394
## 1070 42.29540 41.70177 42.88904
## 1071 42.58837 42.00803 43.16872
## 1072 42.18541 41.37120 42.99962
## 1073 42.64427 41.96027 43.32827
## 1074 42.67118 41.93207 43.41028
## 1075 42.54451 42.03068 43.05835
## 1076 42.72470 41.86923 43.58018
## 1077 42.28854 41.68281 42.89427
## 1078 42.48532 42.02952 42.94111
## 1079 42.55158 42.02817 43.07498
## 1080 42.54363 42.03096 43.05631
## 1081 42.57262 42.01799 43.12724
## 1082 42.34709 41.83336 42.86082
## 1083 42.40042 41.94093 42.85990
## 1084 42.17445 41.33599 43.01290
## 1085 42.17925 41.35145 43.00705
## 1086 42.49110 42.03162 42.95058
## 1087 42.45581 42.01119 42.90043
## 1088 42.58758 42.00858 43.16658
## 1089 42.41429 41.96285 42.86573
## 1090 42.50104 42.03414 42.96794
## 1091 42.21304 41.45854 42.96755
## 1092 42.38400 41.91154 42.85646
## 1093 42.23251 41.51865 42.94637
## 1094 42.19323 41.39612 42.99033
## 1095 42.49935 42.03381 42.96490
## 1096 42.28362 41.66903 42.89821
## 1097 42.59747 42.00148 43.19346
## 1098 42.62884 41.97509 43.28259
## 1099 42.18193 41.36006 43.00380
## 1100 42.26455 41.61438 42.91472
## 1101 42.26453 41.61431 42.91474
## 1102 42.69028 41.91055 43.47002
## 1103 42.27400 41.64172 42.90629
## 1104 42.36932 41.88233 42.85631
## 1105 42.32460 41.77879 42.87041
## 1106 42.51000 42.03528 42.98472
## 1107 42.66948 41.93393 43.40504
## 1108 42.58789 42.00836 43.16742
## 1109 42.55440 42.02703 43.08177
## 1110 42.59004 42.00687 43.17321
## 1111 42.60456 41.99601 43.21312
## 1112 42.21134 41.45323 42.96946
## 1113 42.54079 42.03180 43.04978
## 1114 42.59593 42.00263 43.18923
## 1115 42.21311 41.45876 42.96747
## 1116 42.66608 41.93762 43.39454
## 1117 42.24041 41.54265 42.93817
## 1118 42.18635 41.37421 42.99849
## 1119 42.26406 41.61296 42.91517
## 1120 42.43460 41.98980 42.87940
## 1121 42.69120 41.90949 43.47291
## 1122 42.22854 41.50650 42.95058
## 1123 42.40281 41.94490 42.86071
## 1124 42.41740 41.96738 42.86743
## 1125 42.21935 41.47815 42.96055
## 1126 42.39808 41.93697 42.85919
## 1127 42.59481 42.00346 43.18617
## 1128 42.25370 41.58246 42.92494
## 1129 42.29927 41.71233 42.88622
## 1130 42.58300 42.01164 43.15436
## 1131 42.68655 41.91484 43.45825
## 1132 42.63723 41.96716 43.30731
## 1133 42.23241 41.51835 42.94647
## 1134 42.27548 41.64594 42.90502
## 1135 42.63937 41.96509 43.31364
## 1136 42.51852 42.03542 43.00161
## 1137 42.32837 41.78825 42.86849
## 1138 42.70581 41.89227 43.51936
## 1139 42.36301 41.86898 42.85704
## 1140 42.54855 42.02930 43.06779
## 1141 42.41227 41.95983 42.86471
## 1142 42.57069 42.01908 43.12229
## 1143 42.32806 41.78749 42.86864
## 1144 42.53567 42.03312 43.03821
## 1145 42.17077 41.32413 43.01741
## 1146 42.36018 41.86286 42.85751
## 1147 42.29868 41.71071 42.88664
## 1148 42.68342 41.91841 43.44843
## 1149 42.49598 42.03302 42.95893
## 1150 42.23887 41.53798 42.93975
## 1151 42.26508 41.61592 42.91424
## 1152 42.28136 41.66266 42.90006
## 1153 42.39804 41.93691 42.85918
## 1154 42.30905 41.73856 42.87955
## 1155 42.26324 41.61055 42.91593
## 1156 42.61893 41.98401 43.25386
## 1157 42.45221 42.00805 42.89637
## 1158 42.63113 41.97295 43.28932
## 1159 42.70214 41.89665 43.50763
## 1160 42.30376 41.72444 42.88308
## 1161 42.43540 41.99073 42.88007
## 1162 42.44791 42.00404 42.89179
## 1163 42.23807 41.53557 42.94057
## 1164 42.71597 41.87998 43.55197
## 1165 42.25363 41.58225 42.92501
## 1166 42.19039 41.38710 42.99368
## 1167 42.40622 41.95043 42.86201
## 1168 42.18217 41.36082 43.00352
## 1169 42.31614 41.75712 42.87515
## 1170 42.29365 41.69695 42.89035
## 1171 42.23912 41.53874 42.93950
## 1172 42.36281 41.86855 42.85707
## 1173 42.24417 41.55400 42.93435
## 1174 42.68763 41.91360 43.46166
## 1175 42.51656 42.03547 42.99765
## 1176 42.39665 41.93452 42.85879
## 1177 42.27051 41.63166 42.90935
## 1178 42.53133 42.03402 43.02864
## 1179 42.36412 41.87135 42.85688
## 1180 42.18440 41.36798 43.00083
## 1181 42.22390 41.49223 42.95557
## 1182 42.17561 41.33973 43.01148
## 1183 42.27336 41.63987 42.90685
## 1184 42.66031 41.94378 43.37685
## 1185 42.59907 42.00028 43.19785
## 1186 42.55266 42.02774 43.07759
## 1187 42.62801 41.97586 43.28015
## 1188 42.28410 41.67038 42.89782
## 1189 42.62384 41.97965 43.26802
## 1190 42.61120 41.99061 43.23180
## 1191 42.32849 41.78855 42.86843
## 1192 42.62265 41.98072 43.26457
## 1193 42.21175 41.45450 42.96900
## 1194 42.31285 41.74856 42.87714
## 1195 42.64609 41.95845 43.33373
## 1196 42.31252 41.74769 42.87735
## 1197 42.24008 41.54164 42.93851
## 1198 42.69481 41.90529 43.48433
## 1199 42.45943 42.01415 42.90472
## 1200 42.67618 41.92655 43.42581
## 1201 42.64835 41.95617 43.34054
## 1202 42.50511 42.03479 42.97543
## 1203 42.25886 41.59771 42.92001
## 1204 42.19146 41.39051 42.99242
## 1205 42.43836 41.99409 42.88262
## 1206 42.24768 41.56451 42.93084
## 1207 42.30665 41.73217 42.88113
## 1208 42.64917 41.95534 43.34300
## 1209 42.19063 41.38787 42.99340
## 1210 42.48207 42.02814 42.93600
## 1211 42.69531 41.90470 43.48591
## 1212 42.66387 41.93999 43.38775
## 1213 42.55622 42.02626 43.08619
## 1214 42.31247 41.74756 42.87738
## 1215 42.58958 42.00719 43.17198
## 1216 42.57298 42.01778 43.12817
## 1217 42.22232 41.48736 42.95729
## 1218 42.71496 41.88121 43.54872
## 1219 42.50297 42.03447 42.97147
## 1220 42.21374 41.46071 42.96677
## 1221 42.68255 41.91939 43.44571
## 1222 42.25024 41.57217 42.92831
## 1223 42.24928 41.56929 42.92926
## 1224 42.43762 41.99327 42.88197
## 1225 42.71975 41.87535 43.56415
## 1226 42.45544 42.01088 42.90000
## 1227 42.28154 41.66316 42.89991
## 1228 42.41075 41.95752 42.86398
## 1229 42.65136 41.95311 43.34960
## 1230 42.47087 42.02218 42.91957
## 1231 42.56016 42.02448 43.09584
## 1232 42.36240 41.86767 42.85713
## 1233 42.54889 42.02918 43.06861
## 1234 42.17939 41.35191 43.00687
## 1235 42.72014 41.87487 43.56541
## 1236 42.62416 41.97937 43.26895
## 1237 42.51406 42.03546 42.99266
## 1238 42.57288 42.01784 43.12792
## 1239 42.46957 42.02136 42.91777
## 1240 42.61912 41.98384 43.25441
## 1241 42.42882 41.98276 42.87488
## 1242 42.70245 41.89628 43.50863
## 1243 42.72267 41.87175 43.57358
## 1244 42.20615 41.43696 42.97534
## 1245 42.33529 41.80530 42.86528
## 1246 42.50986 42.03527 42.98446
## 1247 42.55470 42.02690 43.08249
## 1248 42.45976 42.01440 42.90511
## 1249 42.19866 41.41336 42.98397
## 1250 42.67250 41.93062 43.41437
## 1251 42.49693 42.03326 42.96060
## 1252 42.48248 42.02832 42.93665
## 1253 42.58489 42.01039 43.15940
## 1254 42.66499 41.93880 43.39117
## 1255 42.46353 42.01725 42.90980
## 1256 42.54407 42.03082 43.05731
## 1257 42.24633 41.56049 42.93218
## 1258 42.35218 41.84504 42.85932
## 1259 42.33523 41.80517 42.86530
## 1260 42.47547 42.02485 42.92609
## 1261 42.57047 42.01920 43.12173
## 1262 42.67602 41.92672 43.42532
## 1263 42.41993 41.97095 42.86891
## 1264 42.64974 41.95476 43.34472
## 1265 42.21162 41.45408 42.96915
## 1266 42.60616 41.99474 43.21758
## 1267 42.34449 41.82729 42.86169
## 1268 42.59171 42.00569 43.17773
## 1269 42.71425 41.88207 43.54643
## 1270 42.72498 41.86888 43.58109
## 1271 42.48996 42.03124 42.94868
## 1272 42.23030 41.51190 42.94871
## 1273 42.60277 41.99743 43.20811
## 1274 42.65178 41.95267 43.35089
## 1275 42.37345 41.89081 42.85609
## 1276 42.34723 41.83368 42.86078
## 1277 42.43348 41.98848 42.87849
## 1278 42.65574 41.94858 43.36290
## 1279 42.30147 41.71828 42.88466
## 1280 42.21635 41.46885 42.96386
## 1281 42.38939 41.92159 42.85719
## 1282 42.29658 41.70499 42.88817
## 1283 42.61852 41.98437 43.25268
## 1284 42.37411 41.89216 42.85607
## 1285 42.35581 41.85321 42.85842
## 1286 42.42220 41.97409 42.87032
## 1287 42.44931 42.00537 42.89324
## 1288 42.56358 42.02283 43.10433
## 1289 42.55732 42.02577 43.08887
## 1290 42.29708 41.70635 42.88780
## 1291 42.37195 41.88775 42.85614
## 1292 42.46493 42.01825 42.91160
## 1293 42.32190 41.77193 42.87186
## 1294 42.19213 41.39265 42.99162
## 1295 42.23184 41.51659 42.94708
## 1296 42.54854 42.02931 43.06777
## 1297 42.18757 41.37811 42.99703
## 1298 42.40978 41.95602 42.86353
## 1299 42.20590 41.43619 42.97562
## 1300 42.45325 42.00898 42.89752
## 1301 42.42456 41.97725 42.87187
## 1302 42.21116 41.45267 42.96966
## 1303 42.49437 42.03260 42.95614
## 1304 42.23292 41.51989 42.94594
## 1305 42.62279 41.98059 43.26499
## 1306 42.70927 41.88812 43.53042
## 1307 42.41601 41.96537 42.86665
## 1308 42.30550 41.72910 42.88189
## 1309 42.64827 41.95625 43.34029
## 1310 42.36190 41.86657 42.85722
## 1311 42.28911 41.68440 42.89382
## 1312 42.30968 41.74021 42.87915
## 1313 42.63414 41.97012 43.29816
## 1314 42.57679 42.01553 43.13805
## 1315 42.72574 41.86793 43.58356
## 1316 42.27380 41.64114 42.90646
## 1317 42.32448 41.77848 42.87047
## 1318 42.51420 42.03546 42.99293
## 1319 42.19078 41.38833 42.99322
## 1320 42.25720 41.59283 42.92158
## 1321 42.33223 41.79782 42.86664
## 1322 42.30242 41.72085 42.88400
## 1323 42.26816 41.62489 42.91144
## 1324 42.21300 41.45842 42.96759
## 1325 42.30435 41.72602 42.88267
## 1326 42.38398 41.91150 42.85645
## 1327 42.34654 41.83207 42.86100
## 1328 42.62965 41.97434 43.28495
## 1329 42.20468 41.43234 42.97702
## 1330 42.66776 41.93580 43.39973
## 1331 42.63906 41.96539 43.31273
## 1332 42.61330 41.98885 43.23775
## 1333 42.70510 41.89312 43.51707
## 1334 42.28618 41.67623 42.89614
## 1335 42.41447 41.96312 42.86583
## 1336 42.71977 41.87532 43.56421
## 1337 42.58717 42.00886 43.16548
## 1338 42.49921 42.03378 42.96465
## 1339 42.51012 42.03529 42.98495
## 1340 42.66542 41.93833 43.39252
## 1341 42.63165 41.97247 43.29082
## 1342 42.60849 41.99284 43.22414
## 1343 42.22661 41.50058 42.95265
## 1344 42.24357 41.55219 42.93495
## 1345 42.31717 41.75979 42.87454
## 1346 42.33927 41.81493 42.86362
## 1347 42.66143 41.94259 43.38028
## 1348 42.22731 41.50273 42.95190
## 1349 42.53209 42.03387 43.03030
## 1350 42.21219 41.45588 42.96850
## 1351 42.65257 41.95186 43.35329
## 1352 42.70186 41.89699 43.50672
## 1353 42.34983 41.83967 42.85998
## 1354 42.40348 41.94601 42.86096
## 1355 42.17735 41.34536 43.00935
## 1356 42.60189 41.99811 43.20567
## 1357 42.33795 41.81175 42.86415
## 1358 42.45471 42.01025 42.89916
## 1359 42.54672 42.02995 43.06348
## 1360 42.39255 41.92730 42.85780
## 1361 42.23012 41.51133 42.94891
## 1362 42.17485 41.33731 43.01240
## 1363 42.24372 41.55263 42.93481
## 1364 42.37338 41.89067 42.85609
## 1365 42.39414 41.93012 42.85816
## 1366 42.53884 42.03234 43.04535
## 1367 42.45286 42.00863 42.89709
## 1368 42.31071 41.74294 42.87849
## 1369 42.50483 42.03475 42.97491
## 1370 42.72350 41.87072 43.57627
## 1371 42.22090 41.48295 42.95885
## 1372 42.20669 41.43866 42.97473
## 1373 42.64836 41.95616 43.34055
## 1374 42.40239 41.94421 42.86056
## 1375 42.25146 41.57581 42.92711
## 1376 42.69554 41.90443 43.48665
## 1377 42.72491 41.86896 43.58086
## 1378 42.57030 42.01929 43.12132
## 1379 42.26971 41.62937 42.91006
## 1380 42.21626 41.46856 42.96396
## 1381 42.25517 41.58683 42.92352
## 1382 42.38793 41.91890 42.85695
## 1383 42.24365 41.55241 42.93488
## 1384 42.17483 41.33721 43.01244
## 1385 42.35787 41.85776 42.85797
## 1386 42.28442 41.67130 42.89755
## 1387 42.63203 41.97212 43.29194
## 1388 42.72573 41.86795 43.58351
## 1389 42.46946 42.02129 42.91762
## 1390 42.66156 41.94246 43.38066
## 1391 42.24790 41.56517 42.93062
## 1392 42.43255 41.98736 42.87774
## 1393 42.30530 41.72858 42.88203
## 1394 42.23255 41.51878 42.94633
## 1395 42.20608 41.43672 42.97543
## 1396 42.39653 41.93430 42.85876
## 1397 42.17775 41.34663 43.00887
## 1398 42.52009 42.03535 43.00482
## 1399 42.41826 41.96861 42.86792
## 1400 42.58986 42.00700 43.17273
## 1401 42.26014 41.60147 42.91881
## 1402 42.69213 41.90840 43.47586
## 1403 42.36717 41.87784 42.85651
## 1404 42.46858 42.02073 42.91643
## 1405 42.48577 42.02970 42.94183
## 1406 42.66979 41.93359 43.40600
## 1407 42.39482 41.93132 42.85832
## 1408 42.17851 41.34909 43.00794
## 1409 42.17448 41.33610 43.01286
## 1410 42.62650 41.97724 43.27577
## 1411 42.60333 41.99698 43.20969
## 1412 42.41197 41.95938 42.86457
## 1413 42.47449 42.02430 42.92467
## 1414 42.44233 41.99841 42.88626
## 1415 42.61185 41.99006 43.23364
## 1416 42.69153 41.90910 43.47395
## 1417 42.20264 41.42591 42.97937
## 1418 42.54305 42.03114 43.05495
## 1419 42.35043 41.84104 42.85981
## 1420 42.29772 41.70812 42.88733
## 1421 42.39845 41.93761 42.85930
## 1422 42.22046 41.48160 42.95933
## 1423 42.36880 41.88124 42.85635
## 1424 42.47361 42.02381 42.92341
## 1425 42.24072 41.54359 42.93785
## 1426 42.53699 42.03281 43.04117
## 1427 42.70933 41.88804 43.53063
## 1428 42.24008 41.54164 42.93851
## 1429 42.17845 41.34888 43.00802
## 1430 42.27996 41.65871 42.90122
## 1431 42.21607 41.46795 42.96418
## 1432 42.67603 41.92671 43.42536
## 1433 42.49096 42.03158 42.95035
## 1434 42.21174 41.45447 42.96901
## 1435 42.41729 41.96722 42.86736
## 1436 42.44872 42.00482 42.89263
## 1437 42.58621 42.00951 43.16292
## 1438 42.36870 41.88104 42.85636
## 1439 42.24535 41.55752 42.93317
## 1440 42.67285 41.93023 43.41547
## 1441 42.62107 41.98212 43.26002
## 1442 42.58382 42.01110 43.15653
## 1443 42.20590 41.43618 42.97563
## 1444 42.53489 42.03329 43.03649
## 1445 42.23266 41.51911 42.94621
## 1446 42.66746 41.93612 43.39881
## 1447 42.53560 42.03313 43.03807
## 1448 42.67976 41.92255 43.43697
## 1449 42.25407 41.58356 42.92458
## 1450 42.42588 41.97899 42.87277
## 1451 42.59071 42.00640 43.17501
## 1452 42.38170 41.90714 42.85626
## 1453 42.29639 41.70448 42.88831
## 1454 42.40914 41.95503 42.86324
## 1455 42.34931 41.83848 42.86014
## 1456 42.22022 41.48084 42.95960
## 1457 42.49625 42.03309 42.95941
## 1458 42.45694 42.01214 42.90175
## 1459 42.59201 42.00548 43.17855
## 1460 42.61748 41.98527 43.24970
## 1461 42.66437 41.93946 43.38927
## 1462 42.32899 41.78981 42.86818
## 1463 42.68247 41.91949 43.44545
## 1464 42.54969 42.02888 43.07050
## 1465 42.53795 42.03257 43.04333
## 1466 42.34528 41.82914 42.86142
## 1467 42.45612 42.01145 42.90078
## 1468 42.32980 41.79182 42.86779
## 1469 42.20309 41.42734 42.97885
## 1470 42.29002 41.68692 42.89312
## 1471 42.24106 41.54461 42.93751
## 1472 42.17478 41.33705 43.01250
## 1473 42.39990 41.94006 42.85974
## 1474 42.54564 42.03031 43.06097
## 1475 42.24556 41.55818 42.93295
## 1476 42.59675 42.00203 43.19147
## 1477 42.45281 42.00859 42.89704
## 1478 42.51994 42.03536 43.00453
## 1479 42.35910 41.86049 42.85772
## 1480 42.59499 42.00332 43.18667
## 1481 42.38584 41.91502 42.85666
## 1482 42.20694 41.43945 42.97444
## 1483 42.40617 41.95036 42.86199
## 1484 42.53482 42.03331 43.03633
## 1485 42.64129 41.96321 43.31938
## 1486 42.50983 42.03527 42.98440
## 1487 42.48686 42.03013 42.94358
## 1488 42.58208 42.01223 43.15194
## 1489 42.71884 41.87647 43.56120
## 1490 42.50311 42.03450 42.97172
## 1491 42.18412 41.36707 43.00117
## 1492 42.61413 41.98815 43.24010
## 1493 42.57527 42.01644 43.13410
## 1494 42.44263 41.99872 42.88655
## 1495 42.37823 41.90037 42.85608
## 1496 42.47180 42.02274 42.92086
## 1497 42.55336 42.02746 43.07927
## 1498 42.50017 42.03397 42.96637
## 1499 42.23399 41.52315 42.94482
## 1500 42.68493 41.91668 43.45318
## 1501 42.72566 41.86803 43.58330
## 1502 42.59593 42.00263 43.18922
## 1503 42.25313 41.58078 42.92549
## 1504 42.41040 41.95698 42.86382
## 1505 42.29490 41.70039 42.88941
## 1506 42.51023 42.03530 42.98517
## 1507 42.32229 41.77294 42.87164
## 1508 42.37292 41.88973 42.85610
## 1509 42.59059 42.00648 43.17470
## 1510 42.29072 41.68886 42.89258
## 1511 42.38342 41.91045 42.85640
## 1512 42.56299 42.02312 43.10286
## 1513 42.16997 41.32152 43.01841
## 1514 42.19111 41.38940 42.99283
## 1515 42.58564 42.00989 43.16138
## 1516 42.69804 41.90150 43.49457
## 1517 42.46758 42.02007 42.91508
## 1518 42.51441 42.03547 42.99335
## 1519 42.55745 42.02572 43.08917
## 1520 42.27187 41.63560 42.90815
## 1521 42.33612 41.80733 42.86492
## 1522 42.71589 41.88007 43.55171
## 1523 42.27014 41.63059 42.90968
## 1524 42.41278 41.96060 42.86496
## 1525 42.18623 41.37381 42.99864
## 1526 42.63602 41.96833 43.30371
## 1527 42.72698 41.86639 43.58757
## 1528 42.18178 41.35958 43.00398
## 1529 42.28316 41.66775 42.89858
## 1530 42.26990 41.62990 42.90990
## 1531 42.24428 41.55431 42.93424
## 1532 42.54310 42.03112 43.05508
## 1533 42.59807 42.00103 43.19510
## 1534 42.59185 42.00559 43.17811
## 1535 42.33354 41.80103 42.86605
## 1536 42.68958 41.91135 43.46782
## 1537 42.28894 41.68391 42.89396
## 1538 42.33210 41.79750 42.86670
## 1539 42.21968 41.47916 42.96019
## 1540 42.60072 41.99901 43.20243
## 1541 42.69147 41.90917 43.47377
## 1542 42.62755 41.97628 43.27883
## 1543 42.63902 41.96543 43.31261
## 1544 42.29327 41.69592 42.89063
## 1545 42.56088 42.02414 43.09762
## 1546 42.44190 41.99794 42.88585
## 1547 42.64626 41.95827 43.33425
## 1548 42.34832 41.83620 42.86044
## 1549 42.60387 41.99656 43.21119
## 1550 42.46732 42.01990 42.91475
## 1551 42.26093 41.60380 42.91807
## 1552 42.50761 42.03508 42.98014
## 1553 42.17792 41.34719 43.00866
## 1554 42.56915 42.01993 43.11838
## 1555 42.61250 41.98952 43.23547
## 1556 42.34274 41.82318 42.86231
## 1557 42.69273 41.90771 43.47775
## 1558 42.21232 41.45630 42.96835
## 1559 42.48555 42.02962 42.94149
## 1560 42.66533 41.93843 43.39224
## 1561 42.36521 41.87369 42.85673
## 1562 42.57880 42.01430 43.14329
## 1563 42.38141 41.90658 42.85624
## 1564 42.40354 41.94611 42.86098
## 1565 42.66992 41.93345 43.40640
## 1566 42.57375 42.01734 43.13017
## 1567 42.50731 42.03505 42.97957
## 1568 42.67139 41.93184 43.41093
## 1569 42.28183 41.66400 42.89967
## 1570 42.36448 41.87213 42.85683
## 1571 42.52006 42.03536 43.00476
## 1572 42.18776 41.37870 42.99681
## 1573 42.59407 42.00399 43.18416
## 1574 42.33404 41.80226 42.86582
## 1575 42.67062 41.93269 43.40854
## 1576 42.35943 41.86120 42.85765
## 1577 42.19394 41.39839 42.98949
## 1578 42.59839 42.00079 43.19599
## 1579 42.18543 41.37128 42.99959
## 1580 42.68314 41.91872 43.44756
## 1581 42.57355 42.01745 43.12965
## 1582 42.63991 41.96456 43.31526
## 1583 42.48473 42.02928 42.94017
## 1584 42.28324 41.66797 42.89851
## 1585 42.20903 41.44598 42.97207
## 1586 42.37038 41.88452 42.85623
## 1587 42.44990 42.00593 42.89387
## 1588 42.55372 42.02731 43.08014
## 1589 42.43298 41.98788 42.87809
## 1590 42.33076 41.79419 42.86733
## 1591 42.71601 41.87994 43.55207
## 1592 42.42818 41.98195 42.87440
## 1593 42.23685 41.53187 42.94183
## 1594 42.45348 42.00918 42.89778
## 1595 42.41584 41.96512 42.86656
## 1596 42.25225 41.57817 42.92634
## 1597 42.42149 41.97311 42.86987
## 1598 42.51050 42.03531 42.98569
## 1599 42.20302 41.42711 42.97893
## 1600 42.60842 41.99291 43.22392
## 1601 42.59897 42.00036 43.19758
## 1602 42.50517 42.03479 42.97555
## 1603 42.62868 41.97524 43.28212
## 1604 42.40838 41.95384 42.86291
## 1605 42.22297 41.48935 42.95659
## 1606 42.44415 42.00029 42.88801
## 1607 42.33433 41.80298 42.86569
## 1608 42.46310 42.01694 42.90926
## 1609 42.66251 41.94145 43.38356
## 1610 42.50585 42.03488 42.97681
## 1611 42.71866 41.87668 43.56064
## 1612 42.51046 42.03531 42.98561
## 1613 42.42910 41.98312 42.87508
## 1614 42.20241 41.42520 42.97963
## 1615 42.65661 41.94767 43.36555
## 1616 42.27876 41.65529 42.90223
## 1617 42.45387 42.00953 42.89822
## 1618 42.56508 42.02207 43.10808
## 1619 42.57156 42.01859 43.12453
## 1620 42.50418 42.03466 42.97371
## 1621 42.59928 42.00012 43.19845
## 1622 42.44178 41.99782 42.88574
## 1623 42.29145 41.69087 42.89202
## 1624 42.70478 41.89350 43.51607
## 1625 42.54196 42.03147 43.05245
## 1626 42.48445 42.02917 42.93974
## 1627 42.64455 41.95999 43.32911
## 1628 42.55312 42.02755 43.07868
## 1629 42.38161 41.90697 42.85625
## 1630 42.45102 42.00697 42.89507
## 1631 42.52888 42.03443 43.02333
## 1632 42.20714 41.44007 42.97421
## 1633 42.50766 42.03508 42.98023
## 1634 42.35130 41.84305 42.85956
## 1635 42.31024 41.74171 42.87878
## 1636 42.35734 41.85661 42.85808
## 1637 42.23339 41.52133 42.94545
## 1638 42.48067 42.02749 42.93385
## 1639 42.30902 41.73847 42.87957
## 1640 42.32889 41.78955 42.86823
## 1641 42.56037 42.02438 43.09637
## 1642 42.57675 42.01556 43.13794
## 1643 42.46626 42.01918 42.91334
## 1644 42.43942 41.99527 42.88357
## 1645 42.71010 41.88711 43.53309
## 1646 42.22762 41.50367 42.95157
## 1647 42.24057 41.54312 42.93801
## 1648 42.68214 41.91986 43.44442
## 1649 42.35131 41.84305 42.85956
## 1650 42.23152 41.51564 42.94741
## 1651 42.29604 41.70352 42.88857
## 1652 42.36048 41.86351 42.85746
## 1653 42.32373 41.77660 42.87087
## 1654 42.32668 41.78403 42.86933
## 1655 42.33240 41.79823 42.86657
## 1656 42.42630 41.97953 42.87306
## 1657 42.63451 41.96977 43.29924
## 1658 42.36399 41.87109 42.85690
## 1659 42.19255 41.39396 42.99114
## 1660 42.59460 42.00361 43.18560
## 1661 42.46056 42.01503 42.90609
## 1662 42.57917 42.01407 43.14426
## 1663 42.22297 41.48934 42.95659
## 1664 42.53199 42.03389 43.03009
## 1665 42.55039 42.02862 43.07216
## 1666 42.22340 41.49068 42.95612
## 1667 42.67652 41.92617 43.42686
## 1668 42.21355 41.46011 42.96698
## 1669 42.41071 41.95745 42.86396
## 1670 42.45852 42.01343 42.90362
## 1671 42.55034 42.02864 43.07203
## 1672 42.49738 42.03337 42.96139
## 1673 42.63078 41.97329 43.28827
## 1674 42.44886 42.00495 42.89278
## 1675 42.19403 41.39866 42.98939
## 1676 42.71009 41.88713 43.53304
## 1677 42.64988 41.95462 43.34514
## 1678 42.19289 41.39506 42.99073
## 1679 42.67527 41.92756 43.42298
## 1680 42.20851 41.44436 42.97266
## 1681 42.22766 41.50381 42.95152
## 1682 42.21814 41.47439 42.96188
## 1683 42.44262 41.99870 42.88653
## 1684 42.63636 41.96800 43.30473
## 1685 42.27273 41.63805 42.90740
## 1686 42.24289 41.55012 42.93565
## 1687 42.54920 42.02906 43.06935
## 1688 42.58810 42.00822 43.16799
## 1689 42.22901 41.50794 42.95008
## 1690 42.26409 41.61304 42.91514
## 1691 42.49362 42.03239 42.95485
## 1692 42.51435 42.03547 42.99323
## 1693 42.41443 41.96306 42.86581
## 1694 42.22781 41.50424 42.95137
## 1695 42.48378 42.02889 42.93867
## 1696 42.65584 41.94847 43.36321
## 1697 42.33323 41.80028 42.86619
## 1698 42.56908 42.01997 43.11819
## 1699 42.34214 41.82174 42.86253
## 1700 42.52350 42.03510 43.01191
## 1701 42.62819 41.97569 43.28068
## 1702 42.27037 41.63127 42.90947
## 1703 42.51364 42.03545 42.99183
## 1704 42.30909 41.73866 42.87952
## 1705 42.63290 41.97130 43.29450
## 1706 42.42474 41.97750 42.87199
## 1707 42.56449 42.02237 43.10661
## 1708 42.72297 41.87138 43.57455
## 1709 42.52089 42.03531 43.00648
## 1710 42.45236 42.00818 42.89653
## 1711 42.30343 41.72355 42.88330
## 1712 42.18651 41.37473 42.99830
## 1713 42.53319 42.03365 43.03273
## 1714 42.51491 42.03547 42.99435
## 1715 42.66692 41.93672 43.39712
## 1716 42.25875 41.59737 42.92012
## 1717 42.54586 42.03024 43.06147
## 1718 42.34782 41.83505 42.86059
## 1719 42.61756 41.98520 43.24993
## 1720 42.57494 42.01664 43.13325
## 1721 42.31382 41.75109 42.87655
## 1722 42.57697 42.01543 43.13851
## 1723 42.27024 41.63089 42.90959
## 1724 42.23985 41.54095 42.93875
## 1725 42.58934 42.00736 43.17132
## 1726 42.17601 41.34102 43.01099
## 1727 42.35101 41.84237 42.85964
## 1728 42.56399 42.02262 43.10537
## 1729 42.28790 41.68102 42.89478
## 1730 42.33304 41.79981 42.86627
## 1731 42.31408 41.75177 42.87639
## 1732 42.44786 42.00398 42.89173
## 1733 42.25296 41.58027 42.92565
## 1734 42.63365 41.97058 43.29673
## 1735 42.55692 42.02595 43.08790
## 1736 42.33235 41.79811 42.86659
## 1737 42.25242 41.57865 42.92618
## 1738 42.29156 41.69118 42.89193
## 1739 42.30892 41.73819 42.87964
## 1740 42.59143 42.00590 43.17696
## 1741 42.49505 42.03278 42.95732
## 1742 42.62631 41.97742 43.27520
## 1743 42.47916 42.02677 42.93155
## 1744 42.29518 41.70115 42.88920
## 1745 42.17635 41.34212 43.01058
## 1746 42.19074 41.38820 42.99327
## 1747 42.68721 41.91408 43.46034
## 1748 42.46807 42.02039 42.91575
## 1749 42.32973 41.79163 42.86782
## 1750 42.41777 41.96790 42.86763
## 1751 42.59816 42.00096 43.19537
## 1752 42.58433 42.01076 43.15790
## 1753 42.61519 41.98724 43.24314
## 1754 42.35962 41.86163 42.85762
## 1755 42.68223 41.91975 43.44471
## 1756 42.61005 41.99156 43.22855
## 1757 42.23892 41.53814 42.93970
## 1758 42.53477 42.03332 43.03622
## 1759 42.18257 41.36212 43.00303
## 1760 42.25639 41.59042 42.92236
## 1761 42.49376 42.03243 42.95510
## 1762 42.51616 42.03547 42.99685
## 1763 42.63187 41.97226 43.29148
## 1764 42.53127 42.03402 43.02852
## 1765 42.20411 41.43055 42.97767
## 1766 42.60420 41.99630 43.21211
## 1767 42.31456 41.75303 42.87610
## 1768 42.64052 41.96397 43.31707
## 1769 42.41690 41.96666 42.86715
## 1770 42.70241 41.89633 43.50849
## 1771 42.29254 41.69389 42.89119
## 1772 42.72591 41.86773 43.58409
## 1773 42.33835 41.81272 42.86399
## 1774 42.52258 42.03518 43.00997
## 1775 42.69482 41.90527 43.48437
## 1776 42.20975 41.44826 42.97125
## 1777 42.41270 41.96048 42.86493
## 1778 42.54700 42.02985 43.06416
## 1779 42.63514 41.96916 43.30113
## 1780 42.39540 41.93233 42.85846
## 1781 42.40347 41.94599 42.86095
## 1782 42.42965 41.98381 42.87550
## 1783 42.43011 41.98438 42.87584
## 1784 42.39752 41.93601 42.85903
## 1785 42.31233 41.74718 42.87747
## 1786 42.54582 42.03025 43.06139
## 1787 42.47722 42.02579 42.92866
## 1788 42.43542 41.99075 42.88009
## 1789 42.70362 41.89489 43.51235
## 1790 42.32625 41.78295 42.86955
## 1791 42.35158 41.84368 42.85949
## 1792 42.23426 41.52400 42.94453
## 1793 42.17953 41.35237 43.00670
## 1794 42.44963 42.00567 42.89358
## 1795 42.32250 41.77346 42.87153
## 1796 42.33485 41.80424 42.86546
## 1797 42.60814 41.99313 43.22315
## 1798 42.17981 41.35324 43.00637
## 1799 42.23575 41.52851 42.94298
## 1800 42.40612 41.95027 42.86196
## 1801 42.56122 42.02398 43.09845
## 1802 42.58059 42.01318 43.14799
## 1803 42.72159 41.87308 43.57009
## 1804 42.48547 42.02958 42.94135
## 1805 42.18135 41.35820 43.00450
## 1806 42.25418 41.58390 42.92447
## 1807 42.50899 42.03520 42.98277
## 1808 42.20257 41.42569 42.97945
## 1809 42.51649 42.03547 42.99751
## 1810 42.44458 42.00074 42.88843
## 1811 42.24763 41.56437 42.93089
## 1812 42.64588 41.95865 43.33311
## 1813 42.51959 42.03538 43.00379
## 1814 42.24601 41.55952 42.93250
## 1815 42.37464 41.89323 42.85606
## 1816 42.60651 41.99445 43.21856
## 1817 42.62729 41.97652 43.27806
## 1818 42.40377 41.94648 42.86106
## 1819 42.64712 41.95742 43.33682
## 1820 42.59979 41.99973 43.19984
## 1821 42.27207 41.63617 42.90797
## 1822 42.38709 41.91735 42.85683
## 1823 42.59453 42.00366 43.18541
## 1824 42.71599 41.87996 43.55202
## 1825 42.30051 41.71569 42.88534
## 1826 42.59401 42.00404 43.18397
## 1827 42.24324 41.55119 42.93529
## 1828 42.66378 41.94009 43.38747
## 1829 42.41792 41.96812 42.86772
## 1830 42.58618 42.00953 43.16283
## 1831 42.19278 41.39471 42.99086
## 1832 42.61310 41.98902 43.23717
## 1833 42.71097 41.88606 43.53587
## 1834 42.60802 41.99323 43.22281
## 1835 42.61149 41.99037 43.23262
## 1836 42.62614 41.97757 43.27470
## 1837 42.22070 41.48234 42.95906
## 1838 42.45570 42.01110 42.90031
## 1839 42.61560 41.98689 43.24432
## 1840 42.70772 41.88998 43.52545
## 1841 42.36770 41.87895 42.85646
## 1842 42.72142 41.87329 43.56955
## 1843 42.72623 41.86733 43.58513
## 1844 42.53678 42.03286 43.04071
## 1845 42.47777 42.02607 42.92948
## 1846 42.44747 42.00360 42.89133
## 1847 42.32598 41.78227 42.86969
## 1848 42.43188 41.98655 42.87721
## 1849 42.70224 41.89652 43.50796
## 1850 42.40354 41.94611 42.86098
## 1851 42.27010 41.63047 42.90972
## 1852 42.18430 41.36766 43.00095
## 1853 42.37111 41.88603 42.85619
## 1854 42.27887 41.65561 42.90213
## 1855 42.20112 41.42113 42.98112
## 1856 42.44252 41.99860 42.88644
## 1857 42.70446 41.89388 43.51505
## 1858 42.62376 41.97972 43.26781
## 1859 42.34745 41.83419 42.86071
## 1860 42.67598 41.92677 43.42519
## 1861 42.29474 41.69994 42.88953
## 1862 42.48844 42.03071 42.94616
## 1863 42.41283 41.96068 42.86499
## 1864 42.48573 42.02969 42.94176
## 1865 42.24188 41.54710 42.93667
## 1866 42.24251 41.54900 42.93603
## 1867 42.41958 41.97046 42.86870
## 1868 42.40097 41.94186 42.86008
## 1869 42.28088 41.66130 42.90046
## 1870 42.38301 41.90966 42.85636
## 1871 42.46888 42.02092 42.91683
## 1872 42.30784 41.73533 42.88034
## 1873 42.37990 41.90365 42.85615
## 1874 42.33979 41.81616 42.86342
## 1875 42.28123 41.66230 42.90016
## 1876 42.70985 41.88742 43.53228
## 1877 42.70592 41.89214 43.51970
## 1878 42.43596 41.99138 42.88054
## 1879 42.55974 42.02468 43.09479
## 1880 42.49558 42.03292 42.95824
## 1881 42.36167 41.86609 42.85725
## 1882 42.38272 41.90910 42.85634
## 1883 42.48074 42.02753 42.93395
## 1884 42.25554 41.58793 42.92316
## 1885 42.22824 41.50559 42.95090
## 1886 42.54366 42.03095 43.05637
## 1887 42.61678 41.98587 43.24769
## 1888 42.38938 41.92157 42.85719
## 1889 42.36795 41.87947 42.85643
## 1890 42.66784 41.93572 43.39996
## 1891 42.65536 41.94898 43.36173
## 1892 42.71125 41.88572 43.53678
## 1893 42.50112 42.03415 42.96809
## 1894 42.52650 42.03477 43.01824
## 1895 42.59378 42.00421 43.18336
## 1896 42.28458 41.67173 42.89743
## 1897 42.31346 41.75016 42.87677
## 1898 42.52856 42.03448 43.02265
## 1899 42.57925 42.01403 43.14447
## 1900 42.45017 42.00618 42.89416
## 1901 42.63199 41.97215 43.29182
## 1902 42.63663 41.96774 43.30551
## 1903 42.72355 41.87065 43.57646
## 1904 42.37978 41.90342 42.85614
## 1905 42.47652 42.02542 42.92763
## 1906 42.60740 41.99373 43.22106
## 1907 42.35136 41.84318 42.85955
## 1908 42.29947 41.71287 42.88608
## 1909 42.70263 41.89606 43.50920
## 1910 42.65809 41.94612 43.37006
## 1911 42.37092 41.88564 42.85620
## 1912 42.36985 41.88344 42.85627
## 1913 42.23356 41.52184 42.94527
## 1914 42.32929 41.79054 42.86804
## 1915 42.58311 42.01156 43.15466
## 1916 42.23107 41.51425 42.94789
## 1917 42.46288 42.01678 42.90899
## 1918 42.32379 41.77674 42.87084
## 1919 42.20367 41.42916 42.97818
## 1920 42.63673 41.96764 43.30581
## 1921 42.36713 41.87776 42.85651
## 1922 42.45619 42.01151 42.90087
## 1923 42.40823 41.95362 42.86285
## 1924 42.18999 41.38583 42.99416
## 1925 42.31532 41.75501 42.87564
## 1926 42.63318 41.97103 43.29533
## 1927 42.23373 41.52238 42.94509
## 1928 42.61513 41.98730 43.24295
## 1929 42.72735 41.86593 43.58876
## 1930 42.42421 41.97678 42.87163
## 1931 42.31252 41.74770 42.87735
## 1932 42.30339 41.72346 42.88333
## 1933 42.34023 41.81722 42.86325
## 1934 42.64172 41.96279 43.32064
## 1935 42.67963 41.92269 43.43657
## 1936 42.54085 42.03179 43.04992
## 1937 42.68497 41.91665 43.45328
## 1938 42.39510 41.93181 42.85839
## 1939 42.34324 41.82436 42.86213
## 1940 42.25346 41.58174 42.92517
## 1941 42.21214 41.45570 42.96857
## 1942 42.67867 41.92377 43.43358
## 1943 42.60514 41.99555 43.21472
## 1944 42.24750 41.56397 42.93102
## 1945 42.64345 41.96108 43.32581
## 1946 42.67406 41.92890 43.41922
## 1947 42.53524 42.03322 43.03726
## 1948 42.42711 41.98058 42.87363
## 1949 42.22435 41.49361 42.95509
## 1950 42.54002 42.03202 43.04803
## 1951 42.56232 42.02345 43.10119
## 1952 42.64628 41.95825 43.33431
## 1953 42.69194 41.90863 43.47525
## 1954 42.17221 41.32878 43.01564
## 1955 42.64443 41.96011 43.32875
## 1956 42.39841 41.93753 42.85928
## 1957 42.25632 41.59021 42.92243
## 1958 42.55395 42.02721 43.08070
## 1959 42.28498 41.67286 42.89710
## 1960 42.48460 42.02923 42.93996
## 1961 42.25798 41.59512 42.92084
## 1962 42.20202 41.42396 42.98008
## 1963 42.57818 42.01469 43.14167
## 1964 42.63795 41.96647 43.30943
## 1965 42.26246 41.60827 42.91665
## 1966 42.44343 41.99955 42.88731
## 1967 42.52736 42.03465 43.02006
## 1968 42.37525 41.89445 42.85605
## 1969 42.65249 41.95195 43.35302
## 1970 42.26394 41.61260 42.91528
## 1971 42.18521 41.37055 42.99986
## 1972 42.56427 42.02249 43.10604
## 1973 42.17263 41.33013 43.01513
## 1974 42.33156 41.79617 42.86695
## 1975 42.44093 41.99691 42.88495
## 1976 42.57392 42.01724 43.13061
## 1977 42.19893 41.41421 42.98366
## 1978 42.27618 41.64796 42.90441
## 1979 42.48696 42.03017 42.94375
## 1980 42.22531 41.49657 42.95405
## 1981 42.18670 41.37532 42.99808
## 1982 42.72145 41.87325 43.56965
## 1983 42.31387 41.75124 42.87651
## 1984 42.26777 41.62375 42.91179
## 1985 42.43400 41.98910 42.87891
## 1986 42.36000 41.86244 42.85755
## 1987 42.66200 41.94199 43.38202
## 1988 42.64946 41.95504 43.34389
## 1989 42.71931 41.87588 43.56275
## 1990 42.29307 41.69536 42.89078
## 1991 42.45066 42.00664 42.89469
## 1992 42.40533 41.94901 42.86165
## 1993 42.38171 41.90716 42.85626
## 1994 42.53240 42.03381 43.03099
## 1995 42.20869 41.44493 42.97245
## 1996 42.19879 41.41377 42.98382
## 1997 42.61332 41.98883 43.23781
## 1998 42.55455 42.02696 43.08214
## 1999 42.53611 42.03302 43.03919
## 2000 42.55812 42.02542 43.09083
## 2001 42.33311 41.79998 42.86624
## 2002 42.31913 41.76485 42.87341
## 2003 42.45767 42.01273 42.90260
## 2004 42.65859 41.94560 43.37158
## 2005 42.36378 41.87064 42.85693
## 2006 42.54823 42.02942 43.06704
## 2007 42.17506 41.33796 43.01215
## 2008 42.17552 41.33944 43.01159
## 2009 42.58369 42.01118 43.15620
## 2010 42.66652 41.93715 43.39588
## 2011 42.20513 41.43376 42.97650
## 2012 42.58923 42.00744 43.17103
## 2013 42.25986 41.60064 42.91907
## 2014 42.40385 41.94662 42.86109
## 2015 42.34648 41.83195 42.86102
## 2016 42.48584 42.02973 42.94195
## 2017 42.33729 41.81014 42.86443
## 2018 42.48027 42.02730 42.93323
## 2019 42.58796 42.00832 43.16759
## 2020 42.23044 41.51233 42.94856
## 2021 42.71905 41.87621 43.56188
## 2022 42.36246 41.86780 42.85712
## 2023 42.17015 41.32210 43.01819
## 2024 42.58083 42.01303 43.14863
## 2025 42.45608 42.01141 42.90074
## 2026 42.28680 41.67796 42.89565
## 2027 42.69602 41.90387 43.48817
## 2028 42.50709 42.03502 42.97916
## 2029 42.55683 42.02599 43.08766
## 2030 42.34674 41.83253 42.86094
## 2031 42.28557 41.67452 42.89663
## 2032 42.46769 42.02014 42.91523
## 2033 42.59305 42.00474 43.18136
## 2034 42.37555 41.89504 42.85605
## 2035 42.56995 42.01949 43.12042
## 2036 42.56227 42.02348 43.10106
## 2037 42.23515 41.52671 42.94360
## 2038 42.17140 41.32616 43.01664
## 2039 42.69822 41.90129 43.49514
## 2040 42.63555 41.96877 43.30234
## 2041 42.66906 41.93439 43.40373
## 2042 42.20135 41.42184 42.98086
## 2043 42.72187 41.87274 43.57100
## 2044 42.50547 42.03483 42.97610
## 2045 42.36494 41.87311 42.85677
## 2046 42.65440 41.94997 43.35884
## 2047 42.66285 41.94109 43.38461
## 2048 42.25117 41.57493 42.92740
## 2049 42.63924 41.96522 43.31326
## 2050 42.55223 42.02791 43.07654
## 2051 42.57505 42.01658 43.13352
## 2052 42.25490 41.58603 42.92378
## 2053 42.68745 41.91380 43.46110
## 2054 42.49279 42.03214 42.95344
## 2055 42.60441 41.99613 43.21268
## 2056 42.30245 41.72091 42.88398
## 2057 42.27511 41.64489 42.90533
## 2058 42.46579 42.01886 42.91272
## 2059 42.46222 42.01629 42.90815
## 2060 42.68684 41.91451 43.45917
## 2061 42.55652 42.02613 43.08692
## 2062 42.55968 42.02470 43.09466
## 2063 42.63835 41.96608 43.31061
## 2064 42.60952 41.99200 43.22704
## 2065 42.70019 41.89895 43.50143
## 2066 42.17005 41.32179 43.01831
## 2067 42.65990 41.94422 43.37559
## 2068 42.61067 41.99105 43.23028
## 2069 42.21638 41.46894 42.96382
## 2070 42.57510 42.01655 43.13364
## 2071 42.49521 42.03282 42.95759
## 2072 42.42047 41.97170 42.86923
## 2073 42.53762 42.03265 43.04259
## 2074 42.26188 41.60657 42.91718
## 2075 42.69774 41.90185 43.49362
## 2076 42.51996 42.03536 43.00456
## 2077 42.40497 41.94843 42.86151
## 2078 42.63584 41.96850 43.30318
## 2079 42.46377 42.01743 42.91012
## 2080 42.22880 41.50730 42.95031
## 2081 42.69467 41.90545 43.48389
## 2082 42.28060 41.66051 42.90069
## 2083 42.54940 42.02899 43.06980
## 2084 42.40275 41.94481 42.86069
## 2085 42.33104 41.79488 42.86720
## 2086 42.59279 42.00492 43.18065
## 2087 42.60297 41.99726 43.20868
## 2088 42.17374 41.33371 43.01377
## 2089 42.71070 41.88639 43.53500
## 2090 42.67671 41.92595 43.42747
## 2091 42.52125 42.03528 43.00721
## 2092 42.44507 42.00123 42.88891
## 2093 42.71894 41.87634 43.56155
## 2094 42.47877 42.02658 42.93097
## 2095 42.48488 42.02935 42.94041
## 2096 42.71789 41.87763 43.55816
## 2097 42.56344 42.02290 43.10399
## 2098 42.47532 42.02477 42.92588
## 2099 42.22074 41.48247 42.95902
## 2100 42.53719 42.03276 43.04162
## 2101 42.33993 41.81650 42.86336
## 2102 42.16979 41.32096 43.01863
## 2103 42.57967 42.01376 43.14559
## 2104 42.50150 42.03422 42.96878
## 2105 42.38234 41.90837 42.85631
## 2106 42.57799 42.01480 43.14117
## 2107 42.39059 41.92378 42.85741
## 2108 42.38748 41.91807 42.85689
## 2109 42.41347 41.96163 42.86531
## 2110 42.24748 41.56391 42.93104
## 2111 42.40968 41.95587 42.86349
## 2112 42.30468 41.72691 42.88245
## 2113 42.31233 41.74721 42.87746
## 2114 42.28525 41.67361 42.89689
## 2115 42.26893 41.62711 42.91076
## 2116 42.71320 41.88336 43.54304
## 2117 42.28977 41.68623 42.89331
## 2118 42.28398 41.67005 42.89791
## 2119 42.27354 41.64039 42.90669
## 2120 42.72383 41.87031 43.57736
## 2121 42.39823 41.93723 42.85923
## 2122 42.48651 42.03000 42.94303
## 2123 42.62547 41.97818 43.27275
## 2124 42.64388 41.96065 43.32711
## 2125 42.20687 41.43922 42.97452
## 2126 42.57598 42.01602 43.13593
## 2127 42.36747 41.87845 42.85648
## 2128 42.53862 42.03239 43.04485
## 2129 42.38362 41.91081 42.85642
## 2130 42.67769 41.92486 43.43053
## 2131 42.43686 41.99240 42.88131
## 2132 42.68448 41.91720 43.45175
## 2133 42.54126 42.03167 43.05085
## 2134 42.48043 42.02738 42.93348
## 2135 42.31441 41.75264 42.87619
## 2136 42.32055 41.76851 42.87260
## 2137 42.40958 41.95572 42.86344
## 2138 42.60245 41.99767 43.20722
## 2139 42.18943 41.38404 42.99482
## 2140 42.62438 41.97916 43.26961
## 2141 42.25295 41.58025 42.92566
## 2142 42.55247 42.02782 43.07711
## 2143 42.22166 41.48530 42.95802
## 2144 42.49687 42.03324 42.96049
## 2145 42.54761 42.02964 43.06558
## 2146 42.17312 41.33173 43.01452
## 2147 42.34712 41.83343 42.86081
## 2148 42.58644 42.00935 43.16353
## 2149 42.39085 41.92425 42.85746
## 2150 42.33175 41.79663 42.86687
## 2151 42.21991 41.47988 42.95994
## 2152 42.53140 42.03400 43.02880
## 2153 42.28187 41.66411 42.89963
## 2154 42.45319 42.00892 42.89745
## 2155 42.43747 41.99310 42.88184
## 2156 42.19065 41.38791 42.99338
## 2157 42.27197 41.63589 42.90806
## 2158 42.22014 41.48061 42.95968
## 2159 42.56141 42.02389 43.09893
## 2160 42.31421 41.75211 42.87631
## 2161 42.66202 41.94197 43.38207
## 2162 42.52635 42.03479 43.01791
## 2163 42.45101 42.00695 42.89506
## 2164 42.23203 41.51717 42.94688
## 2165 42.47389 42.02396 42.92381
## 2166 42.17633 41.34207 43.01060
## 2167 42.62254 41.98082 43.26427
## 2168 42.47798 42.02617 42.92978
## 2169 42.27564 41.64641 42.90487
## 2170 42.50677 42.03499 42.97855
## 2171 42.68313 41.91874 43.44752
## 2172 42.35593 41.85346 42.85839
## 2173 42.29526 41.70137 42.88915
## 2174 42.67955 41.92277 43.43633
## 2175 42.25476 41.58561 42.92392
## 2176 42.53613 42.03301 43.03925
## 2177 42.27382 41.64118 42.90645
## 2178 42.60496 41.99569 43.21423
## 2179 42.50062 42.03406 42.96719
## 2180 42.49056 42.03144 42.94968
## 2181 42.56758 42.02077 43.11440
## 2182 42.50584 42.03488 42.97681
## 2183 42.67487 41.92800 43.42173
## 2184 42.58050 42.01324 43.14776
## 2185 42.17318 41.33190 43.01446
## 2186 42.68853 41.91256 43.46450
## 2187 42.61632 41.98627 43.24638
## 2188 42.27659 41.64912 42.90406
## 2189 42.57779 42.01492 43.14066
## 2190 42.19110 41.38935 42.99284
## 2191 42.17970 41.35288 43.00651
## 2192 42.28721 41.67911 42.89532
## 2193 42.56883 42.02010 43.11756
## 2194 42.17569 41.34000 43.01138
## 2195 42.32032 41.76790 42.87273
## 2196 42.65391 41.95048 43.35735
## 2197 42.54631 42.03009 43.06252
## 2198 42.53558 42.03314 43.03802
## 2199 42.51307 42.03544 42.99070
## 2200 42.23284 41.51965 42.94603
## 2201 42.40031 41.94074 42.85987
## 2202 42.49382 42.03244 42.95520
## 2203 42.51499 42.03547 42.99451
## 2204 42.46909 42.02106 42.91712
## 2205 42.21691 41.47058 42.96324
## 2206 42.32232 41.77301 42.87163
## 2207 42.24377 41.55278 42.93476
## 2208 42.47567 42.02496 42.92638
## 2209 42.62485 41.97874 43.27095
## 2210 42.51572 42.03548 42.99597
## 2211 42.67193 41.93125 43.41262
## 2212 42.72204 41.87252 43.57157
## 2213 42.38071 41.90523 42.85619
## 2214 42.31749 41.76062 42.87435
## 2215 42.58892 42.00765 43.17019
## 2216 42.47773 42.02605 42.92942
## 2217 42.35868 41.85955 42.85780
## 2218 42.27045 41.63150 42.90940
## 2219 42.44267 41.99875 42.88658
## 2220 42.33792 41.81166 42.86417
## 2221 42.59091 42.00626 43.17555
## 2222 42.17176 41.32731 43.01620
## 2223 42.39723 41.93551 42.85895
## 2224 42.66624 41.93745 43.39503
## 2225 42.66877 41.93471 43.40283
## 2226 42.53106 42.03406 43.02805
## 2227 42.32849 41.78856 42.86842
## 2228 42.20022 41.41828 42.98216
## 2229 42.64342 41.96111 43.32572
## 2230 42.46396 42.01756 42.91035
## 2231 42.57821 42.01467 43.14175
## 2232 42.50766 42.03508 42.98023
## 2233 42.52009 42.03535 43.00483
## 2234 42.54437 42.03073 43.05801
## 2235 42.40934 41.95535 42.86334
## 2236 42.63585 41.96849 43.30320
## 2237 42.26739 41.62263 42.91214
## 2238 42.48261 42.02838 42.93684
## 2239 42.38406 41.91166 42.85646
## 2240 42.18730 41.37725 42.99736
## 2241 42.39770 41.93632 42.85908
## 2242 42.19409 41.39886 42.98932
## 2243 42.22753 41.50339 42.95167
## 2244 42.50354 42.03456 42.97251
## 2245 42.71412 41.88223 43.54601
## 2246 42.54043 42.03191 43.04896
## 2247 42.58442 42.01070 43.15815
## 2248 42.22118 41.48381 42.95855
## 2249 42.59425 42.00387 43.18463
## 2250 42.65344 41.95097 43.35592
## 2251 42.26523 41.61635 42.91410
## 2252 42.43119 41.98572 42.87667
## 2253 42.29391 41.69768 42.89015
## 2254 42.33072 41.79410 42.86735
## 2255 42.20666 41.43856 42.97476
## 2256 42.57845 42.01452 43.14239
## 2257 42.43643 41.99192 42.88094
## 2258 42.29882 41.71110 42.88654
## 2259 42.40373 41.94642 42.86105
## 2260 42.32374 41.77663 42.87086
## 2261 42.19668 41.40707 42.98629
## 2262 42.59238 42.00522 43.17955
## 2263 42.45540 42.01084 42.89995
## 2264 42.69525 41.90478 43.48571
## 2265 42.22736 41.50288 42.95184
## 2266 42.41613 41.96554 42.86671
## 2267 42.62708 41.97671 43.27744
## 2268 42.69504 41.90502 43.48505
## 2269 42.22038 41.48135 42.95941
## 2270 42.57744 42.01514 43.13974
## 2271 42.70003 41.89915 43.50091
## 2272 42.44279 41.99889 42.88670
## 2273 42.35256 41.84589 42.85922
## 2274 42.64910 41.95541 43.34279
## 2275 42.36092 41.86445 42.85738
## 2276 42.29374 41.69721 42.89027
## 2277 42.40428 41.94731 42.86125
## 2278 42.49506 42.03279 42.95734
## 2279 42.26496 41.61557 42.91435
## 2280 42.64024 41.96424 43.31625
## 2281 42.63758 41.96682 43.30834
## 2282 42.56245 42.02339 43.10151
## 2283 42.47300 42.02345 42.92255
## 2284 42.36966 41.88303 42.85629
## 2285 42.48960 42.03112 42.94808
## 2286 42.27230 41.63683 42.90777
## 2287 42.28989 41.68655 42.89322
## 2288 42.63200 41.97214 43.29187
## 2289 42.59259 42.00507 43.18010
## 2290 42.51739 42.03546 42.99932
## 2291 42.37432 41.89258 42.85606
## 2292 42.28564 41.67471 42.89657
## 2293 42.64719 41.95734 43.33705
## 2294 42.67034 41.93299 43.40769
## 2295 42.48731 42.03030 42.94432
## 2296 42.39242 41.92707 42.85777
## 2297 42.72788 41.86527 43.59050
## 2298 42.70753 41.89020 43.52486
## 2299 42.36276 41.86843 42.85708
## 2300 42.23360 41.52197 42.94523
## 2301 42.30250 41.72106 42.88394
## 2302 42.65478 41.94959 43.35996
## 2303 42.20446 41.43165 42.97728
## 2304 42.45354 42.00924 42.89785
## 2305 42.26505 41.61584 42.91426
## 2306 42.68836 41.91277 43.46394
## 2307 42.60305 41.99720 43.20891
## 2308 42.36282 41.86858 42.85707
## 2309 42.54315 42.03111 43.05519
## 2310 42.58544 42.01003 43.16084
## 2311 42.25281 41.57980 42.92581
## 2312 42.24115 41.54488 42.93742
## 2313 42.68557 41.91596 43.45519
## 2314 42.65825 41.94596 43.37053
## 2315 42.38514 41.91371 42.85658
## 2316 42.39828 41.93731 42.85925
## 2317 42.31538 41.75516 42.87560
## 2318 42.27997 41.65873 42.90121
## 2319 42.22280 41.48883 42.95677
## 2320 42.19174 41.39138 42.99209
## 2321 42.65192 41.95253 43.35131
## 2322 42.51022 42.03530 42.98515
## 2323 42.56747 42.02083 43.11410
## 2324 42.67398 41.92899 43.41898
## 2325 42.60930 41.99218 43.22643
## 2326 42.28062 41.66058 42.90067
## 2327 42.61931 41.98368 43.25493
## 2328 42.29235 41.69336 42.89133
## 2329 42.42386 41.97632 42.87140
## 2330 42.39388 41.92967 42.85810
## 2331 42.45616 42.01148 42.90083
## 2332 42.68886 41.91219 43.46553
## 2333 42.18619 41.37371 42.99868
## 2334 42.53736 42.03272 43.04200
## 2335 42.23120 41.51465 42.94775
## 2336 42.72398 41.87012 43.57784
## 2337 42.36058 41.86371 42.85744
## 2338 42.56651 42.02133 43.11169
## 2339 42.32420 41.77778 42.87062
## 2340 42.35514 41.85171 42.85857
## 2341 42.39925 41.93896 42.85954
## 2342 42.24945 41.56982 42.92909
## 2343 42.59481 42.00345 43.18618
## 2344 42.42626 41.97948 42.87303
## 2345 42.59125 42.00602 43.17648
## 2346 42.56609 42.02156 43.11062
## 2347 42.63142 41.97269 43.29014
## 2348 42.57610 42.01595 43.13625
## 2349 42.28281 41.66676 42.89886
## 2350 42.31104 41.74381 42.87828
## 2351 42.22945 41.50929 42.94961
## 2352 42.29623 41.70403 42.88843
## 2353 42.71260 41.88408 43.54112
## 2354 42.32956 41.79122 42.86790
## 2355 42.19933 41.41547 42.98319
## 2356 42.59020 42.00676 43.17364
## 2357 42.67225 41.93090 43.41360
## 2358 42.48009 42.02722 42.93296
## 2359 42.24705 41.56263 42.93147
## 2360 42.55182 42.02807 43.07557
## 2361 42.47649 42.02540 42.92758
## 2362 42.48978 42.03118 42.94838
## 2363 42.48113 42.02771 42.93455
## 2364 42.47756 42.02596 42.92917
## 2365 42.72757 41.86565 43.58950
## 2366 42.60365 41.99673 43.21057
## 2367 42.53747 42.03269 43.04224
## 2368 42.38207 41.90786 42.85628
## 2369 42.33073 41.79411 42.86734
## 2370 42.23425 41.52397 42.94454
## 2371 42.45641 42.01169 42.90112
## 2372 42.35228 41.84527 42.85930
## 2373 42.72569 41.86800 43.58337
## 2374 42.55145 42.02822 43.07468
## 2375 42.69876 41.90064 43.49689
## 2376 42.41203 41.95947 42.86460
## 2377 42.52384 42.03507 43.01262
## 2378 42.19887 41.41401 42.98373
## 2379 42.57110 42.01885 43.12336
## 2380 42.60856 41.99279 43.22434
## 2381 42.29141 41.69077 42.89205
## 2382 42.28935 41.68505 42.89364
## 2383 42.17282 41.33074 43.01490
## 2384 42.53421 42.03344 43.03497
## 2385 42.46837 42.02059 42.91615
## 2386 42.26445 41.61409 42.91481
## 2387 42.41093 41.95779 42.86407
## 2388 42.23051 41.51253 42.94849
## 2389 42.64470 41.95983 43.32958
## 2390 42.43754 41.99318 42.88190
## 2391 42.56091 42.02413 43.09769
## 2392 42.63983 41.96464 43.31502
## 2393 42.62779 41.97606 43.27951
## 2394 42.40184 41.94331 42.86038
## 2395 42.64824 41.95628 43.34020
## 2396 42.38122 41.90622 42.85622
## 2397 42.18932 41.38369 42.99495
## 2398 42.59811 42.00100 43.19523
## 2399 42.27775 41.65243 42.90308
## 2400 42.16988 41.32123 43.01852
## 2401 42.67162 41.93158 43.41166
## 2402 42.29492 41.70046 42.88939
## 2403 42.18686 41.37585 42.99788
## 2404 42.26365 41.61176 42.91554
## 2405 42.44546 42.00162 42.88930
## 2406 42.31004 41.74116 42.87891
## 2407 42.70169 41.89718 43.50621
## 2408 42.46281 42.01672 42.90889
## 2409 42.64028 41.96420 43.31637
## 2410 42.46487 42.01821 42.91153
## 2411 42.48485 42.02933 42.94036
## 2412 42.24878 41.56782 42.92975
## 2413 42.26897 41.62723 42.91072
## 2414 42.24977 41.57077 42.92877
## 2415 42.29324 41.69583 42.89065
## 2416 42.39677 41.93471 42.85882
## 2417 42.35943 41.86120 42.85765
## 2418 42.52817 42.03454 43.02181
## 2419 42.38701 41.91721 42.85682
## 2420 42.22274 41.48864 42.95684
## 2421 42.47908 42.02673 42.93144
## 2422 42.49102 42.03159 42.95045
## 2423 42.68995 41.91093 43.46897
## 2424 42.49788 42.03348 42.96228
## 2425 42.44199 41.99804 42.88593
## 2426 42.36774 41.87904 42.85645
## 2427 42.24857 41.56719 42.92995
## 2428 42.57501 42.01660 43.13341
## 2429 42.54446 42.03070 43.05822
## 2430 42.67861 41.92384 43.43338
## 2431 42.62831 41.97558 43.28103
## 2432 42.43733 41.99294 42.88172
## 2433 42.23843 41.53665 42.94021
## 2434 42.19092 41.38878 42.99306
## 2435 42.68376 41.91803 43.44948
## 2436 42.22228 41.48722 42.95734
## 2437 42.30786 41.73541 42.88032
## 2438 42.71077 41.88630 43.53523
## 2439 42.35407 41.84931 42.85883
## 2440 42.57216 42.01825 43.12606
## 2441 42.56553 42.02184 43.10922
## 2442 42.36068 41.86394 42.85742
## 2443 42.24196 41.54734 42.93659
## 2444 42.62702 41.97677 43.27726
## 2445 42.29258 41.69400 42.89116
## 2446 42.50445 42.03470 42.97421
## 2447 42.27058 41.63186 42.90929
## 2448 42.34300 41.82378 42.86222
## 2449 42.54342 42.03102 43.05582
## 2450 42.65658 41.94771 43.36546
## 2451 42.34181 41.82098 42.86265
## 2452 42.22053 41.48180 42.95925
## 2453 42.28605 41.67584 42.89625
## 2454 42.56172 42.02374 43.09971
## 2455 42.55257 42.02777 43.07737
## 2456 42.18159 41.35897 43.00421
## 2457 42.23421 41.52383 42.94459
## 2458 42.39863 41.93791 42.85935
## 2459 42.60680 41.99422 43.21939
## 2460 42.25833 41.59616 42.92051
## 2461 42.71914 41.87609 43.56220
## 2462 42.27487 41.64419 42.90554
## 2463 42.66305 41.94088 43.38522
## 2464 42.17100 41.32488 43.01713
## 2465 42.28438 41.67117 42.89759
## 2466 42.63539 41.96893 43.30185
## 2467 42.25228 41.57825 42.92631
## 2468 42.38343 41.91046 42.85640
## 2469 42.22347 41.49089 42.95604
## 2470 42.68246 41.91949 43.44544
## 2471 42.24090 41.54412 42.93767
## 2472 42.56699 42.02108 43.11290
## 2473 42.61114 41.99066 43.23161
## 2474 42.17942 41.35200 43.00684
## 2475 42.37163 41.88709 42.85616
## 2476 42.38119 41.90617 42.85622
## 2477 42.58743 42.00868 43.16618
## 2478 42.17433 41.33561 43.01305
## 2479 42.69819 41.90132 43.49507
## 2480 42.65218 41.95226 43.35210
## 2481 42.32504 41.77989 42.87018
## 2482 42.63424 41.97002 43.29846
## 2483 42.42420 41.97678 42.87163
## 2484 42.63950 41.96496 43.31405
## 2485 42.52991 42.03426 43.02556
## 2486 42.51060 42.03532 42.98588
## 2487 42.17104 41.32501 43.01708
## 2488 42.70766 41.89005 43.52526
## 2489 42.70420 41.89419 43.51422
## 2490 42.56892 42.02005 43.11778
## 2491 42.20785 41.44229 42.97341
## 2492 42.56432 42.02246 43.10618
## 2493 42.42067 41.97198 42.86936
## 2494 42.27158 41.63475 42.90841
## 2495 42.34485 41.82813 42.86157
## 2496 42.31597 41.75669 42.87525
## 2497 42.47125 42.02241 42.92009
## 2498 42.59775 42.00127 43.19423
## 2499 42.57931 42.01399 43.14462
## 2500 42.20328 41.42792 42.97863
## 2501 42.52784 42.03459 43.02109
## 2502 42.21932 41.47806 42.96058
## 2503 42.40840 41.95388 42.86292
## 2504 42.47285 42.02337 42.92234
## 2505 42.47772 42.02604 42.92940
## 2506 42.21180 41.45464 42.96895
## 2507 42.65179 41.95267 43.35091
## 2508 42.30138 41.71804 42.88472
## 2509 42.28508 41.67314 42.89702
## 2510 42.62869 41.97523 43.28216
## 2511 42.44597 42.00213 42.88981
## 2512 42.34183 41.82101 42.86264
## 2513 42.59976 41.99975 43.19976
## 2514 42.37675 41.89745 42.85605
## 2515 42.64452 41.96002 43.32902
## 2516 42.48202 42.02812 42.93592
## 2517 42.23034 41.51200 42.94867
## 2518 42.69700 41.90272 43.49127
## 2519 42.68797 41.91321 43.46273
## 2520 42.55720 42.02583 43.08857
## 2521 42.49376 42.03243 42.95509
## 2522 42.30187 41.71936 42.88438
## 2523 42.59096 42.00623 43.17569
## 2524 42.35897 41.86019 42.85774
## 2525 42.32680 41.78434 42.86927
## 2526 42.53063 42.03414 43.02711
## 2527 42.38788 41.91882 42.85695
## 2528 42.54387 42.03088 43.05685
## 2529 42.20861 41.44467 42.97255
## 2530 42.70092 41.89810 43.50374
## 2531 42.65676 41.94752 43.36601
## 2532 42.46667 42.01946 42.91387
## 2533 42.71378 41.88266 43.54489
## 2534 42.33248 41.79844 42.86653
## 2535 42.65923 41.94493 43.37352
## 2536 42.43469 41.98991 42.87948
## 2537 42.53851 42.03242 43.04461
## 2538 42.48438 42.02914 42.93963
## 2539 42.68736 41.91391 43.46081
## 2540 42.51993 42.03536 43.00451
## 2541 42.68315 41.91872 43.44757
## 2542 42.47341 42.02369 42.92313
## 2543 42.71965 41.87547 43.56384
## 2544 42.40166 41.94301 42.86031
## 2545 42.45716 42.01231 42.90200
## 2546 42.32291 41.77450 42.87131
## 2547 42.50201 42.03431 42.96970
## 2548 42.58164 42.01252 43.15076
## 2549 42.42473 41.97748 42.87198
## 2550 42.58416 42.01088 43.15744
## 2551 42.45255 42.00835 42.89674
## 2552 42.47072 42.02208 42.91935
## 2553 42.41754 41.96758 42.86750
## 2554 42.58553 42.00996 43.16109
## 2555 42.52116 42.03529 43.00704
## 2556 42.52980 42.03428 43.02532
## 2557 42.68415 41.91758 43.45072
## 2558 42.31258 41.74784 42.87731
## 2559 42.36156 41.86584 42.85727
## 2560 42.53757 42.03266 43.04247
## 2561 42.26021 41.60167 42.91875
## 2562 42.58187 42.01237 43.15137
## 2563 42.35817 41.85844 42.85790
## 2564 42.31008 41.74128 42.87889
## 2565 42.45917 42.01394 42.90439
## 2566 42.61059 41.99112 43.23007
## 2567 42.64613 41.95840 43.33386
## 2568 42.36852 41.88066 42.85638
## 2569 42.61476 41.98761 43.24191
## 2570 42.57092 42.01895 43.12288
## 2571 42.31155 41.74516 42.87795
## 2572 42.61504 41.98737 43.24270
## 2573 42.67040 41.93292 43.40788
## 2574 42.47254 42.02319 42.92190
## 2575 42.25173 41.57661 42.92685
## 2576 42.64522 41.95932 43.33112
## 2577 42.72715 41.86618 43.58813
## 2578 42.35928 41.86087 42.85768
## 2579 42.45431 42.00991 42.89872
## 2580 42.22654 41.50036 42.95273
## 2581 42.54338 42.03104 43.05573
## 2582 42.63794 41.96648 43.30940
## 2583 42.54099 42.03175 43.05023
## 2584 42.21113 41.45256 42.96970
## 2585 42.47908 42.02673 42.93143
## 2586 42.19164 41.39107 42.99221
## 2587 42.69462 41.90551 43.48373
## 2588 42.38672 41.91666 42.85678
## 2589 42.70065 41.89842 43.50287
## 2590 42.56841 42.02033 43.11648
## 2591 42.57297 42.01779 43.12816
## 2592 42.44463 42.00078 42.88848
## 2593 42.21240 41.45652 42.96827
## 2594 42.44710 42.00325 42.89095
## 2595 42.39241 41.92704 42.85777
## 2596 42.69892 41.90046 43.49737
## 2597 42.35992 41.86228 42.85756
## 2598 42.25596 41.58914 42.92277
## 2599 42.55141 42.02823 43.07459
## 2600 42.21340 41.45964 42.96715
## 2601 42.67995 41.92233 43.43758
## 2602 42.69232 41.90818 43.47646
## 2603 42.69003 41.91084 43.46921
## 2604 42.49163 42.03179 42.95147
## 2605 42.16967 41.32056 43.01878
## 2606 42.59649 42.00222 43.19076
## 2607 42.34492 41.82830 42.86154
## 2608 42.59565 42.00284 43.18847
## 2609 42.28018 41.65932 42.90104
## 2610 42.34206 41.82155 42.86256
## 2611 42.38964 41.92204 42.85723
## 2612 42.68549 41.91605 43.45493
## 2613 42.72321 41.87108 43.57533
## 2614 42.23798 41.53528 42.94067
## 2615 42.23209 41.51735 42.94682
## 2616 42.69310 41.90728 43.47891
## 2617 42.51121 42.03536 42.98707
## 2618 42.71962 41.87550 43.56375
## 2619 42.52213 42.03522 43.00903
## 2620 42.43413 41.98924 42.87901
## 2621 42.37153 41.88689 42.85617
## 2622 42.56606 42.02157 43.11055
## 2623 42.24933 41.56944 42.92921
## 2624 42.51055 42.03532 42.98579
## 2625 42.33297 41.79962 42.86631
## 2626 42.59442 42.00374 43.18510
## 2627 42.33526 41.80523 42.86529
## 2628 42.51023 42.03530 42.98515
## 2629 42.18888 41.38227 42.99548
## 2630 42.53427 42.03343 43.03511
## 2631 42.30788 41.73544 42.88032
## 2632 42.30262 41.72139 42.88386
## 2633 42.47660 42.02546 42.92775
## 2634 42.22454 41.49420 42.95488
## 2635 42.22354 41.49110 42.95597
## 2636 42.41343 41.96157 42.86529
## 2637 42.20996 41.44891 42.97101
## 2638 42.51687 42.03547 42.99828
## 2639 42.19563 41.40374 42.98751
## 2640 42.65889 41.94528 43.37250
## 2641 42.52295 42.03515 43.01075
## 2642 42.50409 42.03465 42.97354
## 2643 42.70249 41.89623 43.50876
## 2644 42.21932 41.47805 42.96058
## 2645 42.52941 42.03435 43.02447
## 2646 42.26941 41.62850 42.91032
## 2647 42.18868 41.38163 42.99572
## 2648 42.47501 42.02460 42.92543
## 2649 42.72741 41.86585 43.58897
## 2650 42.44205 41.99811 42.88600
## 2651 42.60792 41.99331 43.22253
## 2652 42.60911 41.99234 43.22588
## 2653 42.60288 41.99734 43.20841
## 2654 42.41093 41.95780 42.86407
## 2655 42.52627 42.03480 43.01773
## 2656 42.38443 41.91236 42.85650
## 2657 42.42856 41.98243 42.87468
## 2658 42.23540 41.52747 42.94334
## 2659 42.56537 42.02192 43.10882
## 2660 42.63747 41.96693 43.30802
## 2661 42.61054 41.99115 43.22993
## 2662 42.34075 41.81846 42.86305
## 2663 42.34398 41.82608 42.86187
## 2664 42.59681 42.00198 43.19163
## 2665 42.70979 41.88749 43.53209
## 2666 42.23762 41.53421 42.94104
## 2667 42.60030 41.99934 43.20126
## 2668 42.26769 41.62350 42.91187
## 2669 42.26364 41.61172 42.91556
## 2670 42.35137 41.84319 42.85954
## 2671 42.21122 41.45285 42.96959
## 2672 42.32635 41.78319 42.86950
## 2673 42.22238 41.48752 42.95723
## 2674 42.72337 41.87087 43.57587
## 2675 42.45499 42.01049 42.89949
## 2676 42.51095 42.03534 42.98655
## 2677 42.65131 41.95315 43.34947
## 2678 42.31156 41.74516 42.87795
## 2679 42.50470 42.03473 42.97467
## 2680 42.37972 41.90330 42.85614
## 2681 42.53843 42.03244 43.04442
## 2682 42.67771 41.92484 43.43058
## 2683 42.65468 41.94968 43.35968
## 2684 42.40092 41.94177 42.86007
## 2685 42.59928 42.00012 43.19844
## 2686 42.37694 41.89783 42.85606
## 2687 42.65112 41.95335 43.34889
## 2688 42.40815 41.95349 42.86281
## 2689 42.26437 41.61384 42.91489
## 2690 42.42832 41.98214 42.87451
## 2691 42.30445 41.72631 42.88260
## 2692 42.51701 42.03546 42.99856
## 2693 42.40626 41.95050 42.86202
## 2694 42.42756 41.98117 42.87396
## 2695 42.50920 42.03522 42.98318
## 2696 42.40994 41.95627 42.86361
## 2697 42.40038 41.94088 42.85989
## 2698 42.25702 41.59229 42.92175
## 2699 42.47287 42.02338 42.92236
## 2700 42.28798 41.68125 42.89471
## 2701 42.32356 41.77617 42.87096
## 2702 42.64511 41.95943 43.33079
## 2703 42.58545 42.01002 43.16087
## 2704 42.27558 41.64624 42.90493
## 2705 42.29149 41.69098 42.89199
## 2706 42.63426 41.97000 43.29852
## 2707 42.21783 41.47343 42.96222
## 2708 42.52013 42.03535 43.00490
## 2709 42.17060 41.32358 43.01762
## 2710 42.35128 41.84298 42.85957
## 2711 42.39332 41.92868 42.85797
## 2712 42.55286 42.02766 43.07807
## 2713 42.17681 41.34361 43.01001
## 2714 42.19788 41.41088 42.98488
## 2715 42.43690 41.99245 42.88135
## 2716 42.56511 42.02206 43.10816
## 2717 42.24094 41.54424 42.93763
## 2718 42.71412 41.88224 43.54600
## 2719 42.40101 41.94192 42.86010
## 2720 42.39453 41.93082 42.85825
## 2721 42.22943 41.50924 42.94963
## 2722 42.56390 42.02267 43.10514
## 2723 42.45257 42.00837 42.89677
## 2724 42.70125 41.89770 43.50480
## 2725 42.44356 41.99969 42.88744
## 2726 42.66286 41.94107 43.38465
## 2727 42.71564 41.88039 43.55089
## 2728 42.48266 42.02840 42.93692
## 2729 42.31629 41.75751 42.87506
## 2730 42.46139 42.01566 42.90711
## 2731 42.51024 42.03530 42.98519
## 2732 42.53419 42.03345 43.03492
## 2733 42.25484 41.58583 42.92384
## 2734 42.36141 41.86553 42.85730
## 2735 42.40467 41.94794 42.86140
## 2736 42.21962 41.47900 42.96025
## 2737 42.26789 41.62408 42.91169
## 2738 42.59144 42.00589 43.17700
## 2739 42.46583 42.01888 42.91277
## 2740 42.21750 41.47242 42.96258
## 2741 42.29772 41.70811 42.88733
## 2742 42.64060 41.96388 43.31732
## 2743 42.43227 41.98703 42.87752
## 2744 42.38740 41.91792 42.85687
## 2745 42.36648 41.87637 42.85658
## 2746 42.28872 41.68331 42.89413
## 2747 42.22272 41.48857 42.95686
## 2748 42.24658 41.56122 42.93194
## 2749 42.46778 42.02020 42.91536
## 2750 42.67529 41.92754 43.42303
## 2751 42.35982 41.86207 42.85758
## 2752 42.19790 41.41095 42.98486
## 2753 42.25671 41.59136 42.92205
## 2754 42.59125 42.00602 43.17648
## 2755 42.34440 41.82708 42.86172
## 2756 42.28959 41.68572 42.89345
## 2757 42.69494 41.90514 43.48474
## 2758 42.53917 42.03225 43.04609
## 2759 42.32315 41.77511 42.87118
## 2760 42.42800 41.98172 42.87427
## 2761 42.33843 41.81291 42.86396
## 2762 42.22385 41.49207 42.95563
## 2763 42.39695 41.93503 42.85887
## 2764 42.21252 41.45690 42.96814
## 2765 42.45740 42.01251 42.90229
## 2766 42.68979 41.91112 43.46845
## 2767 42.69825 41.90125 43.49525
## 2768 42.60893 41.99248 43.22538
## 2769 42.20295 41.42690 42.97901
## 2770 42.29513 41.70103 42.88924
## 2771 42.27530 41.64544 42.90516
## 2772 42.57724 42.01526 43.13923
## 2773 42.43335 41.98832 42.87838
## 2774 42.65323 41.95119 43.35527
## 2775 42.18210 41.36061 43.00360
## 2776 42.24918 41.56901 42.92935
## 2777 42.21060 41.45091 42.97029
## 2778 42.53586 42.03308 43.03864
## 2779 42.54348 42.03101 43.05595
## 2780 42.68217 41.91982 43.44453
## 2781 42.60393 41.99651 43.21136
## 2782 42.40768 41.95275 42.86261
## 2783 42.45535 42.01080 42.89990
## 2784 42.66455 41.93927 43.38982
## 2785 42.39855 41.93777 42.85933
## 2786 42.61775 41.98504 43.25047
## 2787 42.21053 41.45068 42.97038
## 2788 42.69814 41.90138 43.49491
## 2789 42.60339 41.99694 43.20984
## 2790 42.60879 41.99260 43.22499
## 2791 42.17942 41.35201 43.00684
## 2792 42.72378 41.87037 43.57719
## 2793 42.45351 42.00921 42.89782
## 2794 42.20203 41.42397 42.98008
## 2795 42.65990 41.94422 43.37559
## 2796 42.38466 41.91279 42.85653
## 2797 42.42218 41.97405 42.87030
## 2798 42.26729 41.62236 42.91223
## 2799 42.41101 41.95792 42.86410
## 2800 42.27539 41.64570 42.90509
## 2801 42.69194 41.90862 43.47527
## 2802 42.41159 41.95880 42.86438
## 2803 42.67124 41.93200 43.41049
## 2804 42.68209 41.91992 43.44425
## 2805 42.65104 41.95343 43.34865
## 2806 42.20315 41.42753 42.97878
## 2807 42.46990 42.02157 42.91822
## 2808 42.65992 41.94419 43.37566
## 2809 42.49121 42.03165 42.95076
## 2810 42.25787 41.59478 42.92095
## 2811 42.45748 42.01258 42.90238
## 2812 42.23539 41.52743 42.94335
## 2813 42.39257 41.92734 42.85780
## 2814 42.71353 41.88296 43.54410
## 2815 42.54373 42.03093 43.05654
## 2816 42.48274 42.02844 42.93705
## 2817 42.50111 42.03415 42.96806
## 2818 42.37683 41.89761 42.85605
## 2819 42.52454 42.03500 43.01408
## 2820 42.36581 41.87496 42.85666
## 2821 42.62003 41.98305 43.25701
## 2822 42.22503 41.49570 42.95436
## 2823 42.45921 42.01397 42.90444
## 2824 42.47990 42.02713 42.93268
## 2825 42.41416 41.96265 42.86567
## 2826 42.25884 41.59766 42.92003
## 2827 42.30220 41.72024 42.88415
## 2828 42.72333 41.87093 43.57573
## 2829 42.58676 42.00914 43.16438
## 2830 42.35829 41.85869 42.85788
## 2831 42.25845 41.59650 42.92040
## 2832 42.69386 41.90639 43.48133
## 2833 42.51189 42.03539 42.98838
## 2834 42.25587 41.58888 42.92285
## 2835 42.38812 41.91925 42.85698
## 2836 42.62530 41.97833 43.27226
## 2837 42.56339 42.02292 43.10387
## 2838 42.44484 42.00100 42.88869
## 2839 42.48971 42.03116 42.94827
## 2840 42.56115 42.02401 43.09829
## 2841 42.68535 41.91621 43.45448
## 2842 42.72052 41.87440 43.56663
## 2843 42.32935 41.79071 42.86800
## 2844 42.56365 42.02279 43.10452
## 2845 42.68668 41.91469 43.45868
## 2846 42.56638 42.02140 43.11135
## 2847 42.59696 42.00187 43.19205
## 2848 42.56765 42.02073 43.11457
## 2849 42.40486 41.94825 42.86147
## 2850 42.68564 41.91588 43.45539
## 2851 42.21218 41.45583 42.96852
## 2852 42.69632 41.90352 43.48912
## 2853 42.50972 42.03526 42.98418
## 2854 42.28784 41.68086 42.89482
## 2855 42.56489 42.02217 43.10761
## 2856 42.45033 42.00633 42.89433
## 2857 42.21418 41.46208 42.96628
## 2858 42.41467 41.96341 42.86593
## 2859 42.72298 41.87136 43.57459
## 2860 42.17246 41.32958 43.01534
## 2861 42.47355 42.02377 42.92332
## 2862 42.52187 42.03524 43.00850
## 2863 42.56169 42.02376 43.09962
## 2864 42.21004 41.44915 42.97093
## 2865 42.72705 41.86631 43.58778
## 2866 42.28790 41.68102 42.89478
## 2867 42.28604 41.67583 42.89625
## 2868 42.48802 42.03056 42.94548
## 2869 42.60025 41.99938 43.20112
## 2870 42.53966 42.03212 43.04720
## 2871 42.69331 41.90703 43.47959
## 2872 42.20194 41.42370 42.98018
## 2873 42.49973 42.03388 42.96557
## 2874 42.56581 42.02170 43.10993
## 2875 42.58705 42.00894 43.16516
## 2876 42.26713 41.62188 42.91238
## 2877 42.56144 42.02388 43.09900
## 2878 42.40219 41.94389 42.86050
## 2879 42.29494 41.70049 42.88938
## 2880 42.20545 41.43475 42.97615
## 2881 42.19841 41.41255 42.98427
## 2882 42.47073 42.02209 42.91937
## 2883 42.18359 41.36537 43.00181
## 2884 42.50473 42.03474 42.97472
## 2885 42.70326 41.89532 43.51121
## 2886 42.26544 41.61697 42.91391
## 2887 42.36732 41.87814 42.85649
## 2888 42.68557 41.91595 43.45520
## 2889 42.71557 41.88047 43.55066
## 2890 42.36573 41.87480 42.85667
## 2891 42.43396 41.98904 42.87887
## 2892 42.35503 41.85145 42.85860
## 2893 42.55948 42.02480 43.09417
## 2894 42.46324 42.01705 42.90944
## 2895 42.21368 41.46053 42.96683
## 2896 42.58050 42.01324 43.14775
## 2897 42.21542 41.46595 42.96489
## 2898 42.21439 41.46273 42.96605
## 2899 42.60763 41.99354 43.22173
## 2900 42.69329 41.90706 43.47953
## 2901 42.33330 41.80045 42.86615
## 2902 42.56598 42.02161 43.11035
## 2903 42.72785 41.86530 43.59040
## 2904 42.67552 41.92728 43.42375
## 2905 42.27156 41.63469 42.90843
## 2906 42.58492 42.01037 43.15948
## 2907 42.61506 41.98735 43.24278
## 2908 42.50429 42.03467 42.97392
## 2909 42.59501 42.00331 43.18670
## 2910 42.33534 41.80543 42.86525
## 2911 42.69466 41.90546 43.48385
## 2912 42.53066 42.03413 43.02718
## 2913 42.21292 41.45816 42.96768
## 2914 42.40480 41.94814 42.86145
## 2915 42.64139 41.96311 43.31966
## 2916 42.26542 41.61690 42.91393
## 2917 42.56877 42.02013 43.11741
## 2918 42.20627 41.43735 42.97520
## 2919 42.42730 41.98084 42.87377
## 2920 42.40467 41.94795 42.86140
## 2921 42.47171 42.02269 42.92073
## 2922 42.62964 41.97435 43.28493
## 2923 42.35517 41.85177 42.85857
## 2924 42.22300 41.48946 42.95655
## 2925 42.33159 41.79623 42.86694
## 2926 42.52298 42.03515 43.01081
## 2927 42.53928 42.03222 43.04635
## 2928 42.27031 41.63109 42.90953
## 2929 42.53330 42.03363 43.03297
## 2930 42.19905 41.41459 42.98352
## 2931 42.53078 42.03411 43.02745
## 2932 42.54274 42.03123 43.05425
## 2933 42.29615 41.70382 42.88848
## 2934 42.31947 41.76573 42.87321
## 2935 42.46501 42.01831 42.91171
## 2936 42.20558 41.43516 42.97600
## 2937 42.69799 41.90155 43.49444
## 2938 42.18658 41.37493 42.99822
## 2939 42.59194 42.00553 43.17834
## 2940 42.37558 41.89512 42.85605
## 2941 42.48971 42.03116 42.94826
## 2942 42.48469 42.02927 42.94012
## 2943 42.18760 41.37820 42.99700
## 2944 42.52227 42.03521 43.00933
## 2945 42.23353 41.52175 42.94530
## 2946 42.24894 41.56828 42.92959
## 2947 42.22690 41.50145 42.95234
## 2948 42.69890 41.90049 43.49730
## 2949 42.39694 41.93502 42.85887
## 2950 42.38690 41.91700 42.85680
## 2951 42.22188 41.48600 42.95777
## 2952 42.61204 41.98991 43.23418
## 2953 42.49563 42.03294 42.95833
## 2954 42.72312 41.87119 43.57504
## 2955 42.44358 41.99970 42.88746
## 2956 42.67485 41.92802 43.42168
## 2957 42.33669 41.80869 42.86468
## 2958 42.58555 42.00995 43.16116
## 2959 42.18032 41.35489 43.00575
## 2960 42.34096 41.81896 42.86297
## 2961 42.55058 42.02855 43.07260
## 2962 42.23556 41.52795 42.94318
## 2963 42.68342 41.91841 43.44843
## 2964 42.70586 41.89221 43.51951
## 2965 42.25468 41.58536 42.92400
## 2966 42.69810 41.90142 43.49478
## 2967 42.22635 41.49977 42.95293
## 2968 42.45395 42.00959 42.89831
## 2969 42.23943 41.53968 42.93917
## 2970 42.67895 41.92346 43.43444
## 2971 42.47320 42.02357 42.92283
## 2972 42.69186 41.90872 43.47499
## 2973 42.49988 42.03391 42.96585
## 2974 42.63785 41.96656 43.30914
## 2975 42.37147 41.88677 42.85617
## 2976 42.70648 41.89147 43.52149
## 2977 42.42539 41.97835 42.87243
## 2978 42.45910 42.01389 42.90431
## 2979 42.27459 41.64340 42.90578
## 2980 42.30875 41.73776 42.87974
## 2981 42.29570 41.70259 42.88882
## 2982 42.28569 41.67484 42.89654
## 2983 42.23187 41.51670 42.94705
## 2984 42.57699 42.01541 43.13857
## 2985 42.59771 42.00130 43.19411
## 2986 42.19122 41.38973 42.99271
## 2987 42.41399 41.96240 42.86558
## 2988 42.64112 41.96338 43.31885
## 2989 42.67229 41.93086 43.41371
## 2990 42.34335 41.82462 42.86209
## 2991 42.51965 42.03538 43.00392
## 2992 42.38210 41.90791 42.85629
## 2993 42.38056 41.90493 42.85618
## 2994 42.58852 42.00793 43.16911
## 2995 42.68598 41.91549 43.45648
## 2996 42.65629 41.94800 43.36458
## 2997 42.60284 41.99737 43.20832
## 2998 42.22873 41.50709 42.95038
## 2999 42.55451 42.02698 43.08203
## 3000 42.54040 42.03191 43.04888
## 3001 42.69909 41.90026 43.49792
## 3002 42.17255 41.32988 43.01522
## 3003 42.57642 42.01576 43.13708
## 3004 42.67174 41.93146 43.41202
## 3005 42.48701 42.03018 42.94383
## 3006 42.72236 41.87213 43.57258
## 3007 42.65736 41.94689 43.36783
## 3008 42.48940 42.03105 42.94775
## 3009 42.71290 41.88372 43.54209
## 3010 42.32157 41.77111 42.87204
## 3011 42.42598 41.97912 42.87284
## 3012 42.55398 42.02720 43.08076
## 3013 42.23755 41.53398 42.94112
## 3014 42.29115 41.69006 42.89225
## 3015 42.49513 42.03280 42.95746
## 3016 42.23365 41.52212 42.94518
## 3017 42.63384 41.97041 43.29727
## 3018 42.60562 41.99517 43.21606
## 3019 42.25759 41.59395 42.92122
## 3020 42.38622 41.91573 42.85671
## 3021 42.53245 42.03380 43.03110
## 3022 42.30775 41.73509 42.88040
## 3023 42.60692 41.99412 43.21971
## 3024 42.66382 41.94005 43.38760
## 3025 42.34208 41.82160 42.86255
## 3026 42.69331 41.90703 43.47959
## 3027 42.38223 41.90817 42.85630
## 3028 42.22292 41.48920 42.95664
## 3029 42.28720 41.67906 42.89533
## 3030 42.41724 41.96715 42.86733
## 3031 42.22481 41.49503 42.95459
## 3032 42.32825 41.78796 42.86854
## 3033 42.63693 41.96745 43.30640
## 3034 42.27885 41.65556 42.90215
## 3035 42.42664 41.97998 42.87330
## 3036 42.27078 41.63245 42.90911
## 3037 42.35618 41.85403 42.85833
## 3038 42.63961 41.96485 43.31438
## 3039 42.25845 41.59650 42.92040
## 3040 42.30615 41.73084 42.88146
## 3041 42.64360 41.96093 43.32628
## 3042 42.24863 41.56736 42.92990
## 3043 42.36876 41.88115 42.85636
## 3044 42.24478 41.55581 42.93374
## 3045 42.37173 41.88731 42.85616
## 3046 42.70017 41.89898 43.50137
## 3047 42.46239 42.01641 42.90836
## 3048 42.70853 41.88900 43.52807
## 3049 42.24316 41.55096 42.93537
## 3050 42.48265 42.02840 42.93691
## 3051 42.60082 41.99893 43.20271
## 3052 42.20555 41.43506 42.97603
## 3053 42.63652 41.96784 43.30519
## 3054 42.50036 42.03401 42.96670
## 3055 42.66002 41.94409 43.37594
## 3056 42.27632 41.64835 42.90429
## 3057 42.19513 41.40216 42.98810
## 3058 42.59815 42.00097 43.19534
## 3059 42.44385 41.99998 42.88771
## 3060 42.67301 41.93006 43.41596
## 3061 42.46351 42.01724 42.90979
## 3062 42.40190 41.94340 42.86040
## 3063 42.72669 41.86675 43.58664
## 3064 42.57592 42.01606 43.13579
## 3065 42.18078 41.35638 43.00519
## 3066 42.66578 41.93795 43.39361
## 3067 42.29322 41.69576 42.89067
## 3068 42.45549 42.01092 42.90006
## 3069 42.72546 41.86828 43.58265
## 3070 42.41232 41.95990 42.86474
## 3071 42.71757 41.87802 43.55713
## 3072 42.32998 41.79225 42.86770
## 3073 42.51730 42.03546 42.99914
## 3074 42.61276 41.98931 43.23621
## 3075 42.35554 41.85260 42.85848
## 3076 42.30330 41.72322 42.88339
## 3077 42.45785 42.01288 42.90281
## 3078 42.27853 41.65464 42.90242
## 3079 42.49810 42.03353 42.96266
## 3080 42.28182 41.66397 42.89968
## 3081 42.27478 41.64395 42.90562
## 3082 42.25949 41.59957 42.91941
## 3083 42.37362 41.89116 42.85608
## 3084 42.64882 41.95570 43.34194
## 3085 42.51149 42.03537 42.98761
## 3086 42.49025 42.03134 42.94916
## 3087 42.35720 41.85629 42.85811
## 3088 42.32756 41.78622 42.86889
## 3089 42.41018 41.95664 42.86372
## 3090 42.65776 41.94647 43.36906
## 3091 42.22485 41.49514 42.95455
## 3092 42.68306 41.91882 43.44730
## 3093 42.33845 41.81295 42.86395
## 3094 42.31557 41.75566 42.87549
## 3095 42.42572 41.97879 42.87266
## 3096 42.65422 41.95016 43.35828
## 3097 42.56133 42.02393 43.09873
## 3098 42.72715 41.86618 43.58811
## 3099 42.42278 41.97487 42.87069
## 3100 42.28977 41.68623 42.89331
## 3101 42.54240 42.03133 43.05347
## 3102 42.27415 41.64215 42.90616
## 3103 42.30586 41.73006 42.88165
## 3104 42.42178 41.97352 42.87005
## 3105 42.37172 41.88729 42.85616
## 3106 42.22101 41.48331 42.95872
## 3107 42.48398 42.02897 42.93899
## 3108 42.27881 41.65543 42.90219
## 3109 42.28044 41.66007 42.90082
## 3110 42.48697 42.03017 42.94377
## 3111 42.71171 41.88516 43.53826
## 3112 42.55141 42.02823 43.07459
## 3113 42.43852 41.99428 42.88277
## 3114 42.58421 42.01084 43.15757
## 3115 42.61761 41.98516 43.25007
## 3116 42.32832 41.78814 42.86851
## 3117 42.69310 41.90728 43.47892
## 3118 42.57941 42.01393 43.14489
## 3119 42.18424 41.36747 43.00102
## 3120 42.28182 41.66397 42.89968
## 3121 42.23005 41.51113 42.94897
## 3122 42.40384 41.94660 42.86109
## 3123 42.65805 41.94617 43.36992
## 3124 42.23965 41.54036 42.93895
## 3125 42.55126 42.02829 43.07424
## 3126 42.44528 42.00144 42.88912
## 3127 42.26129 41.60484 42.91773
## 3128 42.32020 41.76760 42.87280
## 3129 42.44436 42.00051 42.88821
## 3130 42.36377 41.87061 42.85693
## 3131 42.48779 42.03048 42.94510
## 3132 42.28774 41.68059 42.89490
## 3133 42.68269 41.91923 43.44615
## 3134 42.19750 41.40968 42.98532
## 3135 42.31835 41.76285 42.87385
## 3136 42.61736 41.98538 43.24934
## 3137 42.56381 42.02271 43.10491
## 3138 42.27963 41.65778 42.90149
## 3139 42.57175 42.01848 43.12502
## 3140 42.65844 41.94576 43.37111
## 3141 42.20626 41.43731 42.97522
## 3142 42.32361 41.77629 42.87093
## 3143 42.44303 41.99914 42.88693
## 3144 42.29513 41.70102 42.88924
## 3145 42.31969 41.76629 42.87309
## 3146 42.35499 41.85137 42.85861
## 3147 42.27653 41.64894 42.90412
## 3148 42.59230 42.00527 43.17934
## 3149 42.61962 41.98341 43.25583
## 3150 42.39177 41.92591 42.85764
## 3151 42.29127 41.69038 42.89216
## 3152 42.59191 42.00555 43.17827
## 3153 42.49315 42.03225 42.95405
## 3154 42.67074 41.93256 43.40892
## 3155 42.54791 42.02953 43.06628
## 3156 42.65531 41.94903 43.36160
## 3157 42.64506 41.95948 43.33064
## 3158 42.20736 41.44075 42.97397
## 3159 42.61125 41.99057 43.23194
## 3160 42.29030 41.68770 42.89290
## 3161 42.27087 41.63272 42.90903
## 3162 42.60388 41.99655 43.21122
## 3163 42.29491 41.70040 42.88941
## 3164 42.31144 41.74485 42.87803
## 3165 42.40701 41.95170 42.86233
## 3166 42.21590 41.46743 42.96437
## 3167 42.19920 41.41506 42.98334
## 3168 42.33493 41.80442 42.86543
## 3169 42.45432 42.00991 42.89872
## 3170 42.36886 41.88138 42.85635
## 3171 42.21484 41.46413 42.96554
## 3172 42.69311 41.90727 43.47894
## 3173 42.21899 41.47703 42.96095
## 3174 42.17599 41.34096 43.01102
## 3175 42.50494 42.03476 42.97511
## 3176 42.55497 42.02679 43.08316
## 3177 42.56893 42.02004 43.11782
## 3178 42.38903 41.92092 42.85713
## 3179 42.69207 41.90847 43.47567
## 3180 42.17064 41.32369 43.01758
## 3181 42.40321 41.94556 42.86085
## 3182 42.63493 41.96937 43.30048
## 3183 42.22680 41.50116 42.95245
## 3184 42.35281 41.84646 42.85916
## 3185 42.20615 41.43697 42.97534
## 3186 42.21526 41.46546 42.96507
## 3187 42.45888 42.01371 42.90405
## 3188 42.65945 41.94469 43.37421
## 3189 42.67895 41.92345 43.43445
## 3190 42.30681 41.73259 42.88102
## 3191 42.37508 41.89410 42.85605
## 3192 42.62734 41.97647 43.27821
## 3193 42.71043 41.88671 43.53415
## 3194 42.56662 42.02128 43.11196
## 3195 42.29166 41.69148 42.89185
## 3196 42.19445 41.40000 42.98890
## 3197 42.21048 41.45052 42.97043
## 3198 42.44706 42.00321 42.89091
## 3199 42.56337 42.02294 43.10380
## 3200 42.60989 41.99170 43.22807
## 3201 42.63888 41.96556 43.31221
## 3202 42.69289 41.90752 43.47827
## 3203 42.32104 41.76974 42.87233
## 3204 42.34867 41.83700 42.86033
## 3205 42.44775 42.00388 42.89162
## 3206 42.35737 41.85668 42.85807
## 3207 42.67945 41.92289 43.43602
## 3208 42.59869 42.00056 43.19682
## 3209 42.47720 42.02577 42.92863
## 3210 42.50774 42.03509 42.98039
## 3211 42.42750 41.98108 42.87391
## 3212 42.68706 41.91425 43.45987
## 3213 42.50842 42.03515 42.98168
## 3214 42.61612 41.98645 43.24579
## 3215 42.28861 41.68301 42.89422
## 3216 42.49382 42.03244 42.95520
## 3217 42.41919 41.96992 42.86846
## 3218 42.18519 41.37050 42.99988
## 3219 42.53795 42.03257 43.04332
## 3220 42.45313 42.00887 42.89739
## 3221 42.42789 41.98158 42.87419
## 3222 42.57108 42.01886 43.12329
## 3223 42.68463 41.91703 43.45224
## 3224 42.45626 42.01157 42.90095
## 3225 42.66586 41.93785 43.39387
## 3226 42.31229 41.74708 42.87749
## 3227 42.28273 41.66652 42.89893
## 3228 42.32809 41.78757 42.86862
## 3229 42.38769 41.91846 42.85692
## 3230 42.71558 41.88046 43.55069
## 3231 42.36569 41.87471 42.85668
## 3232 42.63090 41.97318 43.28861
## 3233 42.39044 41.92351 42.85738
## 3234 42.25625 41.59000 42.92249
## 3235 42.23304 41.52028 42.94581
## 3236 42.33684 41.80906 42.86462
## 3237 42.60081 41.99894 43.20268
## 3238 42.27633 41.64839 42.90428
## 3239 42.49294 42.03219 42.95369
## 3240 42.63893 41.96551 43.31236
## 3241 42.52918 42.03438 43.02398
## 3242 42.35574 41.85306 42.85843
## 3243 42.30802 41.73581 42.88022
## 3244 42.17205 41.32827 43.01584
## 3245 42.68175 41.92030 43.44321
## 3246 42.31560 41.75574 42.87547
## 3247 42.44831 42.00442 42.89220
## 3248 42.32769 41.78655 42.86883
## 3249 42.50819 42.03513 42.98125
## 3250 42.43471 41.98992 42.87949
## 3251 42.28579 41.67511 42.89646
## 3252 42.47296 42.02343 42.92249
## 3253 42.39087 41.92428 42.85746
## 3254 42.58162 42.01253 43.15071
## 3255 42.22104 41.48338 42.95870
## 3256 42.61886 41.98407 43.25364
## 3257 42.67195 41.93123 43.41267
## 3258 42.20115 41.42120 42.98109
## 3259 42.50368 42.03458 42.97279
## 3260 42.39148 41.92538 42.85758
## 3261 42.62942 41.97455 43.28428
## 3262 42.39329 41.92862 42.85796
## 3263 42.40894 41.95473 42.86316
## 3264 42.30140 41.71809 42.88471
## 3265 42.28194 41.66429 42.89958
## 3266 42.21157 41.45393 42.96920
## 3267 42.34890 41.83753 42.86026
## 3268 42.60108 41.99873 43.20343
## 3269 42.45250 42.00831 42.89670
## 3270 42.55695 42.02594 43.08796
## 3271 42.46413 42.01769 42.91057
## 3272 42.29650 41.70478 42.88822
## 3273 42.37328 41.89046 42.85609
## 3274 42.71940 41.87578 43.56302
## 3275 42.39333 41.92869 42.85797
## 3276 42.70276 41.89591 43.50961
## 3277 42.18073 41.35622 43.00525
## 3278 42.52530 42.03491 43.01568
## 3279 42.27449 41.64312 42.90587
## 3280 42.65842 41.94577 43.37108
## 3281 42.59592 42.00264 43.18919
## 3282 42.64579 41.95874 43.33285
## 3283 42.38143 41.90661 42.85624
## 3284 42.48862 42.03078 42.94646
## 3285 42.19837 41.41242 42.98431
## 3286 42.28340 41.66841 42.89838
## 3287 42.72057 41.87434 43.56679
## 3288 42.38056 41.90493 42.85618
## 3289 42.54257 42.03129 43.05385
## 3290 42.22606 41.49888 42.95324
## 3291 42.33188 41.79696 42.86680
## 3292 42.25157 41.57614 42.92700
## 3293 42.19035 41.38697 42.99373
## 3294 42.71534 41.88074 43.54994
## 3295 42.30615 41.73084 42.88146
## 3296 42.61010 41.99153 43.22867
## 3297 42.58828 42.00809 43.16847
## 3298 42.28228 41.66526 42.89930
## 3299 42.43358 41.98860 42.87857
## 3300 42.48784 42.03049 42.94518
## 3301 42.54339 42.03103 43.05574
## 3302 42.54730 42.02975 43.06486
## 3303 42.49557 42.03292 42.95823
## 3304 42.24915 41.56892 42.92938
## 3305 42.28761 41.68022 42.89500
## 3306 42.19053 41.38754 42.99352
## 3307 42.39275 41.92766 42.85784
## 3308 42.47537 42.02479 42.92594
## 3309 42.51644 42.03547 42.99741
## 3310 42.32230 41.77296 42.87164
## 3311 42.63629 41.96807 43.30451
## 3312 42.70213 41.89667 43.50758
## 3313 42.49569 42.03295 42.95843
## 3314 42.20911 41.44624 42.97198
## 3315 42.59537 42.00305 43.18768
## 3316 42.67819 41.92430 43.43209
## 3317 42.45256 42.00836 42.89675
## 3318 42.62556 41.97809 43.27303
## 3319 42.72717 41.86615 43.58819
## 3320 42.17356 41.33313 43.01399
## 3321 42.37173 41.88730 42.85616
## 3322 42.44553 42.00169 42.88937
## 3323 42.22294 41.48927 42.95662
## 3324 42.30407 41.72528 42.88286
## 3325 42.54834 42.02938 43.06730
## 3326 42.57211 42.01828 43.12594
## 3327 42.18133 41.35814 43.00453
## 3328 42.36108 41.86480 42.85735
## 3329 42.64933 41.95518 43.34348
## 3330 42.68411 41.91762 43.45060
## 3331 42.72350 41.87071 43.57630
## 3332 42.71000 41.88724 43.53276
## 3333 42.66581 41.93791 43.39371
## 3334 42.49247 42.03205 42.95289
## 3335 42.56842 42.02032 43.11651
## 3336 42.43117 41.98568 42.87665
## 3337 42.46347 42.01721 42.90973
## 3338 42.37942 41.90272 42.85613
## 3339 42.35882 41.85986 42.85777
## 3340 42.44608 42.00224 42.88992
## 3341 42.64288 41.96164 43.32413
## 3342 42.18972 41.38495 42.99449
## 3343 42.72672 41.86672 43.58671
## 3344 42.41949 41.97034 42.86864
## 3345 42.66253 41.94143 43.38363
## 3346 42.47319 42.02356 42.92282
## 3347 42.28886 41.68371 42.89402
## 3348 42.50045 42.03403 42.96687
## 3349 42.35299 41.84687 42.85911
## 3350 42.34166 41.82060 42.86271
## 3351 42.63820 41.96622 43.31018
## 3352 42.26336 41.61091 42.91581
## 3353 42.19003 41.38594 42.99412
## 3354 42.57893 42.01422 43.14364
## 3355 42.59669 42.00207 43.19132
## 3356 42.32667 41.78400 42.86934
## 3357 42.34530 41.82918 42.86141
## 3358 42.54202 42.03145 43.05259
## 3359 42.25491 41.58605 42.92377
## 3360 42.55842 42.02528 43.09156
## 3361 42.34664 41.83230 42.86097
## 3362 42.61615 41.98643 43.24587
## 3363 42.60586 41.99497 43.21675
## 3364 42.71072 41.88636 43.53509
## 3365 42.50374 42.03459 42.97288
## 3366 42.25802 41.59522 42.92081
## 3367 42.51470 42.03547 42.99393
## 3368 42.56064 42.02426 43.09702
## 3369 42.52461 42.03499 43.01423
## 3370 42.60880 41.99259 43.22502
## 3371 42.60615 41.99475 43.21755
## 3372 42.59504 42.00329 43.18678
## 3373 42.21906 41.47727 42.96086
## 3374 42.72759 41.86564 43.58953
## 3375 42.17002 41.32169 43.01834
## 3376 42.63000 41.97401 43.28598
## 3377 42.17273 41.33045 43.01501
## 3378 42.33630 41.80775 42.86485
## 3379 42.70289 41.89576 43.51001
## 3380 42.29688 41.70581 42.88795
## 3381 42.42805 41.98179 42.87431
## 3382 42.61340 41.98876 43.23804
## 3383 42.28546 41.67420 42.89672
## 3384 42.17136 41.32604 43.01669
## 3385 42.44304 41.99915 42.88694
## 3386 42.50034 42.03400 42.96667
## 3387 42.38361 41.91081 42.85642
## 3388 42.39956 41.93949 42.85963
## 3389 42.50170 42.03426 42.96914
## 3390 42.53172 42.03394 43.02949
## 3391 42.44053 41.99647 42.88458
## 3392 42.29509 41.70092 42.88927
## 3393 42.43683 41.99238 42.88129
## 3394 42.67680 41.92586 43.42774
## 3395 42.51553 42.03548 42.99559
## 3396 42.34166 41.82062 42.86270
## 3397 42.72397 41.87013 43.57782
## 3398 42.22235 41.48745 42.95726
## 3399 42.48294 42.02853 42.93736
## 3400 42.62722 41.97658 43.27785
## 3401 42.44795 42.00408 42.89183
## 3402 42.63316 41.97104 43.29528
## 3403 42.37812 41.90017 42.85608
## 3404 42.42833 41.98214 42.87452
## 3405 42.71481 41.88139 43.54823
## 3406 42.18703 41.37639 42.99768
## 3407 42.30184 41.71929 42.88440
## 3408 42.27389 41.64139 42.90639
## 3409 42.36064 41.86384 42.85743
## 3410 42.52365 42.03509 43.01221
## 3411 42.52682 42.03473 43.01891
## 3412 42.54850 42.02932 43.06768
## 3413 42.58750 42.00863 43.16636
## 3414 42.43052 41.98488 42.87615
## 3415 42.58747 42.00865 43.16630
## 3416 42.33559 41.80604 42.86515
## 3417 42.45132 42.00724 42.89539
## 3418 42.62722 41.97658 43.27786
## 3419 42.57391 42.01724 43.13058
## 3420 42.41507 41.96400 42.86615
## 3421 42.38998 41.92267 42.85729
## 3422 42.45451 42.01008 42.89895
## 3423 42.23119 41.51460 42.94777
## 3424 42.24257 41.54916 42.93597
## 3425 42.38185 41.90742 42.85627
## 3426 42.19695 41.40792 42.98597
## 3427 42.17465 41.33666 43.01265
## 3428 42.23215 41.51754 42.94676
## 3429 42.20685 41.43915 42.97455
## 3430 42.41890 41.96951 42.86829
## 3431 42.37559 41.89513 42.85605
## 3432 42.16961 41.32038 43.01885
## 3433 42.40031 41.94074 42.85987
## 3434 42.67330 41.92974 43.41685
## 3435 42.55502 42.02677 43.08327
## 3436 42.18977 41.38513 42.99442
## 3437 42.30936 41.73936 42.87935
## 3438 42.31819 41.76242 42.87395
## 3439 42.44272 41.99881 42.88663
## 3440 42.44505 42.00120 42.88889
## 3441 42.47585 42.02506 42.92665
## 3442 42.70165 41.89722 43.50608
## 3443 42.55974 42.02468 43.09479
## 3444 42.38619 41.91567 42.85671
## 3445 42.50942 42.03524 42.98359
## 3446 42.56437 42.02243 43.10630
## 3447 42.68945 41.91151 43.46739
## 3448 42.18083 41.35653 43.00513
## 3449 42.42202 41.97384 42.87021
## 3450 42.35155 41.84361 42.85949
## 3451 42.28027 41.65959 42.90096
## 3452 42.41780 41.96795 42.86766
## 3453 42.52491 42.03496 43.01485
## 3454 42.19609 41.40522 42.98697
## 3455 42.65291 41.95151 43.35432
## 3456 42.33403 41.80223 42.86583
## 3457 42.25167 41.57643 42.92691
## 3458 42.60538 41.99536 43.21539
## 3459 42.32708 41.78503 42.86913
## 3460 42.48282 42.02847 42.93716
## 3461 42.58377 42.01113 43.15642
## 3462 42.22556 41.49734 42.95378
## 3463 42.22725 41.50254 42.95196
## 3464 42.22836 41.50594 42.95078
## 3465 42.65555 41.94878 43.36231
## 3466 42.28908 41.68430 42.89385
## 3467 42.58431 42.01078 43.15784
## 3468 42.24930 41.56937 42.92923
## 3469 42.19880 41.41380 42.98381
## 3470 42.60860 41.99276 43.22443
## 3471 42.63659 41.96778 43.30540
## 3472 42.45000 42.00602 42.89398
## 3473 42.52511 42.03493 43.01529
## 3474 42.17586 41.34054 43.01117
## 3475 42.59355 42.00438 43.18272
## 3476 42.60657 41.99440 43.21873
## 3477 42.66652 41.93714 43.39590
## 3478 42.56267 42.02328 43.10206
## 3479 42.31503 41.75424 42.87581
## 3480 42.58275 42.01179 43.15371
## 3481 42.61627 41.98632 43.24623
## 3482 42.19898 41.41436 42.98360
## 3483 42.41374 41.96203 42.86545
## 3484 42.56448 42.02238 43.10657
## 3485 42.48939 42.03105 42.94773
## 3486 42.24423 41.55418 42.93429
## 3487 42.65539 41.94894 43.36184
## 3488 42.65085 41.95363 43.34807
## 3489 42.68405 41.91769 43.45041
## 3490 42.57393 42.01723 43.13063
## 3491 42.44157 41.99759 42.88554
## 3492 42.35309 41.84709 42.85908
## 3493 42.49410 42.03252 42.95567
## 3494 42.37124 41.88630 42.85618
## 3495 42.64221 41.96231 43.32210
## 3496 42.46199 42.01612 42.90787
## 3497 42.23200 41.51709 42.94691
## 3498 42.55661 42.02609 43.08713
## 3499 42.31089 41.74341 42.87837
## 3500 42.38853 41.92002 42.85705
## 3501 42.49797 42.03350 42.96243
## 3502 42.67394 41.92903 43.41885
## 3503 42.35393 41.84899 42.85887
## 3504 42.36790 41.87936 42.85644
## 3505 42.54516 42.03047 43.05984
## 3506 42.66861 41.93487 43.40236
## 3507 42.70118 41.89779 43.50456
## 3508 42.17494 41.33759 43.01229
## 3509 42.22206 41.48654 42.95758
## 3510 42.41725 41.96717 42.86734
## 3511 42.54873 42.02924 43.06822
## 3512 42.59492 42.00338 43.18646
## 3513 42.21377 41.46080 42.96674
## 3514 42.17758 41.34607 43.00908
## 3515 42.44546 42.00162 42.88930
## 3516 42.31809 41.76217 42.87401
## 3517 42.28853 41.68277 42.89428
## 3518 42.43993 41.99583 42.88403
## 3519 42.61959 41.98343 43.25575
## 3520 42.64981 41.95469 43.34494
## 3521 42.47389 42.02397 42.92382
## 3522 42.46597 42.01898 42.91296
## 3523 42.52200 42.03523 43.00877
## 3524 42.20987 41.44861 42.97112
## 3525 42.64320 41.96133 43.32507
## 3526 42.55545 42.02659 43.08431
## 3527 42.46544 42.01861 42.91227
## 3528 42.47743 42.02589 42.92897
## 3529 42.31859 41.76345 42.87372
## 3530 42.64684 41.95770 43.33598
## 3531 42.35441 41.85007 42.85875
## 3532 42.19278 41.39469 42.99086
## 3533 42.68945 41.91150 43.46740
## 3534 42.69250 41.90797 43.47703
## 3535 42.25304 41.58051 42.92558
## 3536 42.63570 41.96863 43.30277
## 3537 42.20511 41.43369 42.97653
## 3538 42.46208 42.01619 42.90798
## 3539 42.25788 41.59481 42.92094
## 3540 42.57618 42.01590 43.13647
## 3541 42.30456 41.72660 42.88253
## 3542 42.23264 41.51905 42.94623
## 3543 42.66486 41.93893 43.39078
## 3544 42.61938 41.98362 43.25515
## 3545 42.40505 41.94856 42.86154
## 3546 42.41492 41.96378 42.86607
## 3547 42.71240 41.88433 43.54047
## 3548 42.23706 41.53249 42.94162
## 3549 42.41171 41.95899 42.86444
## 3550 42.18246 41.36174 43.00317
## 3551 42.51136 42.03536 42.98735
## 3552 42.29914 41.71197 42.88631
## 3553 42.44949 42.00554 42.89343
## 3554 42.25508 41.58656 42.92361
## 3555 42.70667 41.89124 43.52209
## 3556 42.18588 41.37270 42.99906
## 3557 42.19220 41.39286 42.99154
## 3558 42.47971 42.02704 42.93239
## 3559 42.37399 41.89192 42.85607
## 3560 42.27446 41.64304 42.90589
## 3561 42.60098 41.99881 43.20315
## 3562 42.69570 41.90425 43.48715
## 3563 42.23725 41.53306 42.94143
## 3564 42.71552 41.88053 43.55051
## 3565 42.71114 41.88585 43.53643
## 3566 42.61254 41.98949 43.23558
## 3567 42.53075 42.03412 43.02738
## 3568 42.64291 41.96161 43.32420
## 3569 42.49217 42.03196 42.95239
## 3570 42.24271 41.54960 42.93582
## 3571 42.60339 41.99693 43.20986
## 3572 42.17193 41.32788 43.01598
## 3573 42.69773 41.90186 43.49361
## 3574 42.52620 42.03480 43.01760
## 3575 42.46969 42.02144 42.91794
## 3576 42.67551 41.92729 43.42373
## 3577 42.23323 41.52086 42.94561
## 3578 42.30353 41.72384 42.88323
## 3579 42.65724 41.94701 43.36747
## 3580 42.60225 41.99783 43.20666
## 3581 42.25449 41.58479 42.92418
## 3582 42.29309 41.69542 42.89077
## 3583 42.56536 42.02193 43.10878
## 3584 42.45143 42.00734 42.89552
## 3585 42.35031 41.84077 42.85984
## 3586 42.67608 41.92666 43.42549
## 3587 42.36589 41.87514 42.85665
## 3588 42.62797 41.97589 43.28006
## 3589 42.35136 41.84317 42.85955
## 3590 42.34691 41.83295 42.86088
## 3591 42.17646 41.34247 43.01044
## 3592 42.49831 42.03358 42.96305
## 3593 42.49711 42.03330 42.96092
## 3594 42.69446 41.90569 43.48324
## 3595 42.59925 42.00014 43.19836
## 3596 42.22758 41.50354 42.95162
## 3597 42.30035 41.71526 42.88545
## 3598 42.67025 41.93308 43.40743
## 3599 42.21909 41.47733 42.96084
## 3600 42.42725 41.98077 42.87374
## 3601 42.55826 42.02535 43.09118
## 3602 42.55674 42.02603 43.08744
## 3603 42.19412 41.39895 42.98929
## 3604 42.23803 41.53544 42.94062
## 3605 42.61894 41.98400 43.25388
## 3606 42.44503 42.00118 42.88887
## 3607 42.63193 41.97221 43.29164
## 3608 42.17679 41.34353 43.01004
## 3609 42.67163 41.93157 43.41169
## 3610 42.26963 41.62913 42.91013
## 3611 42.58702 42.00896 43.16507
## 3612 42.27975 41.65809 42.90140
## 3613 42.47768 42.02602 42.92934
## 3614 42.31952 41.76585 42.87319
## 3615 42.30349 41.72373 42.88326
## 3616 42.45948 42.01419 42.90478
## 3617 42.21543 41.46597 42.96489
## 3618 42.63482 41.96948 43.30016
## 3619 42.22854 41.50649 42.95059
## 3620 42.31441 41.75264 42.87618
## 3621 42.56198 42.02362 43.10034
## 3622 42.23511 41.52659 42.94364
## 3623 42.69412 41.90609 43.48214
## 3624 42.67923 41.92314 43.43531
## 3625 42.27814 41.65353 42.90275
## 3626 42.69199 41.90856 43.47543
## 3627 42.71337 41.88315 43.54359
## 3628 42.57796 42.01483 43.14109
## 3629 42.65620 41.94811 43.36429
## 3630 42.54385 42.03089 43.05682
## 3631 42.50584 42.03488 42.97681
## 3632 42.65927 41.94488 43.37367
## 3633 42.29392 41.69769 42.89015
## 3634 42.44971 42.00575 42.89367
## 3635 42.58761 42.00856 43.16666
## 3636 42.35272 41.84625 42.85918
## 3637 42.55105 42.02837 43.07372
## 3638 42.71791 41.87761 43.55821
## 3639 42.37633 41.89661 42.85605
## 3640 42.65994 41.94418 43.37570
## 3641 42.46848 42.02066 42.91630
## 3642 42.66804 41.93550 43.40058
## 3643 42.67172 41.93148 43.41195
## 3644 42.18040 41.35515 43.00565
## 3645 42.26819 41.62496 42.91142
## 3646 42.30178 41.71911 42.88445
## 3647 42.21092 41.45189 42.96994
## 3648 42.71657 41.87925 43.55389
## 3649 42.26947 41.62867 42.91027
## 3650 42.19212 41.39259 42.99164
## 3651 42.45409 42.00972 42.89847
## 3652 42.17980 41.35322 43.00638
## 3653 42.64152 41.96299 43.32005
## 3654 42.34187 41.82110 42.86263
## 3655 42.65944 41.94470 43.37418
## 3656 42.38800 41.91903 42.85696
## 3657 42.26400 41.61277 42.91523
## 3658 42.51616 42.03547 42.99684
## 3659 42.28873 41.68333 42.89413
## 3660 42.44190 41.99794 42.88585
## 3661 42.56314 42.02305 43.10324
## 3662 42.61834 41.98452 43.25216
## 3663 42.65839 41.94581 43.37096
## 3664 42.32620 41.78283 42.86957
## 3665 42.19114 41.38948 42.99280
## 3666 42.25629 41.59014 42.92245
## 3667 42.72183 41.87279 43.57087
## 3668 42.55690 42.02596 43.08783
## 3669 42.43653 41.99203 42.88102
## 3670 42.21499 41.46461 42.96537
## 3671 42.43239 41.98717 42.87761
## 3672 42.66721 41.93640 43.39803
## 3673 42.27682 41.64978 42.90386
## 3674 42.39076 41.92407 42.85744
## 3675 42.30797 41.73569 42.88025
## 3676 42.53731 42.03273 43.04188
## 3677 42.30069 41.71616 42.88521
## 3678 42.41910 41.96979 42.86841
## 3679 42.67834 41.92414 43.43254
## 3680 42.31609 41.75700 42.87518
## 3681 42.23314 41.52057 42.94571
## 3682 42.62056 41.98258 43.25854
## 3683 42.48472 42.02928 42.94015
## 3684 42.62595 41.97774 43.27416
## 3685 42.34144 41.82008 42.86279
## 3686 42.43698 41.99254 42.88141
## 3687 42.55002 42.02876 43.07127
## 3688 42.22052 41.48177 42.95927
## 3689 42.50919 42.03522 42.98316
## 3690 42.64044 41.96404 43.31685
## 3691 42.20782 41.44220 42.97344
## 3692 42.26139 41.60516 42.91763
## 3693 42.54422 42.03077 43.05767
## 3694 42.61513 41.98730 43.24295
## 3695 42.43542 41.99076 42.88009
## 3696 42.46991 42.02158 42.91824
## 3697 42.64438 41.96015 43.32861
## 3698 42.71528 41.88082 43.54975
## 3699 42.30713 41.73346 42.88080
## 3700 42.39124 41.92494 42.85753
## 3701 42.17789 41.34707 43.00870
## 3702 42.60823 41.99306 43.22339
## 3703 42.37842 41.90075 42.85609
## 3704 42.19717 41.40864 42.98571
## 3705 42.64271 41.96181 43.32362
## 3706 42.37494 41.89382 42.85606
## 3707 42.26938 41.62841 42.91035
## 3708 42.56096 42.02410 43.09782
## 3709 42.30254 41.72116 42.88392
## 3710 42.57119 42.01880 43.12359
## 3711 42.52776 42.03460 43.02093
## 3712 42.30508 41.72798 42.88218
## 3713 42.48521 42.02948 42.94093
## 3714 42.36976 41.88324 42.85628
## 3715 42.49742 42.03338 42.96147
## 3716 42.19013 41.38627 42.99399
## 3717 42.48816 42.03061 42.94571
## 3718 42.42249 41.97447 42.87050
## 3719 42.36911 41.88190 42.85633
## 3720 42.60698 41.99407 43.21989
## 3721 42.72216 41.87237 43.57196
## 3722 42.42331 41.97558 42.87104
## 3723 42.69741 41.90224 43.49259
## 3724 42.49027 42.03135 42.94919
## 3725 42.18362 41.36547 43.00177
## 3726 42.56170 42.02375 43.09964
## 3727 42.26933 41.62827 42.91040
## 3728 42.70594 41.89212 43.51975
## 3729 42.59218 42.00536 43.17901
## 3730 42.69020 41.91064 43.46975
## 3731 42.62812 41.97575 43.28049
## 3732 42.69097 41.90976 43.47217
## 3733 42.59400 42.00405 43.18395
## 3734 42.53235 42.03382 43.03088
## 3735 42.60247 41.99765 43.20729
## 3736 42.34554 41.82976 42.86133
## 3737 42.26853 41.62593 42.91112
## 3738 42.45203 42.00789 42.89618
## 3739 42.24390 41.55317 42.93462
## 3740 42.30038 41.71533 42.88543
## 3741 42.21766 41.47290 42.96241
## 3742 42.68143 41.92066 43.44220
## 3743 42.31832 41.76278 42.87387
## 3744 42.42581 41.97890 42.87272
## 3745 42.65728 41.94697 43.36759
## 3746 42.54219 42.03140 43.05297
## 3747 42.72462 41.86933 43.57991
## 3748 42.65325 41.95116 43.35534
## 3749 42.19411 41.39893 42.98929
## 3750 42.25703 41.59232 42.92174
## 3751 42.56063 42.02426 43.09701
## 3752 42.36194 41.86667 42.85721
## 3753 42.20716 41.44013 42.97419
## 3754 42.54091 42.03177 43.05006
## 3755 42.33072 41.79410 42.86735
## 3756 42.23110 41.51433 42.94786
## 3757 42.68218 41.91982 43.44454
## 3758 42.29846 41.71011 42.88681
## 3759 42.51339 42.03545 42.99133
## 3760 42.69498 41.90509 43.48486
## 3761 42.54130 42.03166 43.05094
## 3762 42.42354 41.97589 42.87119
## 3763 42.41745 41.96745 42.86745
## 3764 42.62411 41.97941 43.26880
## 3765 42.19351 41.39702 42.99000
## 3766 42.62425 41.97928 43.26921
## 3767 42.52087 42.03531 43.00643
## 3768 42.58181 42.01240 43.15123
## 3769 42.38611 41.91552 42.85670
## 3770 42.59854 42.00068 43.19641
## 3771 42.68037 41.92185 43.43890
## 3772 42.30919 41.73893 42.87946
## 3773 42.26194 41.60676 42.91713
## 3774 42.65692 41.94735 43.36649
## 3775 42.23168 41.51610 42.94725
## 3776 42.57131 42.01873 43.12389
## 3777 42.21581 41.46715 42.96446
## 3778 42.51109 42.03535 42.98684
## 3779 42.71439 41.88191 43.54687
## 3780 42.67950 41.92284 43.43615
## 3781 42.69838 41.90109 43.49567
## 3782 42.72252 41.87193 43.57312
## 3783 42.18206 41.36048 43.00365
## 3784 42.38336 41.91032 42.85639
## 3785 42.64819 41.95633 43.34005
## 3786 42.69005 41.91081 43.46930
## 3787 42.69158 41.90904 43.47412
## 3788 42.41495 41.96382 42.86608
## 3789 42.36242 41.86770 42.85713
## 3790 42.31505 41.75431 42.87580
## 3791 42.22333 41.49045 42.95620
## 3792 42.36201 41.86682 42.85720
## 3793 42.68946 41.91150 43.46741
## 3794 42.21348 41.45990 42.96706
## 3795 42.43368 41.98871 42.87865
## 3796 42.28466 41.67195 42.89736
## 3797 42.35334 41.84766 42.85902
## 3798 42.24362 41.55233 42.93491
## 3799 42.31668 41.75852 42.87483
## 3800 42.69429 41.90589 43.48270
## 3801 42.68449 41.91719 43.45180
## 3802 42.42291 41.97505 42.87078
## 3803 42.33203 41.79732 42.86673
## 3804 42.30560 41.72937 42.88183
## 3805 42.45366 42.00934 42.89799
## 3806 42.25345 41.58171 42.92518
## 3807 42.41553 41.96466 42.86639
## 3808 42.32579 41.78180 42.86979
## 3809 42.53707 42.03279 43.04135
## 3810 42.71893 41.87635 43.56151
## 3811 42.66825 41.93527 43.40124
## 3812 42.52565 42.03487 43.01644
## 3813 42.40607 41.95019 42.86194
## 3814 42.61968 41.98335 43.25602
## 3815 42.54162 42.03157 43.05167
## 3816 42.39588 41.93317 42.85859
## 3817 42.50873 42.03518 42.98228
## 3818 42.40758 41.95260 42.86257
## 3819 42.21491 41.46436 42.96546
## 3820 42.30612 41.73077 42.88148
## 3821 42.33733 41.81025 42.86441
## 3822 42.48480 42.02931 42.94029
## 3823 42.66231 41.94166 43.38296
## 3824 42.69508 41.90496 43.48520
## 3825 42.35082 41.84195 42.85970
## 3826 42.51952 42.03538 43.00365
## 3827 42.53329 42.03364 43.03294
## 3828 42.33441 41.80317 42.86566
## 3829 42.35004 41.84015 42.85992
## 3830 42.59520 42.00317 43.18723
## 3831 42.21745 41.47225 42.96264
## 3832 42.38625 41.91578 42.85672
## 3833 42.52314 42.03513 43.01115
## 3834 42.59627 42.00238 43.19015
## 3835 42.43863 41.99440 42.88286
## 3836 42.49159 42.03178 42.95141
## 3837 42.17831 41.34844 43.00818
## 3838 42.57836 42.01458 43.14214
## 3839 42.23263 41.51903 42.94624
## 3840 42.24313 41.55085 42.93541
## 3841 42.47250 42.02316 42.92184
## 3842 42.32151 41.77095 42.87207
## 3843 42.52860 42.03447 43.02272
## 3844 42.26675 41.62078 42.91272
## 3845 42.49934 42.03380 42.96488
## 3846 42.51371 42.03545 42.99198
## 3847 42.66430 41.93953 43.38908
## 3848 42.23071 41.51314 42.94828
## 3849 42.48532 42.02953 42.94112
## 3850 42.26037 41.60215 42.91859
## 3851 42.41939 41.97020 42.86858
## 3852 42.60854 41.99280 43.22428
## 3853 42.57722 42.01528 43.13916
## 3854 42.41260 41.96033 42.86488
## 3855 42.27934 41.65694 42.90174
## 3856 42.31527 41.75488 42.87567
## 3857 42.49835 42.03359 42.96310
## 3858 42.39179 41.92594 42.85764
## 3859 42.49701 42.03328 42.96074
## 3860 42.34815 41.83582 42.86049
## 3861 42.51184 42.03539 42.98829
## 3862 42.17861 41.34938 43.00783
## 3863 42.62587 41.97781 43.27394
## 3864 42.57552 42.01630 43.13474
## 3865 42.64757 41.95696 43.33818
## 3866 42.37139 41.88660 42.85617
## 3867 42.54332 42.03106 43.05558
## 3868 42.43070 41.98511 42.87629
## 3869 42.32652 41.78362 42.86942
## 3870 42.27337 41.63990 42.90684
## 3871 42.46379 42.01744 42.91013
## 3872 42.25671 41.59136 42.92205
## 3873 42.70810 41.88952 43.52669
## 3874 42.55049 42.02858 43.07239
## 3875 42.40798 41.95322 42.86274
## 3876 42.47666 42.02549 42.92783
## 3877 42.54934 42.02901 43.06967
## 3878 42.67517 41.92767 43.42268
## 3879 42.72643 41.86708 43.58579
## 3880 42.36136 41.86542 42.85731
## 3881 42.38128 41.90633 42.85623
## 3882 42.31238 41.74733 42.87744
## 3883 42.72483 41.86907 43.58060
## 3884 42.37605 41.89604 42.85605
## 3885 42.46685 42.01958 42.91412
## 3886 42.35855 41.85927 42.85783
## 3887 42.38078 41.90537 42.85620
## 3888 42.24176 41.54672 42.93680
## 3889 42.60941 41.99209 43.22674
## 3890 42.17159 41.32678 43.01640
## 3891 42.50965 42.03526 42.98405
## 3892 42.18897 41.38258 42.99537
## 3893 42.20347 41.42854 42.97841
## 3894 42.26503 41.61577 42.91428
## 3895 42.63592 41.96842 43.30342
## 3896 42.64025 41.96423 43.31626
## 3897 42.42443 41.97708 42.87178
## 3898 42.22188 41.48600 42.95777
## 3899 42.62783 41.97602 43.27964
## 3900 42.48160 42.02792 42.93527
## 3901 42.19805 41.41141 42.98468
## 3902 42.55823 42.02537 43.09109
## 3903 42.25239 41.57858 42.92621
## 3904 42.20714 41.44007 42.97421
## 3905 42.28123 41.66229 42.90017
## 3906 42.48736 42.03032 42.94441
## 3907 42.61237 41.98963 43.23510
## 3908 42.21359 41.46025 42.96693
## 3909 42.64997 41.95453 43.34541
## 3910 42.33439 41.80310 42.86567
## 3911 42.72418 41.86987 43.57849
## 3912 42.35029 41.84073 42.85985
## 3913 42.63060 41.97345 43.28776
## 3914 42.49417 42.03254 42.95580
## 3915 42.54161 42.03157 43.05166
## 3916 42.45988 42.01450 42.90526
## 3917 42.26427 41.61357 42.91498
## 3918 42.71087 41.88619 43.53555
## 3919 42.65217 41.95227 43.35208
## 3920 42.42972 41.98389 42.87555
## 3921 42.66268 41.94127 43.38409
## 3922 42.38638 41.91602 42.85673
## 3923 42.72257 41.87187 43.57326
## 3924 42.27852 41.65462 42.90243
## 3925 42.25869 41.59721 42.92017
## 3926 42.68714 41.91416 43.46011
## 3927 42.24290 41.55017 42.93563
## 3928 42.52181 42.03524 43.00838
## 3929 42.68749 41.91376 43.46123
## 3930 42.53644 42.03294 43.03993
## 3931 42.39435 41.93050 42.85821
## 3932 42.66383 41.94004 43.38762
## 3933 42.38833 41.91964 42.85702
## 3934 42.39934 41.93912 42.85957
## 3935 42.42660 41.97993 42.87328
## 3936 42.18905 41.38281 42.99528
## 3937 42.30050 41.71566 42.88534
## 3938 42.24271 41.54959 42.93583
## 3939 42.57682 42.01552 43.13812
## 3940 42.26935 41.62833 42.91038
## 3941 42.46677 42.01953 42.91401
## 3942 42.37390 41.89174 42.85607
## 3943 42.56533 42.02195 43.10870
## 3944 42.22139 41.48447 42.95831
## 3945 42.22798 41.50479 42.95118
## 3946 42.62351 41.97995 43.26706
## 3947 42.46764 42.02011 42.91516
## 3948 42.63423 41.97003 43.29843
## 3949 42.30140 41.71810 42.88471
## 3950 42.33459 41.80360 42.86558
## 3951 42.46382 42.01746 42.91017
## 3952 42.38634 41.91595 42.85673
## 3953 42.60942 41.99208 43.22677
## 3954 42.70614 41.89188 43.52040
## 3955 42.62557 41.97809 43.27304
## 3956 42.25491 41.58605 42.92377
## 3957 42.25350 41.58188 42.92513
## 3958 42.17981 41.35325 43.00637
## 3959 42.32746 41.78599 42.86894
## 3960 42.26001 41.60109 42.91893
## 3961 42.29303 41.69525 42.89081
## 3962 42.24718 41.56302 42.93134
## 3963 42.63369 41.97055 43.29683
## 3964 42.54242 42.03133 43.05351
## 3965 42.17148 41.32640 43.01655
## 3966 42.43548 41.99082 42.88014
## 3967 42.44541 42.00157 42.88925
## 3968 42.58995 42.00694 43.17297
## 3969 42.29649 41.70474 42.88824
## 3970 42.27912 41.65631 42.90192
## 3971 42.57777 42.01494 43.14061
## 3972 42.26181 41.60636 42.91725
## 3973 42.62998 41.97403 43.28592
## 3974 42.64144 41.96306 43.31983
## 3975 42.67431 41.92862 43.42000
## 3976 42.52309 42.03514 43.01105
## 3977 42.62717 41.97662 43.27772
## 3978 42.39424 41.93029 42.85818
## 3979 42.41343 41.96158 42.86529
## 3980 42.27803 41.65323 42.90284
## 3981 42.61115 41.99065 43.23165
## 3982 42.21377 41.46080 42.96674
## 3983 42.39601 41.93340 42.85862
## 3984 42.37481 41.89357 42.85606
## 3985 42.63996 41.96451 43.31540
## 3986 42.47726 42.02581 42.92872
## 3987 42.23424 41.52391 42.94456
## 3988 42.46563 42.01874 42.91251
## 3989 42.71129 41.88567 43.53691
## 3990 42.32986 41.79196 42.86776
## 3991 42.50102 42.03414 42.96791
## 3992 42.43713 41.99271 42.88154
## 3993 42.61711 41.98559 43.24863
## 3994 42.24429 41.55436 42.93423
## 3995 42.71983 41.87525 43.56440
## 3996 42.34927 41.83839 42.86015
## 3997 42.70938 41.88798 43.53079
## 3998 42.72092 41.87391 43.56793
## 3999 42.28307 41.66750 42.89865
## 4000 42.72335 41.87090 43.57581
## 4001 42.36684 41.87715 42.85654
## 4002 42.32133 41.77050 42.87217
## 4003 42.56223 42.02349 43.10097
## 4004 42.24878 41.56782 42.92975
## 4005 42.52453 42.03500 43.01406
## 4006 42.68725 41.91404 43.46046
## 4007 42.53031 42.03419 43.02643
## 4008 42.71560 41.88044 43.55075
## 4009 42.42712 41.98060 42.87364
## 4010 42.46357 42.01728 42.90986
## 4011 42.54088 42.03178 43.04997
## 4012 42.59856 42.00067 43.19645
## 4013 42.29050 41.68826 42.89274
## 4014 42.58449 42.01066 43.15832
## 4015 42.58477 42.01047 43.15906
## 4016 42.62969 41.97430 43.28509
## 4017 42.72698 41.86639 43.58757
## 4018 42.43334 41.98830 42.87837
## 4019 42.70599 41.89205 43.51993
## 4020 42.41353 41.96171 42.86534
## 4021 42.72640 41.86711 43.58569
## 4022 42.17929 41.35159 43.00700
## 4023 42.65898 41.94519 43.37278
## 4024 42.34682 41.83274 42.86091
## 4025 42.33422 41.80270 42.86574
## 4026 42.18772 41.37858 42.99686
## 4027 42.66459 41.93922 43.38996
## 4028 42.57206 42.01831 43.12580
## 4029 42.24884 41.56798 42.92969
## 4030 42.35675 41.85530 42.85820
## 4031 42.49709 42.03330 42.96088
## 4032 42.55186 42.02805 43.07567
## 4033 42.70335 41.89521 43.51149
## 4034 42.25621 41.58989 42.92253
## 4035 42.31539 41.75518 42.87560
## 4036 42.23056 41.51269 42.94843
## 4037 42.17841 41.34874 43.00807
## 4038 42.36187 41.86653 42.85722
## 4039 42.45592 42.01128 42.90055
## 4040 42.54052 42.03188 43.04916
## 4041 42.51175 42.03538 42.98811
## 4042 42.27675 41.64956 42.90393
## 4043 42.20981 41.44843 42.97119
## 4044 42.57827 42.01463 43.14190
## 4045 42.33296 41.79960 42.86631
## 4046 42.39303 41.92816 42.85790
## 4047 42.49400 42.03250 42.95551
## 4048 42.47205 42.02289 42.92121
## 4049 42.71348 41.88301 43.54396
## 4050 42.69081 41.90993 43.47170
## 4051 42.19425 41.39936 42.98914
## 4052 42.26061 41.60285 42.91837
## 4053 42.64363 41.96090 43.32635
## 4054 42.39257 41.92734 42.85780
## 4055 42.45748 42.01258 42.90239
## 4056 42.67922 41.92315 43.43530
## 4057 42.66292 41.94101 43.38483
## 4058 42.31254 41.74773 42.87734
## 4059 42.40934 41.95534 42.86333
## 4060 42.72096 41.87385 43.56808
## 4061 42.27787 41.65275 42.90298
## 4062 42.58597 42.00967 43.16227
## 4063 42.52786 42.03458 43.02114
## 4064 42.41820 41.96851 42.86788
## 4065 42.27992 41.65859 42.90125
## 4066 42.20439 41.43143 42.97735
## 4067 42.52457 42.03499 43.01414
## 4068 42.27611 41.64775 42.90447
## 4069 42.57945 42.01390 43.14501
## 4070 42.27006 41.63038 42.90975
## 4071 42.63521 41.96910 43.30133
## 4072 42.31768 41.76112 42.87424
## 4073 42.44237 41.99845 42.88630
## 4074 42.19430 41.39954 42.98907
## 4075 42.30191 41.71946 42.88436
## 4076 42.62229 41.98105 43.26353
## 4077 42.26078 41.60335 42.91821
## 4078 42.18931 41.38365 42.99497
## 4079 42.35189 41.84438 42.85940
## 4080 42.19731 41.40907 42.98555
## 4081 42.29885 41.71119 42.88652
## 4082 42.29866 41.71066 42.88666
## 4083 42.54716 42.02980 43.06452
## 4084 42.72741 41.86585 43.58897
## 4085 42.28776 41.68064 42.89488
## 4086 42.19628 41.40582 42.98674
## 4087 42.30483 41.72731 42.88235
## 4088 42.18793 41.37926 42.99660
## 4089 42.20712 41.44001 42.97423
## 4090 42.57682 42.01552 43.13812
## 4091 42.26070 41.60313 42.91828
## 4092 42.34102 41.81909 42.86295
## 4093 42.51760 42.03545 42.99974
## 4094 42.34658 41.83218 42.86099
## 4095 42.43204 41.98674 42.87733
## 4096 42.52226 42.03521 43.00931
## 4097 42.37708 41.89810 42.85606
## 4098 42.17716 41.34475 43.00958
## 4099 42.40614 41.95030 42.86197
## 4100 42.27749 41.65169 42.90330
## 4101 42.33832 41.81263 42.86401
## 4102 42.33451 41.80339 42.86562
## 4103 42.67178 41.93142 43.41214
## 4104 42.60169 41.99827 43.20511
## 4105 42.41513 41.96408 42.86618
## 4106 42.35717 41.85623 42.85811
## 4107 42.53236 42.03382 43.03090
## 4108 42.56671 42.02123 43.11218
## 4109 42.46322 42.01703 42.90942
## 4110 42.47943 42.02690 42.93196
## 4111 42.51591 42.03548 42.99635
## 4112 42.26886 41.62690 42.91082
## 4113 42.65465 41.94972 43.35958
## 4114 42.18495 41.36974 43.00017
## 4115 42.38353 41.91064 42.85641
## 4116 42.55290 42.02764 43.07816
## 4117 42.66742 41.93617 43.39867
## 4118 42.32330 41.77550 42.87110
## 4119 42.41814 41.96844 42.86785
## 4120 42.70318 41.89541 43.51094
## 4121 42.70319 41.89540 43.51098
## 4122 42.58822 42.00814 43.16831
## 4123 42.60358 41.99679 43.21037
## 4124 42.34250 41.82260 42.86240
## 4125 42.28933 41.68500 42.89366
## 4126 42.43757 41.99322 42.88193
## 4127 42.70341 41.89514 43.51169
## 4128 42.56096 42.02410 43.09783
## 4129 42.40573 41.94966 42.86181
## 4130 42.40574 41.94967 42.86182

5.3. Regresión Lineal Múltiple

La regresión lineal múltiple es una técnica estadística que extiende la regresión lineal para modelar la relación entre una variable dependiente y múltiples variables independientes. En términos generales, describe cómo la variable dependiente cambia en función de varias variables predictora. El análisis de regresión múltiple permite evaluar cómo las diferentes variables independientes afectan conjuntamente a la variable dependiente. Cada coeficiente de regresión se interpreta como el cambio esperado en la variable dependiente por cada unidad de cambio en la variable independiente correspondiente, manteniendo las demás constantes. Esto permite identificar qué variables tienen un efecto significativo y qué tan fuerte es su influencia en el resultado. También ayuda a entender las relaciones complejas entre las variables y a controlar posibles factores de confusión.

Los resultados de la regresión lineal múltiple incluyen métricas de ajuste como el coeficiente de determinación y el valor ajustado que indican qué proporción de la variabilidad de la variable dependiente es explicada por el modelo. También se evalúan las suposiciones del modelo (linealidad, independencia de errores, homocedasticidad y normalidad) y posibles problemas como la multicolinealidad entre las variables independientes. En resumen, la regresión lineal múltiple proporciona un marco robusto para analizar, predecir y explicar relaciones complejas en un conjunto de datos con múltiples factores influyentes.

La navegación a través de las pestañas muestra el resúmen y la tabla ANOVA del modelo de regresión lineal múltiple total y los coeficientes tanto del modelo mencionado como el logrado luego de reducirlo. Con base en la exploración de los datos y el resúmen y la tabla ANOVA del modelo total se formulan para comparación dos modelos RLM: uno que incluye a todas las varibles del conjunto de datos, excepto id y model , y el otro que excluye tambien a id y model junto con condition.Se menciona de nuevo que age es la variable dependiente.

Al considerar los resultados presentados en la pestaña Coeficientes del Modelo RLM Total se puede establer que el modelo de regresión lineal múltiple total que relaciona a las variables de interés, las cuales se resumirán como:

\(performance\), \(km\), \(price\), \(gender1\), \(condition2\), \(condition3\), \(condition4\), \(condition5\), \(condition6\), \(colorBlack\), \(colorBlue\), \(colorCrimson\), \(colorFuscia\), \(colorGoldenrod\), \(colorGray\), \(colorGreen\), \(colorIndigo\), \(colorKhaki\), \(colorMaroon\), \(colorMauv\), \(colorOrange\), \(colorPink\), \(colorPuce\), \(colorPurple\), \(colorRed\), \(colorSilver\), \(colorTeal\), \(colorTurquoise\), \(colorViolet\), \(colorWhite\), \(colorYellow\) \(age= 41,7-3.932e-04 * performance - 6.943e-07 * km + 8.770e-08 * price + 1.249e-01 * gender1 - 1.010e+00 * condition2 - 3.720e+00 * condition3 + 1.105e+00 * condition4 - 2.514e-01 * condition5 + 7.317e-01 * condition6 + 2.844e+00 * colorBlack + 1.516e+00 * colorBlue - 9.371e-01 * colorCrimson - 3.509e+00 * colorFuscia - 3.296e+00 * colorGoldenrod + 2.380e+00 * colorGray + 5.098e-01 * colorGreen - 1.912e+00 * colorIndigo - 1.407e+00 * colorKhaki - 1.566e+00 * colorMaroon - 1.981e+00 * colorMauv + 4.820e-01 * colorOrange - 1.947e+00 * colorPink - 7.933e-01 * colorPuce + 1.178e+00 * colorPurple + 1.725e+00 * colorRed + 1.613e+00 * colorSilver - 4.084e+00 * colorTeal - 7.920e-01 * colorTurquoise - 2.921e+00 * colorViolet + 1.516e+00 * colorWhite + 6.440e-01 * colorYellow\)

Por otro lado, luego de analizar el resumen estadístico y la tabla ANOVA del modelo RLM Total (como se muestra en la pestaña homónima), se pudo establecer, con el apoyo de los resúmenes estadísticos de las variables de estudio, que podía usar exclusivamente la variable condition y model. El modelo reducido quedaría de la siguiente manera:

\(age = 3.685-3.1509 * condition3 + 10.4549 * modelElgrand + 9.0802 * modelGloria + 9.0386 * model)March / Micra\)

Resumen Variables Cuantitativas

La tabla muestra un resumen estadístico de cuatro variables cuantitativas de un conjunto de datos de modelos Nissan: age, performance, km y price. Para cada variable se muestran los siguientes estadísticos: mínimo, primer cuartil, mediana, media, tercer cuartil y máximo. Los valores numéricos representan las medidas de cada estadístico para cada variable.

summary(Modelos_Nissan_Depurado$age)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   18.00   30.00   42.00   42.45   55.00   69.00
summary(Modelos_Nissan_Depurado$performance)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     1.0   106.0   198.0   198.8   294.8   399.0
summary(Modelos_Nissan_Depurado$km)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     808  263110  498843  498399  739024  999480
summary(Modelos_Nissan_Depurado$price)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##     6065  1201856  2462818  2475648  3710149 20080185

Resumen Variables Cualitativas

El resumen de variables cualitativas muestra la distribución de la variable gender en el conjunto de datos de modelos Nissan. Hay 1999 observaciones con el valor 0 y 2131 con el valor 1. Esto indica que aproximadamente el 48.4% de los datos corresponde al género 0 y el 51.6% al género 1. También se genera un gráfico de barras que visualiza esta distribución.

table(Modelos_Nissan_Depurado$gender)
## 
##    0    1 
## 1999 2131
prop.table(table(Modelos_Nissan_Depurado$gender))
## 
##         0         1 
## 0.4840194 0.5159806
barplot(table(Modelos_Nissan_Depurado$gender))

table(Modelos_Nissan_Depurado$condition)
## 
##   1   2   3   4   5   6 
## 859 988  84 686 842 671
prop.table(table(Modelos_Nissan_Depurado$condition))
## 
##          1          2          3          4          5          6 
## 0.20799031 0.23922518 0.02033898 0.16610169 0.20387409 0.16246973
barplot(table(Modelos_Nissan_Depurado$condition))

Resumen y ANOVA del Modelo RLM Total

El ANOVA y los coeficientes ayudan a evaluar la relación entre las variables independientes y la edad, mostrando qué factores son significativos.

summary(lm(Modelos_Nissan_Depurado$age~Modelos_Nissan_Depurado$performance+Modelos_Nissan_Depurado$km+Modelos_Nissan_Depurado$price+as.factor(Modelos_Nissan_Depurado$gender)+as.factor(Modelos_Nissan_Depurado$condition)+as.factor(Modelos_Nissan_Depurado$model)+as.factor(Modelos_Nissan_Depurado$color)))
## 
## Call:
## lm(formula = Modelos_Nissan_Depurado$age ~ Modelos_Nissan_Depurado$performance + 
##     Modelos_Nissan_Depurado$km + Modelos_Nissan_Depurado$price + 
##     as.factor(Modelos_Nissan_Depurado$gender) + as.factor(Modelos_Nissan_Depurado$condition) + 
##     as.factor(Modelos_Nissan_Depurado$model) + as.factor(Modelos_Nissan_Depurado$color))
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -28.5218 -12.3295  -0.0719  12.1692  27.8359 
## 
## Coefficients:
##                                                            Estimate Std. Error
## (Intercept)                                               3.685e+01  5.211e+00
## Modelos_Nissan_Depurado$performance                      -3.793e-04  2.182e-03
## Modelos_Nissan_Depurado$km                               -6.144e-07  8.374e-07
## Modelos_Nissan_Depurado$price                             8.242e-08  1.515e-07
## as.factor(Modelos_Nissan_Depurado$gender)1                1.454e-01  4.575e-01
## as.factor(Modelos_Nissan_Depurado$condition)2            -1.051e+00  6.954e-01
## as.factor(Modelos_Nissan_Depurado$condition)3            -3.469e+00  1.821e+00
## as.factor(Modelos_Nissan_Depurado$condition)4             8.349e-01  7.609e-01
## as.factor(Modelos_Nissan_Depurado$condition)5            -3.308e-01  7.148e-01
## as.factor(Modelos_Nissan_Depurado$condition)6             5.696e-01  7.644e-01
## as.factor(Modelos_Nissan_Depurado$model)AD                4.671e+00  6.735e+00
## as.factor(Modelos_Nissan_Depurado$model)Almera            7.789e+00  5.993e+00
## as.factor(Modelos_Nissan_Depurado$model)Altima            7.122e+00  4.702e+00
## as.factor(Modelos_Nissan_Depurado$model)Armada            7.788e-02  5.890e+00
## as.factor(Modelos_Nissan_Depurado$model)Avenir            6.440e+00  4.701e+00
## as.factor(Modelos_Nissan_Depurado$model)Bluebird          5.832e+00  6.966e+00
## as.factor(Modelos_Nissan_Depurado$model)Bluebird Sylphy   8.129e+00  6.425e+00
## as.factor(Modelos_Nissan_Depurado$model)Cabstar / Atlas   7.654e+00  6.721e+00
## as.factor(Modelos_Nissan_Depurado$model)Caravan / Urvan   2.371e+00  5.851e+00
## as.factor(Modelos_Nissan_Depurado$model)Cedric            5.850e+00  5.821e+00
## as.factor(Modelos_Nissan_Depurado$model)Cedric Y31        4.876e+00  5.511e+00
## as.factor(Modelos_Nissan_Depurado$model)Cima              6.278e+00  6.123e+00
## as.factor(Modelos_Nissan_Depurado$model)Civilian          9.081e+00  6.537e+00
## as.factor(Modelos_Nissan_Depurado$model)Cube              1.608e+00  5.760e+00
## as.factor(Modelos_Nissan_Depurado$model)Dayz              2.022e+00  6.292e+00
## as.factor(Modelos_Nissan_Depurado$model)Elgrand           1.195e+01  7.224e+00
## as.factor(Modelos_Nissan_Depurado$model)Fairlady Z        2.889e+00  7.214e+00
## as.factor(Modelos_Nissan_Depurado$model)Figaro            1.693e+00  5.695e+00
## as.factor(Modelos_Nissan_Depurado$model)Frontier          2.520e+00  6.714e+00
## as.factor(Modelos_Nissan_Depurado$model)Gloria            7.828e+00  4.697e+00
## as.factor(Modelos_Nissan_Depurado$model)GT-R              7.911e+00  6.980e+00
## as.factor(Modelos_Nissan_Depurado$model)Hypermini         4.157e+00  6.213e+00
## as.factor(Modelos_Nissan_Depurado$model)Interstar         3.106e+00  6.531e+00
## as.factor(Modelos_Nissan_Depurado$model)Juke              6.167e+00  4.693e+00
## as.factor(Modelos_Nissan_Depurado$model)Kicks            -6.394e-02  6.935e+00
## as.factor(Modelos_Nissan_Depurado$model)Lafesta          -1.795e-01  6.422e+00
## as.factor(Modelos_Nissan_Depurado$model)Leaf              4.981e+00  4.698e+00
## as.factor(Modelos_Nissan_Depurado$model)Leopard           7.812e+00  6.041e+00
## as.factor(Modelos_Nissan_Depurado$model)Livina            3.862e+00  6.716e+00
## as.factor(Modelos_Nissan_Depurado$model)March / Micra     7.772e+00  4.708e+00
## as.factor(Modelos_Nissan_Depurado$model)Maxima            5.877e+00  4.697e+00
## as.factor(Modelos_Nissan_Depurado$model)Murano            2.219e+00  5.922e+00
## as.factor(Modelos_Nissan_Depurado$model)Navara / NP300    5.363e+00  5.553e+00
## as.factor(Modelos_Nissan_Depurado$model)Note              9.533e+00  6.533e+00
## as.factor(Modelos_Nissan_Depurado$model)NT100 Clipper     1.167e+00  6.571e+00
## as.factor(Modelos_Nissan_Depurado$model)NV Cargo          4.812e+00  6.052e+00
## as.factor(Modelos_Nissan_Depurado$model)NV Passenger      2.830e+00  5.984e+00
## as.factor(Modelos_Nissan_Depurado$model)NV100 Clipper     4.392e+00  6.440e+00
## as.factor(Modelos_Nissan_Depurado$model)NV200 / Evalia    1.584e+00  7.224e+00
## as.factor(Modelos_Nissan_Depurado$model)NX                4.966e+00  6.270e+00
## as.factor(Modelos_Nissan_Depurado$model)Paladin          -1.951e+00  5.765e+00
## as.factor(Modelos_Nissan_Depurado$model)Pathfinder        5.044e+00  4.702e+00
## as.factor(Modelos_Nissan_Depurado$model)Patrol            7.859e+00  6.042e+00
## as.factor(Modelos_Nissan_Depurado$model)Primastar         2.266e+00  5.539e+00
## as.factor(Modelos_Nissan_Depurado$model)Pulsar            5.895e+00  5.899e+00
## as.factor(Modelos_Nissan_Depurado$model)Qashqai / Dualis  5.694e+00  6.950e+00
## as.factor(Modelos_Nissan_Depurado$model)Quest             5.311e+00  4.710e+00
## as.factor(Modelos_Nissan_Depurado$model)R'nessa           5.618e+00  4.709e+00
## as.factor(Modelos_Nissan_Depurado$model)Rogue             1.480e+01  9.617e+00
## as.factor(Modelos_Nissan_Depurado$model)Rogue Sport       8.528e+00  7.220e+00
## as.factor(Modelos_Nissan_Depurado$model)Roox              3.749e+00  6.161e+00
## as.factor(Modelos_Nissan_Depurado$model)Sakura            5.880e+00  6.946e+00
## as.factor(Modelos_Nissan_Depurado$model)Sentra            4.959e+00  6.158e+00
## as.factor(Modelos_Nissan_Depurado$model)Serena           -3.629e+00  7.183e+00
## as.factor(Modelos_Nissan_Depurado$model)Silvia            3.737e+00  6.556e+00
## as.factor(Modelos_Nissan_Depurado$model)Skyline           3.580e+00  6.240e+00
## as.factor(Modelos_Nissan_Depurado$model)Stagea            5.820e+00  6.391e+00
## as.factor(Modelos_Nissan_Depurado$model)Sylphy            7.130e+00  5.999e+00
## as.factor(Modelos_Nissan_Depurado$model)Teana            -1.335e+00  6.169e+00
## as.factor(Modelos_Nissan_Depurado$model)Terrano           6.830e+00  6.283e+00
## as.factor(Modelos_Nissan_Depurado$model)Tiida             3.152e+00  6.397e+00
## as.factor(Modelos_Nissan_Depurado$model)Titan             4.116e+00  6.060e+00
## as.factor(Modelos_Nissan_Depurado$model)Titan XD          2.166e+00  5.824e+00
## as.factor(Modelos_Nissan_Depurado$model)Townstar          5.939e+00  5.533e+00
## as.factor(Modelos_Nissan_Depurado$model)Vanette           9.169e+00  6.977e+00
## as.factor(Modelos_Nissan_Depurado$model)Versa             5.237e+00  5.857e+00
## as.factor(Modelos_Nissan_Depurado$model)Wingroad          6.878e-01  7.246e+00
## as.factor(Modelos_Nissan_Depurado$model)X-Trail           8.250e+00  6.951e+00
## as.factor(Modelos_Nissan_Depurado$model)Xterra           -3.162e+00  7.539e+00
## as.factor(Modelos_Nissan_Depurado$color)Black             1.529e+00  2.406e+00
## as.factor(Modelos_Nissan_Depurado$color)Blue              3.995e-01  2.368e+00
## as.factor(Modelos_Nissan_Depurado$color)Crimson          -3.402e-01  3.073e+00
## as.factor(Modelos_Nissan_Depurado$color)Fuscia           -3.295e+00  3.136e+00
## as.factor(Modelos_Nissan_Depurado$color)Goldenrod        -2.991e+00  3.218e+00
## as.factor(Modelos_Nissan_Depurado$color)Gray              1.120e+00  2.416e+00
## as.factor(Modelos_Nissan_Depurado$color)Green            -6.157e-01  2.365e+00
## as.factor(Modelos_Nissan_Depurado$color)Indigo           -2.326e+00  3.340e+00
## as.factor(Modelos_Nissan_Depurado$color)Khaki            -1.037e+00  2.976e+00
## as.factor(Modelos_Nissan_Depurado$color)Maroon           -6.097e-01  3.098e+00
## as.factor(Modelos_Nissan_Depurado$color)Mauv             -1.448e+00  3.232e+00
## as.factor(Modelos_Nissan_Depurado$color)Orange           -6.460e-01  2.367e+00
## as.factor(Modelos_Nissan_Depurado$color)Pink             -1.879e+00  3.217e+00
## as.factor(Modelos_Nissan_Depurado$color)Puce             -2.157e-01  2.996e+00
## as.factor(Modelos_Nissan_Depurado$color)Purple            1.369e-01  2.365e+00
## as.factor(Modelos_Nissan_Depurado$color)Red               6.480e-01  2.361e+00
## as.factor(Modelos_Nissan_Depurado$color)Silver            4.507e-01  2.403e+00
## as.factor(Modelos_Nissan_Depurado$color)Teal             -3.902e+00  3.094e+00
## as.factor(Modelos_Nissan_Depurado$color)Turquoise        -7.875e-01  3.132e+00
## as.factor(Modelos_Nissan_Depurado$color)Violet           -2.875e+00  3.199e+00
## as.factor(Modelos_Nissan_Depurado$color)White             2.784e-01  2.406e+00
## as.factor(Modelos_Nissan_Depurado$color)Yellow           -3.330e-01  2.362e+00
##                                                          t value Pr(>|t|)    
## (Intercept)                                                7.071  1.8e-12 ***
## Modelos_Nissan_Depurado$performance                       -0.174   0.8620    
## Modelos_Nissan_Depurado$km                                -0.734   0.4631    
## Modelos_Nissan_Depurado$price                              0.544   0.5864    
## as.factor(Modelos_Nissan_Depurado$gender)1                 0.318   0.7506    
## as.factor(Modelos_Nissan_Depurado$condition)2             -1.512   0.1307    
## as.factor(Modelos_Nissan_Depurado$condition)3             -1.905   0.0569 .  
## as.factor(Modelos_Nissan_Depurado$condition)4              1.097   0.2726    
## as.factor(Modelos_Nissan_Depurado$condition)5             -0.463   0.6436    
## as.factor(Modelos_Nissan_Depurado$condition)6              0.745   0.4562    
## as.factor(Modelos_Nissan_Depurado$model)AD                 0.694   0.4880    
## as.factor(Modelos_Nissan_Depurado$model)Almera             1.300   0.1938    
## as.factor(Modelos_Nissan_Depurado$model)Altima             1.515   0.1299    
## as.factor(Modelos_Nissan_Depurado$model)Armada             0.013   0.9894    
## as.factor(Modelos_Nissan_Depurado$model)Avenir             1.370   0.1708    
## as.factor(Modelos_Nissan_Depurado$model)Bluebird           0.837   0.4026    
## as.factor(Modelos_Nissan_Depurado$model)Bluebird Sylphy    1.265   0.2058    
## as.factor(Modelos_Nissan_Depurado$model)Cabstar / Atlas    1.139   0.2549    
## as.factor(Modelos_Nissan_Depurado$model)Caravan / Urvan    0.405   0.6853    
## as.factor(Modelos_Nissan_Depurado$model)Cedric             1.005   0.3150    
## as.factor(Modelos_Nissan_Depurado$model)Cedric Y31         0.885   0.3763    
## as.factor(Modelos_Nissan_Depurado$model)Cima               1.025   0.3053    
## as.factor(Modelos_Nissan_Depurado$model)Civilian           1.389   0.1649    
## as.factor(Modelos_Nissan_Depurado$model)Cube               0.279   0.7801    
## as.factor(Modelos_Nissan_Depurado$model)Dayz               0.321   0.7480    
## as.factor(Modelos_Nissan_Depurado$model)Elgrand            1.655   0.0980 .  
## as.factor(Modelos_Nissan_Depurado$model)Fairlady Z         0.400   0.6889    
## as.factor(Modelos_Nissan_Depurado$model)Figaro             0.297   0.7662    
## as.factor(Modelos_Nissan_Depurado$model)Frontier           0.375   0.7074    
## as.factor(Modelos_Nissan_Depurado$model)Gloria             1.667   0.0957 .  
## as.factor(Modelos_Nissan_Depurado$model)GT-R               1.133   0.2571    
## as.factor(Modelos_Nissan_Depurado$model)Hypermini          0.669   0.5036    
## as.factor(Modelos_Nissan_Depurado$model)Interstar          0.476   0.6344    
## as.factor(Modelos_Nissan_Depurado$model)Juke               1.314   0.1889    
## as.factor(Modelos_Nissan_Depurado$model)Kicks             -0.009   0.9926    
## as.factor(Modelos_Nissan_Depurado$model)Lafesta           -0.028   0.9777    
## as.factor(Modelos_Nissan_Depurado$model)Leaf               1.060   0.2891    
## as.factor(Modelos_Nissan_Depurado$model)Leopard            1.293   0.1960    
## as.factor(Modelos_Nissan_Depurado$model)Livina             0.575   0.5653    
## as.factor(Modelos_Nissan_Depurado$model)March / Micra      1.651   0.0989 .  
## as.factor(Modelos_Nissan_Depurado$model)Maxima             1.251   0.2110    
## as.factor(Modelos_Nissan_Depurado$model)Murano             0.375   0.7079    
## as.factor(Modelos_Nissan_Depurado$model)Navara / NP300     0.966   0.3342    
## as.factor(Modelos_Nissan_Depurado$model)Note               1.459   0.1446    
## as.factor(Modelos_Nissan_Depurado$model)NT100 Clipper      0.178   0.8591    
## as.factor(Modelos_Nissan_Depurado$model)NV Cargo           0.795   0.4266    
## as.factor(Modelos_Nissan_Depurado$model)NV Passenger       0.473   0.6362    
## as.factor(Modelos_Nissan_Depurado$model)NV100 Clipper      0.682   0.4953    
## as.factor(Modelos_Nissan_Depurado$model)NV200 / Evalia     0.219   0.8265    
## as.factor(Modelos_Nissan_Depurado$model)NX                 0.792   0.4284    
## as.factor(Modelos_Nissan_Depurado$model)Paladin           -0.338   0.7351    
## as.factor(Modelos_Nissan_Depurado$model)Pathfinder         1.073   0.2834    
## as.factor(Modelos_Nissan_Depurado$model)Patrol             1.301   0.1934    
## as.factor(Modelos_Nissan_Depurado$model)Primastar          0.409   0.6826    
## as.factor(Modelos_Nissan_Depurado$model)Pulsar             0.999   0.3176    
## as.factor(Modelos_Nissan_Depurado$model)Qashqai / Dualis   0.819   0.4127    
## as.factor(Modelos_Nissan_Depurado$model)Quest              1.128   0.2596    
## as.factor(Modelos_Nissan_Depurado$model)R'nessa            1.193   0.2329    
## as.factor(Modelos_Nissan_Depurado$model)Rogue              1.539   0.1238    
## as.factor(Modelos_Nissan_Depurado$model)Rogue Sport        1.181   0.2376    
## as.factor(Modelos_Nissan_Depurado$model)Roox               0.609   0.5429    
## as.factor(Modelos_Nissan_Depurado$model)Sakura             0.847   0.3973    
## as.factor(Modelos_Nissan_Depurado$model)Sentra             0.805   0.4207    
## as.factor(Modelos_Nissan_Depurado$model)Serena            -0.505   0.6134    
## as.factor(Modelos_Nissan_Depurado$model)Silvia             0.570   0.5688    
## as.factor(Modelos_Nissan_Depurado$model)Skyline            0.574   0.5662    
## as.factor(Modelos_Nissan_Depurado$model)Stagea             0.911   0.3626    
## as.factor(Modelos_Nissan_Depurado$model)Sylphy             1.189   0.2347    
## as.factor(Modelos_Nissan_Depurado$model)Teana             -0.216   0.8287    
## as.factor(Modelos_Nissan_Depurado$model)Terrano            1.087   0.2770    
## as.factor(Modelos_Nissan_Depurado$model)Tiida              0.493   0.6222    
## as.factor(Modelos_Nissan_Depurado$model)Titan              0.679   0.4971    
## as.factor(Modelos_Nissan_Depurado$model)Titan XD           0.372   0.7100    
## as.factor(Modelos_Nissan_Depurado$model)Townstar           1.073   0.2832    
## as.factor(Modelos_Nissan_Depurado$model)Vanette            1.314   0.1889    
## as.factor(Modelos_Nissan_Depurado$model)Versa              0.894   0.3713    
## as.factor(Modelos_Nissan_Depurado$model)Wingroad           0.095   0.9244    
## as.factor(Modelos_Nissan_Depurado$model)X-Trail            1.187   0.2353    
## as.factor(Modelos_Nissan_Depurado$model)Xterra            -0.419   0.6749    
## as.factor(Modelos_Nissan_Depurado$color)Black              0.635   0.5252    
## as.factor(Modelos_Nissan_Depurado$color)Blue               0.169   0.8660    
## as.factor(Modelos_Nissan_Depurado$color)Crimson           -0.111   0.9118    
## as.factor(Modelos_Nissan_Depurado$color)Fuscia            -1.051   0.2935    
## as.factor(Modelos_Nissan_Depurado$color)Goldenrod         -0.929   0.3528    
## as.factor(Modelos_Nissan_Depurado$color)Gray               0.464   0.6430    
## as.factor(Modelos_Nissan_Depurado$color)Green             -0.260   0.7946    
## as.factor(Modelos_Nissan_Depurado$color)Indigo            -0.696   0.4862    
## as.factor(Modelos_Nissan_Depurado$color)Khaki             -0.349   0.7274    
## as.factor(Modelos_Nissan_Depurado$color)Maroon            -0.197   0.8440    
## as.factor(Modelos_Nissan_Depurado$color)Mauv              -0.448   0.6541    
## as.factor(Modelos_Nissan_Depurado$color)Orange            -0.273   0.7850    
## as.factor(Modelos_Nissan_Depurado$color)Pink              -0.584   0.5591    
## as.factor(Modelos_Nissan_Depurado$color)Puce              -0.072   0.9426    
## as.factor(Modelos_Nissan_Depurado$color)Purple             0.058   0.9539    
## as.factor(Modelos_Nissan_Depurado$color)Red                0.274   0.7838    
## as.factor(Modelos_Nissan_Depurado$color)Silver             0.188   0.8513    
## as.factor(Modelos_Nissan_Depurado$color)Teal              -1.261   0.2074    
## as.factor(Modelos_Nissan_Depurado$color)Turquoise         -0.251   0.8015    
## as.factor(Modelos_Nissan_Depurado$color)Violet            -0.899   0.3689    
## as.factor(Modelos_Nissan_Depurado$color)White              0.116   0.9079    
## as.factor(Modelos_Nissan_Depurado$color)Yellow            -0.141   0.8879    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 14.51 on 4029 degrees of freedom
## Multiple R-squared:  0.02915,    Adjusted R-squared:  0.005056 
## F-statistic:  1.21 on 100 and 4029 DF,  p-value: 0.07833
anova(lm(Modelos_Nissan_Depurado$age~Modelos_Nissan_Depurado$performance+Modelos_Nissan_Depurado$km+Modelos_Nissan_Depurado$price+as.factor(Modelos_Nissan_Depurado$gender)+as.factor(Modelos_Nissan_Depurado$condition)+as.factor(Modelos_Nissan_Depurado$model)+as.factor(Modelos_Nissan_Depurado$color)))
## Analysis of Variance Table
## 
## Response: Modelos_Nissan_Depurado$age
##                                                Df Sum Sq Mean Sq F value
## Modelos_Nissan_Depurado$performance             1      2    2.11  0.0100
## Modelos_Nissan_Depurado$km                      1      8    7.89  0.0375
## Modelos_Nissan_Depurado$price                   1    117  117.32  0.5571
## as.factor(Modelos_Nissan_Depurado$gender)       1     35   35.28  0.1676
## as.factor(Modelos_Nissan_Depurado$condition)    5   6497 1299.50  6.1713
## as.factor(Modelos_Nissan_Depurado$model)       69  15807  229.08  1.0879
## as.factor(Modelos_Nissan_Depurado$color)       22   3009  136.77  0.6495
## Residuals                                    4029 848396  210.57        
##                                                 Pr(>F)    
## Modelos_Nissan_Depurado$performance             0.9202    
## Modelos_Nissan_Depurado$km                      0.8465    
## Modelos_Nissan_Depurado$price                   0.4555    
## as.factor(Modelos_Nissan_Depurado$gender)       0.6823    
## as.factor(Modelos_Nissan_Depurado$condition) 1.049e-05 ***
## as.factor(Modelos_Nissan_Depurado$model)        0.2904    
## as.factor(Modelos_Nissan_Depurado$color)        0.8905    
## Residuals                                                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Coeficientes del Modelo RLM Total

Estos son los coeficientes de un modelo de regresión lineal múltiple (RLM). La salida muestra el intercepto y los coeficientes para diferentes variables predictoras. Las variables de modelo son factores (variables categóricas). Los números a la derecha de cada variable son sus coeficientes estimados, expresados en notación científica.

coefficients(lm(Modelos_Nissan_Depurado$age~Modelos_Nissan_Depurado$performance+Modelos_Nissan_Depurado$km+Modelos_Nissan_Depurado$price+as.factor(Modelos_Nissan_Depurado$gender)+as.factor(Modelos_Nissan_Depurado$condition)+as.factor(Modelos_Nissan_Depurado$color)))
##                                       (Intercept) 
##                                      4.170275e+01 
##               Modelos_Nissan_Depurado$performance 
##                                     -3.932688e-04 
##                        Modelos_Nissan_Depurado$km 
##                                     -6.943088e-07 
##                     Modelos_Nissan_Depurado$price 
##                                      8.770856e-08 
##        as.factor(Modelos_Nissan_Depurado$gender)1 
##                                      1.249684e-01 
##     as.factor(Modelos_Nissan_Depurado$condition)2 
##                                     -1.010675e+00 
##     as.factor(Modelos_Nissan_Depurado$condition)3 
##                                     -3.720958e+00 
##     as.factor(Modelos_Nissan_Depurado$condition)4 
##                                      1.105470e+00 
##     as.factor(Modelos_Nissan_Depurado$condition)5 
##                                     -2.514476e-01 
##     as.factor(Modelos_Nissan_Depurado$condition)6 
##                                      7.317701e-01 
##     as.factor(Modelos_Nissan_Depurado$color)Black 
##                                      2.844897e+00 
##      as.factor(Modelos_Nissan_Depurado$color)Blue 
##                                      1.516581e+00 
##   as.factor(Modelos_Nissan_Depurado$color)Crimson 
##                                     -9.371769e-01 
##    as.factor(Modelos_Nissan_Depurado$color)Fuscia 
##                                     -3.509051e+00 
## as.factor(Modelos_Nissan_Depurado$color)Goldenrod 
##                                     -3.296353e+00 
##      as.factor(Modelos_Nissan_Depurado$color)Gray 
##                                      2.380349e+00 
##     as.factor(Modelos_Nissan_Depurado$color)Green 
##                                      5.098043e-01 
##    as.factor(Modelos_Nissan_Depurado$color)Indigo 
##                                     -1.912904e+00 
##     as.factor(Modelos_Nissan_Depurado$color)Khaki 
##                                     -1.407083e+00 
##    as.factor(Modelos_Nissan_Depurado$color)Maroon 
##                                     -1.566795e+00 
##      as.factor(Modelos_Nissan_Depurado$color)Mauv 
##                                     -1.981462e+00 
##    as.factor(Modelos_Nissan_Depurado$color)Orange 
##                                      4.820977e-01 
##      as.factor(Modelos_Nissan_Depurado$color)Pink 
##                                     -1.947661e+00 
##      as.factor(Modelos_Nissan_Depurado$color)Puce 
##                                     -7.933108e-01 
##    as.factor(Modelos_Nissan_Depurado$color)Purple 
##                                      1.178524e+00 
##       as.factor(Modelos_Nissan_Depurado$color)Red 
##                                      1.725313e+00 
##    as.factor(Modelos_Nissan_Depurado$color)Silver 
##                                      1.613248e+00 
##      as.factor(Modelos_Nissan_Depurado$color)Teal 
##                                     -4.084088e+00 
## as.factor(Modelos_Nissan_Depurado$color)Turquoise 
##                                     -7.920972e-01 
##    as.factor(Modelos_Nissan_Depurado$color)Violet 
##                                     -2.921023e+00 
##     as.factor(Modelos_Nissan_Depurado$color)White 
##                                      1.516319e+00 
##    as.factor(Modelos_Nissan_Depurado$color)Yellow 
##                                      6.440988e-01

Coeficientes del Modelo RLM Reducido

E este analisis se utilizaron las variables que tienen una coorrelacion positiva mas alta para formular el modelo de una manera reducida. Los coeficientes muestran el efecto de cada variable en el modelo de regresión lineal múltiple. La intersección es 42.47. El kilometraje (km) tiene un efecto negativo muy pequeño, al igual que el precio (price).

coefficients(lm(Modelos_Nissan_Depurado$age~+as.factor(Modelos_Nissan_Depurado$model)+as.factor(Modelos_Nissan_Depurado$condition)))
##                                              (Intercept) 
##                                              35.64583988 
##               as.factor(Modelos_Nissan_Depurado$model)AD 
##                                               4.23916588 
##           as.factor(Modelos_Nissan_Depurado$model)Almera 
##                                               7.98118639 
##           as.factor(Modelos_Nissan_Depurado$model)Altima 
##                                               8.32570948 
##           as.factor(Modelos_Nissan_Depurado$model)Armada 
##                                               0.53215634 
##           as.factor(Modelos_Nissan_Depurado$model)Avenir 
##                                               7.75055163 
##         as.factor(Modelos_Nissan_Depurado$model)Bluebird 
##                                               5.98899372 
##  as.factor(Modelos_Nissan_Depurado$model)Bluebird Sylphy 
##                                               8.47641301 
##  as.factor(Modelos_Nissan_Depurado$model)Cabstar / Atlas 
##                                               7.46214850 
##  as.factor(Modelos_Nissan_Depurado$model)Caravan / Urvan 
##                                               1.98614011 
##           as.factor(Modelos_Nissan_Depurado$model)Cedric 
##                                               6.20044199 
##       as.factor(Modelos_Nissan_Depurado$model)Cedric Y31 
##                                               4.84824823 
##             as.factor(Modelos_Nissan_Depurado$model)Cima 
##                                               6.25055567 
##         as.factor(Modelos_Nissan_Depurado$model)Civilian 
##                                               8.53998796 
##             as.factor(Modelos_Nissan_Depurado$model)Cube 
##                                               1.14420601 
##             as.factor(Modelos_Nissan_Depurado$model)Dayz 
##                                               2.14236002 
##          as.factor(Modelos_Nissan_Depurado$model)Elgrand 
##                                              10.45498618 
##       as.factor(Modelos_Nissan_Depurado$model)Fairlady Z 
##                                               2.13393138 
##           as.factor(Modelos_Nissan_Depurado$model)Figaro 
##                                               1.97876101 
##         as.factor(Modelos_Nissan_Depurado$model)Frontier 
##                                               2.41364422 
##           as.factor(Modelos_Nissan_Depurado$model)Gloria 
##                                               9.08023581 
##             as.factor(Modelos_Nissan_Depurado$model)GT-R 
##                                               7.45413003 
##        as.factor(Modelos_Nissan_Depurado$model)Hypermini 
##                                               3.98282518 
##        as.factor(Modelos_Nissan_Depurado$model)Interstar 
##                                               3.71082833 
##             as.factor(Modelos_Nissan_Depurado$model)Juke 
##                                               7.40586450 
##            as.factor(Modelos_Nissan_Depurado$model)Kicks 
##                                              -0.24215810 
##          as.factor(Modelos_Nissan_Depurado$model)Lafesta 
##                                              -0.25511735 
##             as.factor(Modelos_Nissan_Depurado$model)Leaf 
##                                               6.26118195 
##          as.factor(Modelos_Nissan_Depurado$model)Leopard 
##                                               7.63748596 
##           as.factor(Modelos_Nissan_Depurado$model)Livina 
##                                               3.57249921 
##    as.factor(Modelos_Nissan_Depurado$model)March / Micra 
##                                               9.03862657 
##           as.factor(Modelos_Nissan_Depurado$model)Maxima 
##                                               7.15625127 
##           as.factor(Modelos_Nissan_Depurado$model)Murano 
##                                               2.35376985 
##   as.factor(Modelos_Nissan_Depurado$model)Navara / NP300 
##                                               4.95969411 
##             as.factor(Modelos_Nissan_Depurado$model)Note 
##                                               9.80711149 
##    as.factor(Modelos_Nissan_Depurado$model)NT100 Clipper 
##                                               1.14768378 
##         as.factor(Modelos_Nissan_Depurado$model)NV Cargo 
##                                               4.58374198 
##     as.factor(Modelos_Nissan_Depurado$model)NV Passenger 
##                                               2.72159907 
##    as.factor(Modelos_Nissan_Depurado$model)NV100 Clipper 
##                                               3.63741805 
##   as.factor(Modelos_Nissan_Depurado$model)NV200 / Evalia 
##                                               1.83767034 
##               as.factor(Modelos_Nissan_Depurado$model)NX 
##                                               5.15660461 
##          as.factor(Modelos_Nissan_Depurado$model)Paladin 
##                                              -2.13385899 
##       as.factor(Modelos_Nissan_Depurado$model)Pathfinder 
##                                               6.36385511 
##           as.factor(Modelos_Nissan_Depurado$model)Patrol 
##                                               8.34372773 
##        as.factor(Modelos_Nissan_Depurado$model)Primastar 
##                                               1.95560815 
##           as.factor(Modelos_Nissan_Depurado$model)Pulsar 
##                                               5.98693459 
## as.factor(Modelos_Nissan_Depurado$model)Qashqai / Dualis 
##                                               5.31790394 
##            as.factor(Modelos_Nissan_Depurado$model)Quest 
##                                               6.56027076 
##          as.factor(Modelos_Nissan_Depurado$model)R'nessa 
##                                               6.85027971 
##            as.factor(Modelos_Nissan_Depurado$model)Rogue 
##                                              15.65529405 
##      as.factor(Modelos_Nissan_Depurado$model)Rogue Sport 
##                                               7.78440085 
##             as.factor(Modelos_Nissan_Depurado$model)Roox 
##                                               3.02702803 
##           as.factor(Modelos_Nissan_Depurado$model)Sakura 
##                                               6.10095424 
##           as.factor(Modelos_Nissan_Depurado$model)Sentra 
##                                               5.12728044 
##           as.factor(Modelos_Nissan_Depurado$model)Serena 
##                                              -4.00857469 
##           as.factor(Modelos_Nissan_Depurado$model)Silvia 
##                                               3.39177082 
##          as.factor(Modelos_Nissan_Depurado$model)Skyline 
##                                               3.85823125 
##           as.factor(Modelos_Nissan_Depurado$model)Stagea 
##                                               6.13864502 
##           as.factor(Modelos_Nissan_Depurado$model)Sylphy 
##                                               6.31114387 
##            as.factor(Modelos_Nissan_Depurado$model)Teana 
##                                              -1.04859851 
##          as.factor(Modelos_Nissan_Depurado$model)Terrano 
##                                               7.47426148 
##            as.factor(Modelos_Nissan_Depurado$model)Tiida 
##                                               3.18532653 
##            as.factor(Modelos_Nissan_Depurado$model)Titan 
##                                               3.52835717 
##         as.factor(Modelos_Nissan_Depurado$model)Titan XD 
##                                               2.81968491 
##         as.factor(Modelos_Nissan_Depurado$model)Townstar 
##                                               5.95865020 
##          as.factor(Modelos_Nissan_Depurado$model)Vanette 
##                                               8.90879113 
##            as.factor(Modelos_Nissan_Depurado$model)Versa 
##                                               5.69485449 
##         as.factor(Modelos_Nissan_Depurado$model)Wingroad 
##                                               0.01237063 
##          as.factor(Modelos_Nissan_Depurado$model)X-Trail 
##                                               7.89513050 
##           as.factor(Modelos_Nissan_Depurado$model)Xterra 
##                                              -2.05956241 
##            as.factor(Modelos_Nissan_Depurado$condition)2 
##                                              -0.94319151 
##            as.factor(Modelos_Nissan_Depurado$condition)3 
##                                              -3.15078540 
##            as.factor(Modelos_Nissan_Depurado$condition)4 
##                                               0.98298123 
##            as.factor(Modelos_Nissan_Depurado$condition)5 
##                                              -0.30590273 
##            as.factor(Modelos_Nissan_Depurado$condition)6 
##                                               0.67462094

Análisis del modelo RLM.

El análisis del modelo de regresión lineal múltiple (RLM) consiste en examinar la relación entre una variable dependiente y varias variables independientes, evaluando el ajuste y la validez del modelo estadístico ajustado. Este análisis implica verificar cómo las variables independientes contribuyen de manera individual y conjunta a explicar las variaciones en la variable dependiente, utilizando métricas y pruebas estadísticas para interpretar la efectividad del modelo.

Mejor Modelo Iterado según AIC

El AIC (Criterio de Información de Akaike) es una medida de la calidad relativa de los modelos estadísticos para un conjunto dado de datos. Un AIC menor indica un mejor ajuste. La tabla muestra tres iteraciones de un modelo de regresión, con el tercer modelo (AIC=22103.14) mostrando el AIC más bajo, y por lo tanto, el mejor ajuste según este criterio.

modelo_Iterado_STEP = step(lm(Modelos_Nissan_Depurado$age~Modelos_Nissan_Depurado$performance+Modelos_Nissan_Depurado$km+Modelos_Nissan_Depurado$price+as.factor(Modelos_Nissan_Depurado$gender)+as.factor(Modelos_Nissan_Depurado$condition)+as.factor(Modelos_Nissan_Depurado$model)+as.factor(Modelos_Nissan_Depurado$color)))
## Start:  AIC=22194.54
## Modelos_Nissan_Depurado$age ~ Modelos_Nissan_Depurado$performance + 
##     Modelos_Nissan_Depurado$km + Modelos_Nissan_Depurado$price + 
##     as.factor(Modelos_Nissan_Depurado$gender) + as.factor(Modelos_Nissan_Depurado$condition) + 
##     as.factor(Modelos_Nissan_Depurado$model) + as.factor(Modelos_Nissan_Depurado$color)
## 
##                                                Df Sum of Sq    RSS   AIC
## - as.factor(Modelos_Nissan_Depurado$model)     69   11393.4 859790 22112
## - as.factor(Modelos_Nissan_Depurado$color)     22    3009.0 851406 22165
## - Modelos_Nissan_Depurado$performance           1       6.4 848403 22193
## - as.factor(Modelos_Nissan_Depurado$gender)     1      21.3 848418 22193
## - Modelos_Nissan_Depurado$price                 1      62.3 848459 22193
## - Modelos_Nissan_Depurado$km                    1     113.4 848510 22193
## <none>                                                      848396 22195
## - as.factor(Modelos_Nissan_Depurado$condition)  5    2282.0 850679 22196
## 
## Step:  AIC=22111.64
## Modelos_Nissan_Depurado$age ~ Modelos_Nissan_Depurado$performance + 
##     Modelos_Nissan_Depurado$km + Modelos_Nissan_Depurado$price + 
##     as.factor(Modelos_Nissan_Depurado$gender) + as.factor(Modelos_Nissan_Depurado$condition) + 
##     as.factor(Modelos_Nissan_Depurado$color)
## 
##                                                Df Sum of Sq    RSS   AIC
## - as.factor(Modelos_Nissan_Depurado$color)     22    7422.4 867212 22103
## - Modelos_Nissan_Depurado$performance           1       7.8 859798 22110
## - as.factor(Modelos_Nissan_Depurado$gender)     1      16.0 859806 22110
## - Modelos_Nissan_Depurado$price                 1      72.0 859862 22110
## - Modelos_Nissan_Depurado$km                    1     146.5 859936 22110
## <none>                                                      859790 22112
## - as.factor(Modelos_Nissan_Depurado$condition)  5    2963.7 862754 22116
## 
## Step:  AIC=22103.14
## Modelos_Nissan_Depurado$age ~ Modelos_Nissan_Depurado$performance + 
##     Modelos_Nissan_Depurado$km + Modelos_Nissan_Depurado$price + 
##     as.factor(Modelos_Nissan_Depurado$gender) + as.factor(Modelos_Nissan_Depurado$condition)
## 
##                                                Df Sum of Sq    RSS   AIC
## - Modelos_Nissan_Depurado$performance           1       0.0 867212 22101
## - as.factor(Modelos_Nissan_Depurado$gender)     1      24.9 867237 22101
## - Modelos_Nissan_Depurado$price                 1      83.7 867296 22102
## - Modelos_Nissan_Depurado$km                    1     217.6 867430 22102
## <none>                                                      867212 22103
## - as.factor(Modelos_Nissan_Depurado$condition)  5    6497.5 873710 22124
## 
## Step:  AIC=22101.14
## Modelos_Nissan_Depurado$age ~ Modelos_Nissan_Depurado$km + Modelos_Nissan_Depurado$price + 
##     as.factor(Modelos_Nissan_Depurado$gender) + as.factor(Modelos_Nissan_Depurado$condition)
## 
##                                                Df Sum of Sq    RSS   AIC
## - as.factor(Modelos_Nissan_Depurado$gender)     1      24.9 867237 22099
## - Modelos_Nissan_Depurado$price                 1      83.8 867296 22100
## - Modelos_Nissan_Depurado$km                    1     217.6 867430 22100
## <none>                                                      867212 22101
## - as.factor(Modelos_Nissan_Depurado$condition)  5    6500.6 873713 22122
## 
## Step:  AIC=22099.25
## Modelos_Nissan_Depurado$age ~ Modelos_Nissan_Depurado$km + Modelos_Nissan_Depurado$price + 
##     as.factor(Modelos_Nissan_Depurado$condition)
## 
##                                                Df Sum of Sq    RSS   AIC
## - Modelos_Nissan_Depurado$price                 1      87.1 867324 22098
## - Modelos_Nissan_Depurado$km                    1     216.5 867454 22098
## <none>                                                      867237 22099
## - as.factor(Modelos_Nissan_Depurado$condition)  5    6510.8 873748 22120
## 
## Step:  AIC=22097.67
## Modelos_Nissan_Depurado$age ~ Modelos_Nissan_Depurado$km + as.factor(Modelos_Nissan_Depurado$condition)
## 
##                                                Df Sum of Sq    RSS   AIC
## - Modelos_Nissan_Depurado$km                    1     222.4 867547 22097
## <none>                                                      867324 22098
## - as.factor(Modelos_Nissan_Depurado$condition)  5    6540.3 873865 22119
## 
## Step:  AIC=22096.73
## Modelos_Nissan_Depurado$age ~ as.factor(Modelos_Nissan_Depurado$condition)
## 
##                                                Df Sum of Sq    RSS   AIC
## <none>                                                      867547 22097
## - as.factor(Modelos_Nissan_Depurado$condition)  5    6325.7 873872 22117
coefficients(modelo_Iterado_STEP)
##                                   (Intercept) 
##                                    42.3224680 
## as.factor(Modelos_Nissan_Depurado$condition)2 
##                                    -1.0188243 
## as.factor(Modelos_Nissan_Depurado$condition)3 
##                                    -4.9296108 
## as.factor(Modelos_Nissan_Depurado$condition)4 
##                                     1.7460451 
## as.factor(Modelos_Nissan_Depurado$condition)5 
##                                    -0.1953896 
## as.factor(Modelos_Nissan_Depurado$condition)6 
##                                     1.3362503

Bondades de Ajuste, Significancias y Criterios de Información Comparados.

La tabla muestra las bondades de ajuste, significancias y criterios de información comparados para diferentes modelos de regresión. Esta evalúa cómo cada variable afecta a la variable dependiente y qué tan significativos son esos efectos en varios modelos.

modelo_RLM_TOTAL = lm(Modelos_Nissan_Depurado$age~Modelos_Nissan_Depurado$performance+Modelos_Nissan_Depurado$km+Modelos_Nissan_Depurado$price+as.factor(Modelos_Nissan_Depurado$gender)+as.factor(Modelos_Nissan_Depurado$condition)+as.factor(Modelos_Nissan_Depurado$model)+as.factor(Modelos_Nissan_Depurado$color))
modelo_RLM_REDUCIDO = lm(Modelos_Nissan_Depurado$age~Modelos_Nissan_Depurado$km+Modelos_Nissan_Depurado$price+as.factor(Modelos_Nissan_Depurado$gender)+as.factor(Modelos_Nissan_Depurado$condition))

stargazer(modelo_RLM_TOTAL, modelo_RLM_REDUCIDO, modelo_Iterado_STEP, type = "text", df = TRUE)
## 
## ==============================================================================================
##                                                  Dependent variable:                          
##                        -----------------------------------------------------------------------
##                                                          age                                  
##                                  (1)                     (2)                     (3)          
## ----------------------------------------------------------------------------------------------
## performance                    -0.0004                                                        
##                                (0.002)                                                        
##                                                                                               
## km                            -0.00000                -0.00000                                
##                               (0.00000)               (0.00000)                               
##                                                                                               
## price                          0.00000                 0.00000                                
##                               (0.00000)               (0.00000)                               
##                                                                                               
## gender)1                        0.145                   0.155                                 
##                                (0.458)                 (0.452)                                
##                                                                                               
## condition)2                    -1.051                  -1.113                  -1.019         
##                                (0.695)                 (0.682)                 (0.677)        
##                                                                                               
## condition)3                    -3.469*                -5.335***               -4.930***       
##                                (1.821)                 (1.698)                 (1.658)        
##                                                                                               
## condition)4                     0.835                  1.689**                 1.746**        
##                                (0.761)                 (0.744)                 (0.743)        
##                                                                                               
## condition)5                    -0.331                  -0.167                  -0.195         
##                                (0.715)                 (0.704)                 (0.703)        
##                                                                                               
## condition)6                     0.570                  1.279*                  1.336*         
##                                (0.764)                 (0.749)                 (0.747)        
##                                                                                               
## model)AD                        4.671                                                         
##                                (6.735)                                                        
##                                                                                               
## model)Almera                    7.789                                                         
##                                (5.993)                                                        
##                                                                                               
## model)Altima                    7.122                                                         
##                                (4.702)                                                        
##                                                                                               
## model)Armada                    0.078                                                         
##                                (5.890)                                                        
##                                                                                               
## model)Avenir                    6.440                                                         
##                                (4.701)                                                        
##                                                                                               
## model)Bluebird                  5.832                                                         
##                                (6.966)                                                        
##                                                                                               
## model)Bluebird Sylphy           8.129                                                         
##                                (6.425)                                                        
##                                                                                               
## model)Cabstar / Atlas           7.654                                                         
##                                (6.721)                                                        
##                                                                                               
## model)Caravan / Urvan           2.371                                                         
##                                (5.851)                                                        
##                                                                                               
## model)Cedric                    5.850                                                         
##                                (5.821)                                                        
##                                                                                               
## model)Cedric Y31                4.876                                                         
##                                (5.511)                                                        
##                                                                                               
## model)Cima                      6.278                                                         
##                                (6.123)                                                        
##                                                                                               
## model)Civilian                  9.081                                                         
##                                (6.537)                                                        
##                                                                                               
## model)Cube                      1.608                                                         
##                                (5.760)                                                        
##                                                                                               
## model)Dayz                      2.022                                                         
##                                (6.292)                                                        
##                                                                                               
## model)Elgrand                  11.955*                                                        
##                                (7.224)                                                        
##                                                                                               
## model)Fairlady Z                2.889                                                         
##                                (7.214)                                                        
##                                                                                               
## model)Figaro                    1.693                                                         
##                                (5.695)                                                        
##                                                                                               
## model)Frontier                  2.520                                                         
##                                (6.714)                                                        
##                                                                                               
## model)Gloria                   7.828*                                                         
##                                (4.697)                                                        
##                                                                                               
## model)GT-R                      7.911                                                         
##                                (6.980)                                                        
##                                                                                               
## model)Hypermini                 4.157                                                         
##                                (6.213)                                                        
##                                                                                               
## model)Interstar                 3.106                                                         
##                                (6.531)                                                        
##                                                                                               
## model)Juke                      6.167                                                         
##                                (4.693)                                                        
##                                                                                               
## model)Kicks                    -0.064                                                         
##                                (6.935)                                                        
##                                                                                               
## model)Lafesta                  -0.180                                                         
##                                (6.422)                                                        
##                                                                                               
## model)Leaf                      4.981                                                         
##                                (4.698)                                                        
##                                                                                               
## model)Leopard                   7.812                                                         
##                                (6.041)                                                        
##                                                                                               
## model)Livina                    3.862                                                         
##                                (6.716)                                                        
##                                                                                               
## model)March / Micra            7.772*                                                         
##                                (4.708)                                                        
##                                                                                               
## model)Maxima                    5.877                                                         
##                                (4.697)                                                        
##                                                                                               
## model)Murano                    2.219                                                         
##                                (5.922)                                                        
##                                                                                               
## model)Navara / NP300            5.363                                                         
##                                (5.553)                                                        
##                                                                                               
## model)Note                      9.533                                                         
##                                (6.533)                                                        
##                                                                                               
## model)NT100 Clipper             1.167                                                         
##                                (6.571)                                                        
##                                                                                               
## model)NV Cargo                  4.812                                                         
##                                (6.052)                                                        
##                                                                                               
## model)NV Passenger              2.830                                                         
##                                (5.984)                                                        
##                                                                                               
## model)NV100 Clipper             4.392                                                         
##                                (6.440)                                                        
##                                                                                               
## model)NV200 / Evalia            1.584                                                         
##                                (7.224)                                                        
##                                                                                               
## model)NX                        4.966                                                         
##                                (6.270)                                                        
##                                                                                               
## model)Paladin                  -1.951                                                         
##                                (5.765)                                                        
##                                                                                               
## model)Pathfinder                5.044                                                         
##                                (4.702)                                                        
##                                                                                               
## model)Patrol                    7.859                                                         
##                                (6.042)                                                        
##                                                                                               
## model)Primastar                 2.266                                                         
##                                (5.539)                                                        
##                                                                                               
## model)Pulsar                    5.895                                                         
##                                (5.899)                                                        
##                                                                                               
## model)Qashqai / Dualis          5.694                                                         
##                                (6.950)                                                        
##                                                                                               
## model)Quest                     5.311                                                         
##                                (4.710)                                                        
##                                                                                               
## model)R'nessa                   5.618                                                         
##                                (4.709)                                                        
##                                                                                               
## model)Rogue                    14.804                                                         
##                                (9.617)                                                        
##                                                                                               
## model)Rogue Sport               8.528                                                         
##                                (7.220)                                                        
##                                                                                               
## model)Roox                      3.749                                                         
##                                (6.161)                                                        
##                                                                                               
## model)Sakura                    5.880                                                         
##                                (6.946)                                                        
##                                                                                               
## model)Sentra                    4.959                                                         
##                                (6.158)                                                        
##                                                                                               
## model)Serena                   -3.629                                                         
##                                (7.183)                                                        
##                                                                                               
## model)Silvia                    3.737                                                         
##                                (6.556)                                                        
##                                                                                               
## model)Skyline                   3.580                                                         
##                                (6.240)                                                        
##                                                                                               
## model)Stagea                    5.820                                                         
##                                (6.391)                                                        
##                                                                                               
## model)Sylphy                    7.130                                                         
##                                (5.999)                                                        
##                                                                                               
## model)Teana                    -1.335                                                         
##                                (6.169)                                                        
##                                                                                               
## model)Terrano                   6.830                                                         
##                                (6.283)                                                        
##                                                                                               
## model)Tiida                     3.152                                                         
##                                (6.397)                                                        
##                                                                                               
## model)Titan                     4.116                                                         
##                                (6.060)                                                        
##                                                                                               
## model)Titan XD                  2.166                                                         
##                                (5.824)                                                        
##                                                                                               
## model)Townstar                  5.939                                                         
##                                (5.533)                                                        
##                                                                                               
## model)Vanette                   9.169                                                         
##                                (6.977)                                                        
##                                                                                               
## model)Versa                     5.237                                                         
##                                (5.857)                                                        
##                                                                                               
## model)Wingroad                  0.688                                                         
##                                (7.246)                                                        
##                                                                                               
## model)X-Trail                   8.250                                                         
##                                (6.951)                                                        
##                                                                                               
## model)Xterra                   -3.162                                                         
##                                (7.539)                                                        
##                                                                                               
## color)Black                     1.529                                                         
##                                (2.406)                                                        
##                                                                                               
## color)Blue                      0.399                                                         
##                                (2.368)                                                        
##                                                                                               
## color)Crimson                  -0.340                                                         
##                                (3.073)                                                        
##                                                                                               
## color)Fuscia                   -3.295                                                         
##                                (3.136)                                                        
##                                                                                               
## color)Goldenrod                -2.991                                                         
##                                (3.218)                                                        
##                                                                                               
## color)Gray                      1.120                                                         
##                                (2.416)                                                        
##                                                                                               
## color)Green                    -0.616                                                         
##                                (2.365)                                                        
##                                                                                               
## color)Indigo                   -2.326                                                         
##                                (3.340)                                                        
##                                                                                               
## color)Khaki                    -1.037                                                         
##                                (2.976)                                                        
##                                                                                               
## color)Maroon                   -0.610                                                         
##                                (3.098)                                                        
##                                                                                               
## color)Mauv                     -1.448                                                         
##                                (3.232)                                                        
##                                                                                               
## color)Orange                   -0.646                                                         
##                                (2.367)                                                        
##                                                                                               
## color)Pink                     -1.879                                                         
##                                (3.217)                                                        
##                                                                                               
## color)Puce                     -0.216                                                         
##                                (2.996)                                                        
##                                                                                               
## color)Purple                    0.137                                                         
##                                (2.365)                                                        
##                                                                                               
## color)Red                       0.648                                                         
##                                (2.361)                                                        
##                                                                                               
## color)Silver                    0.451                                                         
##                                (2.403)                                                        
##                                                                                               
## color)Teal                     -3.902                                                         
##                                (3.094)                                                        
##                                                                                               
## color)Turquoise                -0.788                                                         
##                                (3.132)                                                        
##                                                                                               
## color)Violet                   -2.875                                                         
##                                (3.199)                                                        
##                                                                                               
## color)White                     0.278                                                         
##                                (2.406)                                                        
##                                                                                               
## color)Yellow                   -0.333                                                         
##                                (2.362)                                                        
##                                                                                               
## Constant                      36.846***               42.472***               42.322***       
##                                (5.211)                 (0.792)                 (0.495)        
##                                                                                               
## ----------------------------------------------------------------------------------------------
## Observations                    4,130                   4,130                   4,130         
## R2                              0.029                   0.008                   0.007         
## Adjusted R2                     0.005                   0.006                   0.006         
## Residual Std. Error      14.511 (df = 4029)      14.506 (df = 4121)      14.504 (df = 4124)   
## F Statistic            1.210* (df = 100; 4029) 3.956*** (df = 8; 4121) 6.014*** (df = 5; 4124)
## ==============================================================================================
## Note:                                                              *p<0.1; **p<0.05; ***p<0.01
AIC(modelo_RLM_TOTAL, modelo_RLM_REDUCIDO, modelo_Iterado_STEP)
##                      df      AIC
## modelo_RLM_TOTAL    102 33916.97
## modelo_RLM_REDUCIDO  10 33823.57
## modelo_Iterado_STEP   7 33819.16
BIC(modelo_RLM_TOTAL, modelo_RLM_REDUCIDO, modelo_Iterado_STEP)
##                      df      BIC
## modelo_RLM_TOTAL    102 34562.23
## modelo_RLM_REDUCIDO  10 33886.83
## modelo_Iterado_STEP   7 33863.44

5.4. Regresión Logística Simple

El modelo de regresión logística simple utiliza la función logística, también conocida como función sigmoide, para transformar la relación lineal entre las variables en una curva que puede tomar valores entre 0 y 1. Esta transformación permite interpretar los resultados en términos de probabilidades. Por ejemplo, en un estudio sobre la probabilidad de que un paciente tenga una enfermedad en función de su edad, la regresión logística simple puede ayudar a determinar cómo cambia esta probabilidad con la edad del paciente.

Además, la regresión logística simple proporciona coeficientes que indican la dirección y la magnitud de la relación entre la variable independiente y la probabilidad del evento. Estos coeficientes se interpretan en términos de odds ratios, que representan el cambio en las probabilidades de ocurrencia del evento por cada unidad de cambio en la variable independiente. Esta técnica es ampliamente utilizada en campos como la medicina, las ciencias sociales y la economía para tomar decisiones informadas basadas en datos.

Resumen estadístico de las variables de estudio.

Resumen y Boxplot de age

el boxplot indica que la edad se distribuye de manera relativamente simétrica, con una mediana de 40 años, y la mayoría de las edades se encuentran entre los 30 y los 55 años.

summary(Modelos_Nissan_Depurado$age)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   18.00   30.00   42.00   42.45   55.00   69.00
boxplot(Modelos_Nissan_Depurado$age, main = "Diagrama de Caja de age", col = c("orange"))

Histograma de age.

El histograma muestra la distribución de la edad (age) en un conjunto de datos. El eje horizontal representa las edades, agrupadas en intervalos (bins), y el eje vertical representa la frecuencia, o número de observaciones, que caen dentro de cada intervalo de edad.

Observamos que la distribución de las edades es aproximadamente simétrica, con una concentración de datos entre los 20 y los 60 años. Hay un pico alrededor de los 45 años, indicando que ese rango de edad es el más frecuente en este conjunto de datos. La distribución disminuye gradualmente en ambos extremos, indicando que hay menos personas con edades menores de 20 años o mayores de 60 años.

summary(Modelos_Nissan_Depurado$age)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   18.00   30.00   42.00   42.45   55.00   69.00
hist(Modelos_Nissan_Depurado$age, main = "Histograma de Chance of Admit", col = c("gold"))

Resumen y Diagrama de Barras de gender

La gráfica de barras muestra la distribución del género en el conjunto de datos. El eje x representa el género (codificado como 0 y 1, 0 para mujeres y 1 para hombres). El eje y representa la frecuencia o conteo de cada género.

Se observa que hay aproximadamente 2000 observaciones del género 0 y 2131 del género 1. Esto indica que el género 1 (hombres) está ligeramente sobrerrepresentado en el conjunto de datos en comparación con el género 0 (mujeres). La diferencia no es muy grande, pero es perceptible.

table(Modelos_Nissan_Depurado$gender)
## 
##    0    1 
## 1999 2131
prop.table(table(Modelos_Nissan_Depurado$gender))
## 
##         0         1 
## 0.4840194 0.5159806
barplot(table(Modelos_Nissan_Depurado$gender))

Resumen y Diagrama de Cajas Conjunto

El gráfico de caja muestra la distribución de la edad según el género. Hay dos cajas, una para cada género.

La caja más grande (naranja) representa una distribución de edades significativamente mayor con una mediana alrededor de 40 años. La caja muestra una dispersión considerable, con valores atípicos (puntos por encima y por debajo de la caja). La línea horizontal dentro de la caja es la mediana. Las líneas verticales que se extienden desde la caja representan el rango intercuartil (IQR), que abarca desde el primer cuartil (25%) hasta el tercer cuartil (75%).

tapply(Modelos_Nissan_Depurado$age, Modelos_Nissan_Depurado$gender, mean)
##        0        1 
## 42.34467 42.54059
tapply(Modelos_Nissan_Depurado$age, Modelos_Nissan_Depurado$gender, median)
##  0  1 
## 42 42
boxplot(Modelos_Nissan_Depurado$age, Modelos_Nissan_Depurado$gender, main = "Boxplot Conjunto: age - gender", col = c("orange", "gold"))

Formulación del modelo de RLogS entre las variables de estudio.

La formulación del modelo de regresión logística simple (RLogS) describe la relación entre una variable dependiente (con valores 0 y 1) y una variable independiente. En este modelo, la probabilidad de que la variable dependiente tome el valor 1 se expresa como una función de la variable independiente.

Coeficientes del Modelo RLogS

Esta tabla muestra los coeficientes de un modelo de regresión, específicamente el intercepto y el coeficiente para la variable age. Los valores numéricos son los estimadores de estos coeficientes. Estos coeficientes ayudan a hacer predicciones y entender mejor cómo influyen las variables en el resultado del modelo.

modelo_RLog_Simple = glm(Modelos_Nissan_Depurado$gender~Modelos_Nissan_Depurado$age, family = "binomial", data = data.frame(Modelos_Nissan_Depurado$gender, Modelos_Nissan_Depurado$age))
coef(modelo_RLog_Simple)
##                 (Intercept) Modelos_Nissan_Depurado$age 
##                0.0246438419                0.0009259668

Resumen Estadístico del Modelo RLogS

El resumen estadístico del modelo RLogS proporciona una base para entender y mejorar el análisis en el futuro.

summary(modelo_RLog_Simple)
## 
## Call:
## glm(formula = Modelos_Nissan_Depurado$gender ~ Modelos_Nissan_Depurado$age, 
##     family = "binomial", data = data.frame(Modelos_Nissan_Depurado$gender, 
##         Modelos_Nissan_Depurado$age))
## 
## Coefficients:
##                             Estimate Std. Error z value Pr(>|z|)
## (Intercept)                 0.024644   0.096037   0.257    0.797
## Modelos_Nissan_Depurado$age 0.000926   0.002141   0.433    0.665
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5721.2  on 4129  degrees of freedom
## Residual deviance: 5721.0  on 4128  degrees of freedom
## AIC: 5725
## 
## Number of Fisher Scoring iterations: 3

Análisis del modelo RLogS.

El análisis del modelo de regresión logística simple (RLogS) en un conjunto de datos examina cómo una variable independiente afecta la probabilidad de ocurrencia de un evento representado por una variable dependiente gender (que toma valores 0 o 1). Este análisis se centra en entender e interpretar la relación estadística entre las variables y en evaluar el desempeño del modelo para predecir correctamente las categorías de la variable dependiente. El análisis del modelo RLogS permite no solo identificar si existe una relación significativa entre las variables, sino también evaluar qué tan bien el modelo describe y predice los resultados en el conjunto de datos.

Variable Predictora igual a Cero

El hecho de que el coeficiente para age esté cerca de cero y su valor exponencial esté cerca de uno sugiere que esta variable tiene un efecto muy débil sobre la variable de respuesta en este modelo. La variable predictora igual a cero permite facilitar interpretaciones y comparaciones dentro del análisis estadístico o predictivo.

coef(modelo_RLog_Simple)
##                 (Intercept) Modelos_Nissan_Depurado$age 
##                0.0246438419                0.0009259668
round(exp(coef(modelo_RLog_Simple)),6)
##                 (Intercept) Modelos_Nissan_Depurado$age 
##                    1.024950                    1.000926

Probabilidades Estimadas

Las probabilidades estimadas en un conjunto de datos, obtenidas a través de modelos como la regresión logística, sirven para cuantificar la probabilidad de que ocurra un determinado evento (por ejemplo, éxito/fallo, aceptación/rechazo, o compra/no compra) en función de las variables independientes. Estas probabilidades permiten tomar decisiones basadas en los resultados previstos, ya que ofrecen una representación continua de la probabilidad del evento en lugar de una clasificación binaria fija.

predict(modelo_RLog_Simple, data.frame(seq(1, 400)), type = "response")
## Warning: 'newdata' had 400 rows but variables found have 4130 rows
##         1         2         3         4         5         6         7         8 
## 0.5158783 0.5147219 0.5188840 0.5110205 0.5158783 0.5151845 0.5200397 0.5161095 
##         9        10        11        12        13        14        15        16 
## 0.5112519 0.5195775 0.5174969 0.5135654 0.5147219 0.5172657 0.5131027 0.5114832 
##        17        18        19        20        21        22        23        24 
## 0.5158783 0.5107891 0.5103263 0.5161095 0.5186529 0.5179593 0.5186529 0.5174969 
##        25        26        27        28        29        30        31        32 
## 0.5186529 0.5126400 0.5165720 0.5126400 0.5177281 0.5119460 0.5151845 0.5135654 
##        33        34        35        36        37        38        39        40 
## 0.5172657 0.5177281 0.5193463 0.5105577 0.5177281 0.5112519 0.5110205 0.5133340 
##        41        42        43        44        45        46        47        48 
## 0.5168032 0.5112519 0.5142593 0.5158783 0.5186529 0.5107891 0.5174969 0.5126400 
##        49        50        51        52        53        54        55        56 
## 0.5170345 0.5117146 0.5131027 0.5168032 0.5154157 0.5163408 0.5188840 0.5170345 
##        57        58        59        60        61        62        63        64 
## 0.5117146 0.5133340 0.5172657 0.5117146 0.5168032 0.5198086 0.5126400 0.5105577 
##        65        66        67        68        69        70        71        72 
## 0.5126400 0.5184217 0.5149532 0.5161095 0.5140280 0.5144906 0.5137967 0.5156470 
##        73        74        75        76        77        78        79        80 
## 0.5200397 0.5137967 0.5172657 0.5119460 0.5154157 0.5131027 0.5177281 0.5107891 
##        81        82        83        84        85        86        87        88 
## 0.5154157 0.5179593 0.5105577 0.5188840 0.5112519 0.5149532 0.5168032 0.5161095 
##        89        90        91        92        93        94        95        96 
## 0.5191152 0.5198086 0.5154157 0.5147219 0.5177281 0.5172657 0.5161095 0.5188840 
##        97        98        99       100       101       102       103       104 
## 0.5158783 0.5140280 0.5191152 0.5158783 0.5126400 0.5110205 0.5126400 0.5147219 
##       105       106       107       108       109       110       111       112 
## 0.5121773 0.5142593 0.5200397 0.5133340 0.5103263 0.5112519 0.5124087 0.5124087 
##       113       114       115       116       117       118       119       120 
## 0.5131027 0.5184217 0.5158783 0.5163408 0.5195775 0.5142593 0.5195775 0.5170345 
##       121       122       123       124       125       126       127       128 
## 0.5172657 0.5156470 0.5112519 0.5105577 0.5112519 0.5156470 0.5161095 0.5181905 
##       129       130       131       132       133       134       135       136 
## 0.5121773 0.5179593 0.5193463 0.5165720 0.5179593 0.5151845 0.5179593 0.5110205 
##       137       138       139       140       141       142       143       144 
## 0.5174969 0.5112519 0.5119460 0.5181905 0.5117146 0.5198086 0.5147219 0.5181905 
##       145       146       147       148       149       150       151       152 
## 0.5156470 0.5177281 0.5156470 0.5179593 0.5156470 0.5151845 0.5147219 0.5195775 
##       153       154       155       156       157       158       159       160 
## 0.5131027 0.5131027 0.5112519 0.5177281 0.5124087 0.5147219 0.5114832 0.5105577 
##       161       162       163       164       165       166       167       168 
## 0.5110205 0.5191152 0.5181905 0.5140280 0.5188840 0.5121773 0.5200397 0.5137967 
##       169       170       171       172       173       174       175       176 
## 0.5172657 0.5191152 0.5142593 0.5172657 0.5110205 0.5137967 0.5172657 0.5161095 
##       177       178       179       180       181       182       183       184 
## 0.5188840 0.5135654 0.5119460 0.5191152 0.5119460 0.5105577 0.5114832 0.5137967 
##       185       186       187       188       189       190       191       192 
## 0.5110205 0.5200397 0.5117146 0.5170345 0.5126400 0.5195775 0.5186529 0.5149532 
##       193       194       195       196       197       198       199       200 
## 0.5181905 0.5114832 0.5184217 0.5177281 0.5154157 0.5172657 0.5135654 0.5161095 
##       201       202       203       204       205       206       207       208 
## 0.5112519 0.5137967 0.5156470 0.5195775 0.5195775 0.5117146 0.5170345 0.5154157 
##       209       210       211       212       213       214       215       216 
## 0.5103263 0.5144906 0.5165720 0.5119460 0.5119460 0.5181905 0.5103263 0.5161095 
##       217       218       219       220       221       222       223       224 
## 0.5156470 0.5156470 0.5147219 0.5181905 0.5135654 0.5140280 0.5128714 0.5144906 
##       225       226       227       228       229       230       231       232 
## 0.5198086 0.5184217 0.5140280 0.5149532 0.5184217 0.5163408 0.5156470 0.5137967 
##       233       234       235       236       237       238       239       240 
## 0.5137967 0.5135654 0.5135654 0.5195775 0.5135654 0.5165720 0.5154157 0.5165720 
##       241       242       243       244       245       246       247       248 
## 0.5149532 0.5163408 0.5131027 0.5156470 0.5110205 0.5126400 0.5112519 0.5154157 
##       249       250       251       252       253       254       255       256 
## 0.5110205 0.5135654 0.5165720 0.5147219 0.5131027 0.5135654 0.5154157 0.5156470 
##       257       258       259       260       261       262       263       264 
## 0.5149532 0.5112519 0.5110205 0.5161095 0.5158783 0.5168032 0.5200397 0.5135654 
##       265       266       267       268       269       270       271       272 
## 0.5135654 0.5158783 0.5184217 0.5156470 0.5124087 0.5172657 0.5103263 0.5103263 
##       273       274       275       276       277       278       279       280 
## 0.5193463 0.5105577 0.5131027 0.5121773 0.5110205 0.5107891 0.5193463 0.5135654 
##       281       282       283       284       285       286       287       288 
## 0.5105577 0.5131027 0.5195775 0.5128714 0.5191152 0.5144906 0.5105577 0.5163408 
##       289       290       291       292       293       294       295       296 
## 0.5193463 0.5181905 0.5135654 0.5163408 0.5107891 0.5128714 0.5133340 0.5163408 
##       297       298       299       300       301       302       303       304 
## 0.5161095 0.5174969 0.5181905 0.5172657 0.5188840 0.5161095 0.5107891 0.5151845 
##       305       306       307       308       309       310       311       312 
## 0.5174969 0.5121773 0.5188840 0.5144906 0.5198086 0.5188840 0.5147219 0.5135654 
##       313       314       315       316       317       318       319       320 
## 0.5128714 0.5135654 0.5131027 0.5170345 0.5105577 0.5191152 0.5154157 0.5200397 
##       321       322       323       324       325       326       327       328 
## 0.5137967 0.5126400 0.5114832 0.5121773 0.5121773 0.5107891 0.5181905 0.5133340 
##       329       330       331       332       333       334       335       336 
## 0.5174969 0.5161095 0.5151845 0.5140280 0.5181905 0.5179593 0.5149532 0.5172657 
##       337       338       339       340       341       342       343       344 
## 0.5179593 0.5188840 0.5170345 0.5110205 0.5105577 0.5124087 0.5172657 0.5177281 
##       345       346       347       348       349       350       351       352 
## 0.5191152 0.5107891 0.5195775 0.5137967 0.5170345 0.5151845 0.5119460 0.5154157 
##       353       354       355       356       357       358       359       360 
## 0.5151845 0.5126400 0.5103263 0.5107891 0.5191152 0.5124087 0.5191152 0.5114832 
##       361       362       363       364       365       366       367       368 
## 0.5137967 0.5140280 0.5117146 0.5179593 0.5144906 0.5154157 0.5177281 0.5137967 
##       369       370       371       372       373       374       375       376 
## 0.5133340 0.5193463 0.5128714 0.5177281 0.5135654 0.5112519 0.5156470 0.5149532 
##       377       378       379       380       381       382       383       384 
## 0.5158783 0.5137967 0.5140280 0.5186529 0.5161095 0.5124087 0.5137967 0.5191152 
##       385       386       387       388       389       390       391       392 
## 0.5112519 0.5193463 0.5188840 0.5107891 0.5110205 0.5165720 0.5170345 0.5186529 
##       393       394       395       396       397       398       399       400 
## 0.5110205 0.5147219 0.5154157 0.5168032 0.5142593 0.5186529 0.5135654 0.5140280 
##       401       402       403       404       405       406       407       408 
## 0.5110205 0.5163408 0.5184217 0.5137967 0.5195775 0.5163408 0.5200397 0.5137967 
##       409       410       411       412       413       414       415       416 
## 0.5112519 0.5165720 0.5200397 0.5188840 0.5165720 0.5128714 0.5198086 0.5133340 
##       417       418       419       420       421       422       423       424 
## 0.5186529 0.5112519 0.5163408 0.5135654 0.5133340 0.5177281 0.5147219 0.5137967 
##       425       426       427       428       429       430       431       432 
## 0.5163408 0.5177281 0.5186529 0.5142593 0.5156470 0.5124087 0.5184217 0.5198086 
##       433       434       435       436       437       438       439       440 
## 0.5158783 0.5119460 0.5140280 0.5112519 0.5112519 0.5188840 0.5140280 0.5168032 
##       441       442       443       444       445       446       447       448 
## 0.5119460 0.5158783 0.5110205 0.5172657 0.5103263 0.5107891 0.5161095 0.5107891 
##       449       450       451       452       453       454       455       456 
## 0.5151845 0.5149532 0.5165720 0.5193463 0.5172657 0.5156470 0.5172657 0.5119460 
##       457       458       459       460       461       462       463       464 
## 0.5142593 0.5154157 0.5168032 0.5161095 0.5103263 0.5142593 0.5119460 0.5128714 
##       465       466       467       468       469       470       471       472 
## 0.5119460 0.5105577 0.5156470 0.5110205 0.5168032 0.5168032 0.5131027 0.5154157 
##       473       474       475       476       477       478       479       480 
## 0.5198086 0.5200397 0.5154157 0.5165720 0.5121773 0.5121773 0.5119460 0.5107891 
##       481       482       483       484       485       486       487       488 
## 0.5172657 0.5156470 0.5107891 0.5133340 0.5158783 0.5112519 0.5112519 0.5133340 
##       489       490       491       492       493       494       495       496 
## 0.5112519 0.5154157 0.5186529 0.5186529 0.5131027 0.5161095 0.5126400 0.5168032 
##       497       498       499       500       501       502       503       504 
## 0.5179593 0.5105577 0.5124087 0.5119460 0.5163408 0.5103263 0.5181905 0.5188840 
##       505       506       507       508       509       510       511       512 
## 0.5186529 0.5119460 0.5181905 0.5112519 0.5161095 0.5126400 0.5184217 0.5117146 
##       513       514       515       516       517       518       519       520 
## 0.5131027 0.5186529 0.5128714 0.5126400 0.5137967 0.5151845 0.5107891 0.5124087 
##       521       522       523       524       525       526       527       528 
## 0.5128714 0.5163408 0.5119460 0.5128714 0.5163408 0.5161095 0.5133340 0.5193463 
##       529       530       531       532       533       534       535       536 
## 0.5191152 0.5193463 0.5181905 0.5151845 0.5121773 0.5156470 0.5128714 0.5103263 
##       537       538       539       540       541       542       543       544 
## 0.5114832 0.5144906 0.5200397 0.5105577 0.5198086 0.5177281 0.5174969 0.5200397 
##       545       546       547       548       549       550       551       552 
## 0.5124087 0.5154157 0.5110205 0.5161095 0.5126400 0.5170345 0.5142593 0.5131027 
##       553       554       555       556       557       558       559       560 
## 0.5151845 0.5156470 0.5184217 0.5140280 0.5144906 0.5179593 0.5163408 0.5140280 
##       561       562       563       564       565       566       567       568 
## 0.5151845 0.5131027 0.5181905 0.5188840 0.5200397 0.5193463 0.5179593 0.5200397 
##       569       570       571       572       573       574       575       576 
## 0.5117146 0.5184217 0.5179593 0.5149532 0.5112519 0.5117146 0.5124087 0.5191152 
##       577       578       579       580       581       582       583       584 
## 0.5170345 0.5110205 0.5103263 0.5121773 0.5156470 0.5112519 0.5161095 0.5186529 
##       585       586       587       588       589       590       591       592 
## 0.5107891 0.5181905 0.5174969 0.5179593 0.5200397 0.5128714 0.5140280 0.5119460 
##       593       594       595       596       597       598       599       600 
## 0.5110205 0.5170345 0.5142593 0.5195775 0.5158783 0.5126400 0.5165720 0.5117146 
##       601       602       603       604       605       606       607       608 
## 0.5117146 0.5170345 0.5184217 0.5163408 0.5124087 0.5163408 0.5103263 0.5124087 
##       609       610       611       612       613       614       615       616 
## 0.5107891 0.5114832 0.5119460 0.5179593 0.5198086 0.5177281 0.5103263 0.5165720 
##       617       618       619       620       621       622       623       624 
## 0.5110205 0.5128714 0.5174969 0.5165720 0.5156470 0.5170345 0.5142593 0.5200397 
##       625       626       627       628       629       630       631       632 
## 0.5147219 0.5200397 0.5174969 0.5181905 0.5147219 0.5198086 0.5126400 0.5179593 
##       633       634       635       636       637       638       639       640 
## 0.5177281 0.5191152 0.5200397 0.5170345 0.5154157 0.5110205 0.5168032 0.5140280 
##       641       642       643       644       645       646       647       648 
## 0.5126400 0.5128714 0.5137967 0.5114832 0.5193463 0.5172657 0.5124087 0.5174969 
##       649       650       651       652       653       654       655       656 
## 0.5107891 0.5188840 0.5121773 0.5117146 0.5112519 0.5126400 0.5200397 0.5158783 
##       657       658       659       660       661       662       663       664 
## 0.5137967 0.5179593 0.5158783 0.5140280 0.5128714 0.5195775 0.5107891 0.5144906 
##       665       666       667       668       669       670       671       672 
## 0.5117146 0.5177281 0.5131027 0.5163408 0.5186529 0.5170345 0.5163408 0.5149532 
##       673       674       675       676       677       678       679       680 
## 0.5184217 0.5165720 0.5193463 0.5181905 0.5154157 0.5121773 0.5114832 0.5105577 
##       681       682       683       684       685       686       687       688 
## 0.5174969 0.5103263 0.5131027 0.5172657 0.5114832 0.5147219 0.5198086 0.5200397 
##       689       690       691       692       693       694       695       696 
## 0.5168032 0.5154157 0.5110205 0.5188840 0.5135654 0.5114832 0.5179593 0.5151845 
##       697       698       699       700       701       702       703       704 
## 0.5135654 0.5163408 0.5191152 0.5170345 0.5142593 0.5140280 0.5107891 0.5200397 
##       705       706       707       708       709       710       711       712 
## 0.5121773 0.5147219 0.5151845 0.5161095 0.5144906 0.5174969 0.5105577 0.5133340 
##       713       714       715       716       717       718       719       720 
## 0.5195775 0.5112519 0.5198086 0.5158783 0.5105577 0.5172657 0.5168032 0.5165720 
##       721       722       723       724       725       726       727       728 
## 0.5184217 0.5147219 0.5121773 0.5112519 0.5156470 0.5105577 0.5149532 0.5177281 
##       729       730       731       732       733       734       735       736 
## 0.5158783 0.5112519 0.5142593 0.5140280 0.5131027 0.5186529 0.5114832 0.5110205 
##       737       738       739       740       741       742       743       744 
## 0.5174969 0.5174969 0.5193463 0.5165720 0.5105577 0.5181905 0.5198086 0.5147219 
##       745       746       747       748       749       750       751       752 
## 0.5170345 0.5154157 0.5181905 0.5112519 0.5114832 0.5168032 0.5119460 0.5191152 
##       753       754       755       756       757       758       759       760 
## 0.5114832 0.5158783 0.5179593 0.5158783 0.5107891 0.5184217 0.5156470 0.5170345 
##       761       762       763       764       765       766       767       768 
## 0.5103263 0.5154157 0.5191152 0.5177281 0.5117146 0.5158783 0.5186529 0.5103263 
##       769       770       771       772       773       774       775       776 
## 0.5147219 0.5172657 0.5177281 0.5107891 0.5105577 0.5193463 0.5181905 0.5200397 
##       777       778       779       780       781       782       783       784 
## 0.5198086 0.5154157 0.5117146 0.5170345 0.5131027 0.5126400 0.5195775 0.5119460 
##       785       786       787       788       789       790       791       792 
## 0.5137967 0.5193463 0.5191152 0.5135654 0.5181905 0.5161095 0.5154157 0.5154157 
##       793       794       795       796       797       798       799       800 
## 0.5124087 0.5156470 0.5198086 0.5119460 0.5142593 0.5147219 0.5135654 0.5156470 
##       801       802       803       804       805       806       807       808 
## 0.5105577 0.5184217 0.5170345 0.5133340 0.5119460 0.5131027 0.5188840 0.5163408 
##       809       810       811       812       813       814       815       816 
## 0.5121773 0.5119460 0.5110205 0.5165720 0.5163408 0.5133340 0.5135654 0.5103263 
##       817       818       819       820       821       822       823       824 
## 0.5172657 0.5191152 0.5200397 0.5174969 0.5170345 0.5128714 0.5135654 0.5156470 
##       825       826       827       828       829       830       831       832 
## 0.5154157 0.5135654 0.5188840 0.5193463 0.5135654 0.5181905 0.5144906 0.5161095 
##       833       834       835       836       837       838       839       840 
## 0.5165720 0.5191152 0.5177281 0.5144906 0.5103263 0.5142593 0.5128714 0.5195775 
##       841       842       843       844       845       846       847       848 
## 0.5156470 0.5105577 0.5128714 0.5170345 0.5135654 0.5156470 0.5181905 0.5191152 
##       849       850       851       852       853       854       855       856 
## 0.5163408 0.5154157 0.5161095 0.5198086 0.5200397 0.5195775 0.5107891 0.5200397 
##       857       858       859       860       861       862       863       864 
## 0.5165720 0.5181905 0.5110205 0.5161095 0.5168032 0.5137967 0.5133340 0.5142593 
##       865       866       867       868       869       870       871       872 
## 0.5193463 0.5177281 0.5119460 0.5202708 0.5103263 0.5163408 0.5165720 0.5168032 
##       873       874       875       876       877       878       879       880 
## 0.5170345 0.5186529 0.5181905 0.5112519 0.5174969 0.5147219 0.5149532 0.5137967 
##       881       882       883       884       885       886       887       888 
## 0.5126400 0.5142593 0.5207330 0.5158783 0.5158783 0.5174969 0.5163408 0.5221194 
##       889       890       891       892       893       894       895       896 
## 0.5200397 0.5158783 0.5177281 0.5207330 0.5105577 0.5119460 0.5202708 0.5218884 
##       897       898       899       900       901       902       903       904 
## 0.5137967 0.5140280 0.5188840 0.5154157 0.5205019 0.5165720 0.5168032 0.5121773 
##       905       906       907       908       909       910       911       912 
## 0.5202708 0.5170345 0.5181905 0.5158783 0.5161095 0.5163408 0.5119460 0.5198086 
##       913       914       915       916       917       918       919       920 
## 0.5207330 0.5209641 0.5209641 0.5211952 0.5154157 0.5156470 0.5163408 0.5144906 
##       921       922       923       924       925       926       927       928 
## 0.5218884 0.5105577 0.5214263 0.5191152 0.5195775 0.5207330 0.5154157 0.5126400 
##       929       930       931       932       933       934       935       936 
## 0.5128714 0.5211952 0.5188840 0.5117146 0.5216573 0.5161095 0.5140280 0.5142593 
##       937       938       939       940       941       942       943       944 
## 0.5205019 0.5112519 0.5207330 0.5205019 0.5218884 0.5179593 0.5128714 0.5165720 
##       945       946       947       948       949       950       951       952 
## 0.5140280 0.5137967 0.5218884 0.5151845 0.5117146 0.5144906 0.5191152 0.5214263 
##       953       954       955       956       957       958       959       960 
## 0.5105577 0.5198086 0.5207330 0.5193463 0.5151845 0.5156470 0.5158783 0.5105577 
##       961       962       963       964       965       966       967       968 
## 0.5135654 0.5131027 0.5119460 0.5202708 0.5181905 0.5184217 0.5193463 0.5202708 
##       969       970       971       972       973       974       975       976 
## 0.5168032 0.5200397 0.5107891 0.5117146 0.5161095 0.5156470 0.5119460 0.5117146 
##       977       978       979       980       981       982       983       984 
## 0.5142593 0.5142593 0.5144906 0.5126400 0.5195775 0.5207330 0.5158783 0.5119460 
##       985       986       987       988       989       990       991       992 
## 0.5103263 0.5105577 0.5156470 0.5198086 0.5126400 0.5193463 0.5165720 0.5147219 
##       993       994       995       996       997       998       999      1000 
## 0.5149532 0.5163408 0.5165720 0.5137967 0.5156470 0.5188840 0.5202708 0.5110205 
##      1001      1002      1003      1004      1005      1006      1007      1008 
## 0.5195775 0.5119460 0.5221194 0.5195775 0.5221194 0.5103263 0.5195775 0.5186529 
##      1009      1010      1011      1012      1013      1014      1015      1016 
## 0.5112519 0.5200397 0.5193463 0.5198086 0.5216573 0.5140280 0.5131027 0.5133340 
##      1017      1018      1019      1020      1021      1022      1023      1024 
## 0.5144906 0.5137967 0.5147219 0.5149532 0.5163408 0.5218884 0.5198086 0.5200397 
##      1025      1026      1027      1028      1029      1030      1031      1032 
## 0.5144906 0.5181905 0.5172657 0.5168032 0.5131027 0.5133340 0.5103263 0.5214263 
##      1033      1034      1035      1036      1037      1038      1039      1040 
## 0.5135654 0.5172657 0.5174969 0.5149532 0.5133340 0.5151845 0.5207330 0.5209641 
##      1041      1042      1043      1044      1045      1046      1047      1048 
## 0.5107891 0.5209641 0.5158783 0.5216573 0.5195775 0.5124087 0.5218884 0.5149532 
##      1049      1050      1051      1052      1053      1054      1055      1056 
## 0.5163408 0.5133340 0.5107891 0.5181905 0.5131027 0.5135654 0.5147219 0.5186529 
##      1057      1058      1059      1060      1061      1062      1063      1064 
## 0.5135654 0.5151845 0.5128714 0.5156470 0.5151845 0.5193463 0.5195775 0.5126400 
##      1065      1066      1067      1068      1069      1070      1071      1072 
## 0.5147219 0.5135654 0.5137967 0.5214263 0.5172657 0.5140280 0.5161095 0.5218884 
##      1073      1074      1075      1076      1077      1078      1079      1080 
## 0.5133340 0.5135654 0.5216573 0.5126400 0.5131027 0.5124087 0.5124087 0.5172657 
##      1081      1082      1083      1084      1085      1086      1087      1088 
## 0.5144906 0.5105577 0.5179593 0.5198086 0.5149532 0.5121773 0.5221194 0.5193463 
##      1089      1090      1091      1092      1093      1094      1095      1096 
## 0.5181905 0.5184217 0.5188840 0.5163408 0.5131027 0.5156470 0.5221194 0.5214263 
##      1097      1098      1099      1100      1101      1102      1103      1104 
## 0.5211952 0.5216573 0.5202708 0.5198086 0.5216573 0.5193463 0.5177281 0.5177281 
##      1105      1106      1107      1108      1109      1110      1111      1112 
## 0.5149532 0.5216573 0.5126400 0.5161095 0.5117146 0.5103263 0.5121773 0.5218884 
##      1113      1114      1115      1116      1117      1118      1119      1120 
## 0.5112519 0.5135654 0.5105577 0.5137967 0.5107891 0.5181905 0.5158783 0.5154157 
##      1121      1122      1123      1124      1125      1126      1127      1128 
## 0.5154157 0.5218884 0.5124087 0.5121773 0.5156470 0.5107891 0.5144906 0.5221194 
##      1129      1130      1131      1132      1133      1134      1135      1136 
## 0.5172657 0.5112519 0.5114832 0.5110205 0.5188840 0.5191152 0.5124087 0.5144906 
##      1137      1138      1139      1140      1141      1142      1143      1144 
## 0.5110205 0.5117146 0.5170345 0.5131027 0.5151845 0.5147219 0.5147219 0.5198086 
##      1145      1146      1147      1148      1149      1150      1151      1152 
## 0.5211952 0.5114832 0.5202708 0.5144906 0.5151845 0.5209641 0.5103263 0.5137967 
##      1153      1154      1155      1156      1157      1158      1159      1160 
## 0.5205019 0.5193463 0.5202708 0.5131027 0.5124087 0.5211952 0.5209641 0.5110205 
##      1161      1162      1163      1164      1165      1166      1167      1168 
## 0.5117146 0.5105577 0.5144906 0.5147219 0.5144906 0.5195775 0.5149532 0.5186529 
##      1169      1170      1171      1172      1173      1174      1175      1176 
## 0.5140280 0.5154157 0.5149532 0.5133340 0.5140280 0.5119460 0.5218884 0.5151845 
##      1177      1178      1179      1180      1181      1182      1183      1184 
## 0.5172657 0.5119460 0.5158783 0.5174969 0.5107891 0.5110205 0.5184217 0.5195775 
##      1185      1186      1187      1188      1189      1190      1191      1192 
## 0.5170345 0.5110205 0.5110205 0.5161095 0.5174969 0.5195775 0.5172657 0.5211952 
##      1193      1194      1195      1196      1197      1198      1199      1200 
## 0.5140280 0.5174969 0.5133340 0.5170345 0.5121773 0.5221194 0.5218884 0.5158783 
##      1201      1202      1203      1204      1205      1206      1207      1208 
## 0.5114832 0.5105577 0.5198086 0.5170345 0.5119460 0.5181905 0.5144906 0.5202708 
##      1209      1210      1211      1212      1213      1214      1215      1216 
## 0.5128714 0.5154157 0.5126400 0.5114832 0.5128714 0.5140280 0.5168032 0.5205019 
##      1217      1218      1219      1220      1221      1222      1223      1224 
## 0.5186529 0.5174969 0.5147219 0.5207330 0.5191152 0.5124087 0.5156470 0.5193463 
##      1225      1226      1227      1228      1229      1230      1231      1232 
## 0.5188840 0.5117146 0.5147219 0.5142593 0.5191152 0.5195775 0.5105577 0.5114832 
##      1233      1234      1235      1236      1237      1238      1239      1240 
## 0.5177281 0.5195775 0.5151845 0.5174969 0.5168032 0.5158783 0.5133340 0.5124087 
##      1241      1242      1243      1244      1245      1246      1247      1248 
## 0.5124087 0.5191152 0.5200397 0.5121773 0.5144906 0.5214263 0.5216573 0.5119460 
##      1249      1250      1251      1252      1253      1254      1255      1256 
## 0.5165720 0.5107891 0.5214263 0.5202708 0.5193463 0.5177281 0.5149532 0.5184217 
##      1257      1258      1259      1260      1261      1262      1263      1264 
## 0.5202708 0.5154157 0.5133340 0.5154157 0.5154157 0.5198086 0.5184217 0.5144906 
##      1265      1266      1267      1268      1269      1270      1271      1272 
## 0.5195775 0.5163408 0.5195775 0.5158783 0.5131027 0.5165720 0.5186529 0.5161095 
##      1273      1274      1275      1276      1277      1278      1279      1280 
## 0.5218884 0.5165720 0.5188840 0.5121773 0.5214263 0.5207330 0.5207330 0.5110205 
##      1281      1282      1283      1284      1285      1286      1287      1288 
## 0.5142593 0.5205019 0.5161095 0.5218884 0.5121773 0.5163408 0.5137967 0.5126400 
##      1289      1290      1291      1292      1293      1294      1295      1296 
## 0.5214263 0.5103263 0.5179593 0.5207330 0.5112519 0.5117146 0.5137967 0.5161095 
##      1297      1298      1299      1300      1301      1302      1303      1304 
## 0.5161095 0.5188840 0.5198086 0.5198086 0.5205019 0.5147219 0.5191152 0.5205019 
##      1305      1306      1307      1308      1309      1310      1311      1312 
## 0.5128714 0.5110205 0.5156470 0.5114832 0.5105577 0.5172657 0.5128714 0.5214263 
##      1313      1314      1315      1316      1317      1318      1319      1320 
## 0.5156470 0.5191152 0.5184217 0.5184217 0.5181905 0.5117146 0.5193463 0.5200397 
##      1321      1322      1323      1324      1325      1326      1327      1328 
## 0.5105577 0.5195775 0.5216573 0.5191152 0.5214263 0.5168032 0.5214263 0.5135654 
##      1329      1330      1331      1332      1333      1334      1335      1336 
## 0.5154157 0.5186529 0.5158783 0.5114832 0.5170345 0.5174969 0.5191152 0.5107891 
##      1337      1338      1339      1340      1341      1342      1343      1344 
## 0.5168032 0.5110205 0.5188840 0.5218884 0.5214263 0.5121773 0.5112519 0.5156470 
##      1345      1346      1347      1348      1349      1350      1351      1352 
## 0.5198086 0.5168032 0.5114832 0.5207330 0.5124087 0.5117146 0.5211952 0.5174969 
##      1353      1354      1355      1356      1357      1358      1359      1360 
## 0.5112519 0.5140280 0.5131027 0.5121773 0.5107891 0.5170345 0.5121773 0.5188840 
##      1361      1362      1363      1364      1365      1366      1367      1368 
## 0.5168032 0.5191152 0.5221194 0.5195775 0.5117146 0.5211952 0.5174969 0.5158783 
##      1369      1370      1371      1372      1373      1374      1375      1376 
## 0.5117146 0.5170345 0.5105577 0.5211952 0.5114832 0.5107891 0.5126400 0.5149532 
##      1377      1378      1379      1380      1381      1382      1383      1384 
## 0.5137967 0.5174969 0.5191152 0.5135654 0.5133340 0.5218884 0.5181905 0.5174969 
##      1385      1386      1387      1388      1389      1390      1391      1392 
## 0.5119460 0.5135654 0.5103263 0.5117146 0.5124087 0.5142593 0.5147219 0.5170345 
##      1393      1394      1395      1396      1397      1398      1399      1400 
## 0.5216573 0.5151845 0.5198086 0.5147219 0.5147219 0.5131027 0.5221194 0.5140280 
##      1401      1402      1403      1404      1405      1406      1407      1408 
## 0.5151845 0.5135654 0.5198086 0.5151845 0.5168032 0.5140280 0.5170345 0.5174969 
##      1409      1410      1411      1412      1413      1414      1415      1416 
## 0.5165720 0.5110205 0.5142593 0.5151845 0.5181905 0.5137967 0.5174969 0.5119460 
##      1417      1418      1419      1420      1421      1422      1423      1424 
## 0.5198086 0.5142593 0.5170345 0.5181905 0.5170345 0.5214263 0.5135654 0.5156470 
##      1425      1426      1427      1428      1429      1430      1431      1432 
## 0.5158783 0.5200397 0.5135654 0.5181905 0.5195775 0.5124087 0.5198086 0.5154157 
##      1433      1434      1435      1436      1437      1438      1439      1440 
## 0.5137967 0.5200397 0.5158783 0.5177281 0.5174969 0.5142593 0.5211952 0.5142593 
##      1441      1442      1443      1444      1445      1446      1447      1448 
## 0.5211952 0.5112519 0.5211952 0.5121773 0.5142593 0.5135654 0.5186529 0.5193463 
##      1449      1450      1451      1452      1453      1454      1455      1456 
## 0.5168032 0.5135654 0.5195775 0.5135654 0.5144906 0.5110205 0.5177281 0.5179593 
##      1457      1458      1459      1460      1461      1462      1463      1464 
## 0.5117146 0.5103263 0.5170345 0.5186529 0.5135654 0.5195775 0.5172657 0.5165720 
##      1465      1466      1467      1468      1469      1470      1471      1472 
## 0.5147219 0.5151845 0.5177281 0.5135654 0.5193463 0.5137967 0.5163408 0.5154157 
##      1473      1474      1475      1476      1477      1478      1479      1480 
## 0.5202708 0.5112519 0.5128714 0.5211952 0.5128714 0.5168032 0.5154157 0.5103263 
##      1481      1482      1483      1484      1485      1486      1487      1488 
## 0.5142593 0.5186529 0.5163408 0.5207330 0.5165720 0.5117146 0.5114832 0.5117146 
##      1489      1490      1491      1492      1493      1494      1495      1496 
## 0.5172657 0.5168032 0.5137967 0.5179593 0.5131027 0.5218884 0.5140280 0.5144906 
##      1497      1498      1499      1500      1501      1502      1503      1504 
## 0.5114832 0.5184217 0.5112519 0.5184217 0.5126400 0.5144906 0.5110205 0.5140280 
##      1505      1506      1507      1508      1509      1510      1511      1512 
## 0.5131027 0.5195775 0.5168032 0.5168032 0.5131027 0.5186529 0.5214263 0.5114832 
##      1513      1514      1515      1516      1517      1518      1519      1520 
## 0.5202708 0.5154157 0.5114832 0.5151845 0.5177281 0.5128714 0.5114832 0.5174969 
##      1521      1522      1523      1524      1525      1526      1527      1528 
## 0.5209641 0.5193463 0.5193463 0.5218884 0.5151845 0.5218884 0.5198086 0.5131027 
##      1529      1530      1531      1532      1533      1534      1535      1536 
## 0.5205019 0.5133340 0.5105577 0.5184217 0.5126400 0.5163408 0.5107891 0.5202708 
##      1537      1538      1539      1540      1541      1542      1543      1544 
## 0.5179593 0.5211952 0.5156470 0.5214263 0.5216573 0.5195775 0.5110205 0.5112519 
##      1545      1546      1547      1548      1549      1550      1551      1552 
## 0.5214263 0.5154157 0.5135654 0.5172657 0.5121773 0.5184217 0.5128714 0.5107891 
##      1553      1554      1555      1556      1557      1558      1559      1560 
## 0.5191152 0.5131027 0.5133340 0.5200397 0.5165720 0.5105577 0.5184217 0.5114832 
##      1561      1562      1563      1564      1565      1566      1567      1568 
## 0.5184217 0.5112519 0.5107891 0.5181905 0.5177281 0.5117146 0.5149532 0.5198086 
##      1569      1570      1571      1572      1573      1574      1575      1576 
## 0.5135654 0.5156470 0.5186529 0.5114832 0.5202708 0.5193463 0.5128714 0.5154157 
##      1577      1578      1579      1580      1581      1582      1583      1584 
## 0.5184217 0.5154157 0.5216573 0.5128714 0.5142593 0.5107891 0.5198086 0.5103263 
##      1585      1586      1587      1588      1589      1590      1591      1592 
## 0.5214263 0.5205019 0.5147219 0.5181905 0.5149532 0.5168032 0.5218884 0.5147219 
##      1593      1594      1595      1596      1597      1598      1599      1600 
## 0.5188840 0.5177281 0.5184217 0.5107891 0.5202708 0.5202708 0.5214263 0.5151845 
##      1601      1602      1603      1604      1605      1606      1607      1608 
## 0.5147219 0.5200397 0.5103263 0.5165720 0.5126400 0.5218884 0.5179593 0.5133340 
##      1609      1610      1611      1612      1613      1614      1615      1616 
## 0.5200397 0.5140280 0.5177281 0.5121773 0.5202708 0.5168032 0.5200397 0.5128714 
##      1617      1618      1619      1620      1621      1622      1623      1624 
## 0.5124087 0.5107891 0.5186529 0.5170345 0.5144906 0.5161095 0.5188840 0.5209641 
##      1625      1626      1627      1628      1629      1630      1631      1632 
## 0.5211952 0.5124087 0.5195775 0.5186529 0.5214263 0.5135654 0.5195775 0.5174969 
##      1633      1634      1635      1636      1637      1638      1639      1640 
## 0.5117146 0.5205019 0.5174969 0.5207330 0.5121773 0.5221194 0.5186529 0.5214263 
##      1641      1642      1643      1644      1645      1646      1647      1648 
## 0.5158783 0.5216573 0.5133340 0.5163408 0.5144906 0.5112519 0.5105577 0.5147219 
##      1649      1650      1651      1652      1653      1654      1655      1656 
## 0.5177281 0.5198086 0.5107891 0.5161095 0.5147219 0.5170345 0.5151845 0.5105577 
##      1657      1658      1659      1660      1661      1662      1663      1664 
## 0.5133340 0.5147219 0.5135654 0.5193463 0.5177281 0.5221194 0.5195775 0.5121773 
##      1665      1666      1667      1668      1669      1670      1671      1672 
## 0.5200397 0.5119460 0.5135654 0.5216573 0.5144906 0.5151845 0.5165720 0.5200397 
##      1673      1674      1675      1676      1677      1678      1679      1680 
## 0.5184217 0.5110205 0.5131027 0.5170345 0.5140280 0.5184217 0.5205019 0.5202708 
##      1681      1682      1683      1684      1685      1686      1687      1688 
## 0.5170345 0.5209641 0.5186529 0.5126400 0.5137967 0.5202708 0.5114832 0.5198086 
##      1689      1690      1691      1692      1693      1694      1695      1696 
## 0.5181905 0.5188840 0.5121773 0.5103263 0.5103263 0.5135654 0.5172657 0.5158783 
##      1697      1698      1699      1700      1701      1702      1703      1704 
## 0.5191152 0.5128714 0.5200397 0.5128714 0.5117146 0.5154157 0.5221194 0.5154157 
##      1705      1706      1707      1708      1709      1710      1711      1712 
## 0.5144906 0.5191152 0.5181905 0.5147219 0.5165720 0.5133340 0.5142593 0.5214263 
##      1713      1714      1715      1716      1717      1718      1719      1720 
## 0.5181905 0.5207330 0.5103263 0.5128714 0.5195775 0.5110205 0.5133340 0.5107891 
##      1721      1722      1723      1724      1725      1726      1727      1728 
## 0.5137967 0.5193463 0.5144906 0.5151845 0.5193463 0.5135654 0.5158783 0.5177281 
##      1729      1730      1731      1732      1733      1734      1735      1736 
## 0.5202708 0.5172657 0.5161095 0.5198086 0.5131027 0.5105577 0.5181905 0.5184217 
##      1737      1738      1739      1740      1741      1742      1743      1744 
## 0.5140280 0.5195775 0.5149532 0.5202708 0.5198086 0.5198086 0.5218884 0.5184217 
##      1745      1746      1747      1748      1749      1750      1751      1752 
## 0.5126400 0.5202708 0.5207330 0.5156470 0.5131027 0.5137967 0.5154157 0.5165720 
##      1753      1754      1755      1756      1757      1758      1759      1760 
## 0.5119460 0.5144906 0.5214263 0.5198086 0.5137967 0.5151845 0.5174969 0.5179593 
##      1761      1762      1763      1764      1765      1766      1767      1768 
## 0.5207330 0.5121773 0.5156470 0.5140280 0.5216573 0.5154157 0.5198086 0.5103263 
##      1769      1770      1771      1772      1773      1774      1775      1776 
## 0.5105577 0.5177281 0.5209641 0.5205019 0.5216573 0.5211952 0.5151845 0.5184217 
##      1777      1778      1779      1780      1781      1782      1783      1784 
## 0.5188840 0.5211952 0.5174969 0.5177281 0.5137967 0.5168032 0.5188840 0.5151845 
##      1785      1786      1787      1788      1789      1790      1791      1792 
## 0.5144906 0.5172657 0.5142593 0.5142593 0.5135654 0.5142593 0.5133340 0.5133340 
##      1793      1794      1795      1796      1797      1798      1799      1800 
## 0.5126400 0.5184217 0.5221194 0.5103263 0.5214263 0.5170345 0.5119460 0.5107891 
##      1801      1802      1803      1804      1805      1806      1807      1808 
## 0.5202708 0.5179593 0.5119460 0.5195775 0.5105577 0.5151845 0.5156470 0.5221194 
##      1809      1810      1811      1812      1813      1814      1815      1816 
## 0.5216573 0.5103263 0.5126400 0.5117146 0.5214263 0.5121773 0.5165720 0.5221194 
##      1817      1818      1819      1820      1821      1822      1823      1824 
## 0.5209641 0.5135654 0.5131027 0.5114832 0.5188840 0.5156470 0.5124087 0.5117146 
##      1825      1826      1827      1828      1829      1830      1831      1832 
## 0.5131027 0.5137967 0.5114832 0.5202708 0.5214263 0.5133340 0.5158783 0.5128714 
##      1833      1834      1835      1836      1837      1838      1839      1840 
## 0.5140280 0.5216573 0.5198086 0.5158783 0.5110205 0.5214263 0.5114832 0.5191152 
##      1841      1842      1843      1844      1845      1846      1847      1848 
## 0.5144906 0.5202708 0.5168032 0.5133340 0.5186529 0.5131027 0.5119460 0.5121773 
##      1849      1850      1851      1852      1853      1854      1855      1856 
## 0.5186529 0.5186529 0.5163408 0.5137967 0.5126400 0.5168032 0.5191152 0.5107891 
##      1857      1858      1859      1860      1861      1862      1863      1864 
## 0.5163408 0.5163408 0.5172657 0.5205019 0.5198086 0.5142593 0.5179593 0.5128714 
##      1865      1866      1867      1868      1869      1870      1871      1872 
## 0.5200397 0.5207330 0.5151845 0.5103263 0.5158783 0.5131027 0.5105577 0.5165720 
##      1873      1874      1875      1876      1877      1878      1879      1880 
## 0.5114832 0.5214263 0.5195775 0.5103263 0.5142593 0.5135654 0.5158783 0.5207330 
##      1881      1882      1883      1884      1885      1886      1887      1888 
## 0.5128714 0.5207330 0.5184217 0.5168032 0.5126400 0.5128714 0.5179593 0.5186529 
##      1889      1890      1891      1892      1893      1894      1895      1896 
## 0.5184217 0.5209641 0.5140280 0.5154157 0.5144906 0.5121773 0.5154157 0.5105577 
##      1897      1898      1899      1900      1901      1902      1903      1904 
## 0.5131027 0.5128714 0.5124087 0.5121773 0.5140280 0.5205019 0.5154157 0.5172657 
##      1905      1906      1907      1908      1909      1910      1911      1912 
## 0.5119460 0.5119460 0.5163408 0.5193463 0.5131027 0.5165720 0.5186529 0.5135654 
##      1913      1914      1915      1916      1917      1918      1919      1920 
## 0.5200397 0.5181905 0.5128714 0.5165720 0.5131027 0.5126400 0.5216573 0.5137967 
##      1921      1922      1923      1924      1925      1926      1927      1928 
## 0.5158783 0.5131027 0.5200397 0.5177281 0.5195775 0.5114832 0.5131027 0.5121773 
##      1929      1930      1931      1932      1933      1934      1935      1936 
## 0.5131027 0.5110205 0.5170345 0.5209641 0.5174969 0.5181905 0.5161095 0.5202708 
##      1937      1938      1939      1940      1941      1942      1943      1944 
## 0.5193463 0.5181905 0.5170345 0.5170345 0.5214263 0.5200397 0.5107891 0.5158783 
##      1945      1946      1947      1948      1949      1950      1951      1952 
## 0.5207330 0.5216573 0.5186529 0.5140280 0.5124087 0.5179593 0.5154157 0.5179593 
##      1953      1954      1955      1956      1957      1958      1959      1960 
## 0.5200397 0.5209641 0.5128714 0.5137967 0.5195775 0.5110205 0.5177281 0.5107891 
##      1961      1962      1963      1964      1965      1966      1967      1968 
## 0.5158783 0.5191152 0.5112519 0.5221194 0.5107891 0.5154157 0.5151845 0.5179593 
##      1969      1970      1971      1972      1973      1974      1975      1976 
## 0.5165720 0.5154157 0.5158783 0.5214263 0.5135654 0.5186529 0.5207330 0.5128714 
##      1977      1978      1979      1980      1981      1982      1983      1984 
## 0.5151845 0.5174969 0.5131027 0.5124087 0.5121773 0.5133340 0.5128714 0.5207330 
##      1985      1986      1987      1988      1989      1990      1991      1992 
## 0.5110205 0.5168032 0.5112519 0.5207330 0.5147219 0.5144906 0.5156470 0.5207330 
##      1993      1994      1995      1996      1997      1998      1999      2000 
## 0.5163408 0.5216573 0.5147219 0.5126400 0.5107891 0.5188840 0.5133340 0.5172657 
##      2001      2002      2003      2004      2005      2006      2007      2008 
## 0.5216573 0.5170345 0.5193463 0.5151845 0.5218884 0.5193463 0.5168032 0.5105577 
##      2009      2010      2011      2012      2013      2014      2015      2016 
## 0.5112519 0.5156470 0.5174969 0.5112519 0.5117146 0.5133340 0.5218884 0.5207330 
##      2017      2018      2019      2020      2021      2022      2023      2024 
## 0.5126400 0.5186529 0.5214263 0.5149532 0.5131027 0.5211952 0.5172657 0.5184217 
##      2025      2026      2027      2028      2029      2030      2031      2032 
## 0.5218884 0.5165720 0.5144906 0.5209641 0.5218884 0.5184217 0.5156470 0.5202708 
##      2033      2034      2035      2036      2037      2038      2039      2040 
## 0.5142593 0.5216573 0.5128714 0.5112519 0.5142593 0.5137967 0.5103263 0.5195775 
##      2041      2042      2043      2044      2045      2046      2047      2048 
## 0.5163408 0.5202708 0.5214263 0.5124087 0.5137967 0.5207330 0.5147219 0.5119460 
##      2049      2050      2051      2052      2053      2054      2055      2056 
## 0.5140280 0.5200397 0.5133340 0.5140280 0.5198086 0.5205019 0.5207330 0.5117146 
##      2057      2058      2059      2060      2061      2062      2063      2064 
## 0.5126400 0.5198086 0.5202708 0.5105577 0.5149532 0.5214263 0.5128714 0.5103263 
##      2065      2066      2067      2068      2069      2070      2071      2072 
## 0.5170345 0.5211952 0.5191152 0.5218884 0.5142593 0.5211952 0.5107891 0.5156470 
##      2073      2074      2075      2076      2077      2078      2079      2080 
## 0.5218884 0.5126400 0.5202708 0.5131027 0.5158783 0.5105577 0.5163408 0.5117146 
##      2081      2082      2083      2084      2085      2086      2087      2088 
## 0.5142593 0.5147219 0.5170345 0.5195775 0.5168032 0.5181905 0.5184217 0.5181905 
##      2089      2090      2091      2092      2093      2094      2095      2096 
## 0.5133340 0.5114832 0.5149532 0.5179593 0.5137967 0.5151845 0.5161095 0.5177281 
##      2097      2098      2099      2100      2101      2102      2103      2104 
## 0.5174969 0.5181905 0.5110205 0.5154157 0.5121773 0.5163408 0.5165720 0.5172657 
##      2105      2106      2107      2108      2109      2110      2111      2112 
## 0.5156470 0.5126400 0.5179593 0.5174969 0.5207330 0.5142593 0.5161095 0.5128714 
##      2113      2114      2115      2116      2117      2118      2119      2120 
## 0.5121773 0.5107891 0.5221194 0.5131027 0.5112519 0.5191152 0.5110205 0.5174969 
##      2121      2122      2123      2124      2125      2126      2127      2128 
## 0.5205019 0.5174969 0.5131027 0.5195775 0.5151845 0.5165720 0.5168032 0.5107891 
##      2129      2130      2131      2132      2133      2134      2135      2136 
## 0.5207330 0.5211952 0.5200397 0.5119460 0.5149532 0.5110205 0.5121773 0.5161095 
##      2137      2138      2139      2140      2141      2142      2143      2144 
## 0.5112519 0.5205019 0.5112519 0.5186529 0.5137967 0.5128714 0.5137967 0.5165720 
##      2145      2146      2147      2148      2149      2150      2151      2152 
## 0.5200397 0.5142593 0.5168032 0.5177281 0.5107891 0.5147219 0.5207330 0.5110205 
##      2153      2154      2155      2156      2157      2158      2159      2160 
## 0.5181905 0.5163408 0.5124087 0.5177281 0.5133340 0.5214263 0.5191152 0.5103263 
##      2161      2162      2163      2164      2165      2166      2167      2168 
## 0.5163408 0.5133340 0.5124087 0.5214263 0.5124087 0.5131027 0.5195775 0.5205019 
##      2169      2170      2171      2172      2173      2174      2175      2176 
## 0.5205019 0.5126400 0.5126400 0.5205019 0.5131027 0.5140280 0.5126400 0.5158783 
##      2177      2178      2179      2180      2181      2182      2183      2184 
## 0.5211952 0.5214263 0.5163408 0.5121773 0.5195775 0.5202708 0.5172657 0.5154157 
##      2185      2186      2187      2188      2189      2190      2191      2192 
## 0.5128714 0.5156470 0.5156470 0.5114832 0.5191152 0.5186529 0.5107891 0.5174969 
##      2193      2194      2195      2196      2197      2198      2199      2200 
## 0.5154157 0.5179593 0.5144906 0.5149532 0.5207330 0.5188840 0.5181905 0.5121773 
##      2201      2202      2203      2204      2205      2206      2207      2208 
## 0.5188840 0.5184217 0.5135654 0.5128714 0.5216573 0.5191152 0.5188840 0.5114832 
##      2209      2210      2211      2212      2213      2214      2215      2216 
## 0.5191152 0.5119460 0.5126400 0.5117146 0.5121773 0.5131027 0.5110205 0.5191152 
##      2217      2218      2219      2220      2221      2222      2223      2224 
## 0.5156470 0.5114832 0.5202708 0.5103263 0.5156470 0.5103263 0.5154157 0.5168032 
##      2225      2226      2227      2228      2229      2230      2231      2232 
## 0.5112519 0.5128714 0.5103263 0.5137967 0.5170345 0.5218884 0.5124087 0.5195775 
##      2233      2234      2235      2236      2237      2238      2239      2240 
## 0.5110205 0.5117146 0.5121773 0.5126400 0.5119460 0.5161095 0.5165720 0.5193463 
##      2241      2242      2243      2244      2245      2246      2247      2248 
## 0.5216573 0.5151845 0.5128714 0.5200397 0.5177281 0.5207330 0.5128714 0.5133340 
##      2249      2250      2251      2252      2253      2254      2255      2256 
## 0.5221194 0.5128714 0.5110205 0.5151845 0.5156470 0.5144906 0.5144906 0.5156470 
##      2257      2258      2259      2260      2261      2262      2263      2264 
## 0.5191152 0.5149532 0.5128714 0.5177281 0.5105577 0.5114832 0.5119460 0.5112519 
##      2265      2266      2267      2268      2269      2270      2271      2272 
## 0.5154157 0.5147219 0.5114832 0.5135654 0.5128714 0.5191152 0.5105577 0.5179593 
##      2273      2274      2275      2276      2277      2278      2279      2280 
## 0.5112519 0.5191152 0.5221194 0.5186529 0.5128714 0.5191152 0.5126400 0.5117146 
##      2281      2282      2283      2284      2285      2286      2287      2288 
## 0.5154157 0.5172657 0.5202708 0.5133340 0.5147219 0.5121773 0.5124087 0.5144906 
##      2289      2290      2291      2292      2293      2294      2295      2296 
## 0.5137967 0.5174969 0.5140280 0.5147219 0.5128714 0.5154157 0.5117146 0.5188840 
##      2297      2298      2299      2300      2301      2302      2303      2304 
## 0.5103263 0.5174969 0.5184217 0.5142593 0.5142593 0.5151845 0.5198086 0.5186529 
##      2305      2306      2307      2308      2309      2310      2311      2312 
## 0.5144906 0.5165720 0.5158783 0.5117146 0.5161095 0.5137967 0.5124087 0.5121773 
##      2313      2314      2315      2316      2317      2318      2319      2320 
## 0.5112519 0.5151845 0.5105577 0.5184217 0.5214263 0.5105577 0.5200397 0.5198086 
##      2321      2322      2323      2324      2325      2326      2327      2328 
## 0.5163408 0.5161095 0.5161095 0.5114832 0.5168032 0.5181905 0.5103263 0.5218884 
##      2329      2330      2331      2332      2333      2334      2335      2336 
## 0.5209641 0.5168032 0.5177281 0.5184217 0.5165720 0.5165720 0.5142593 0.5186529 
##      2337      2338      2339      2340      2341      2342      2343      2344 
## 0.5205019 0.5151845 0.5172657 0.5133340 0.5142593 0.5117146 0.5149532 0.5179593 
##      2345      2346      2347      2348      2349      2350      2351      2352 
## 0.5184217 0.5140280 0.5174969 0.5205019 0.5128714 0.5135654 0.5193463 0.5214263 
##      2353      2354      2355      2356      2357      2358      2359      2360 
## 0.5128714 0.5158783 0.5105577 0.5103263 0.5126400 0.5137967 0.5209641 0.5209641 
##      2361      2362      2363      2364      2365      2366      2367      2368 
## 0.5214263 0.5161095 0.5214263 0.5214263 0.5126400 0.5156470 0.5163408 0.5137967 
##      2369      2370      2371      2372      2373      2374      2375      2376 
## 0.5211952 0.5128714 0.5107891 0.5211952 0.5193463 0.5105577 0.5179593 0.5221194 
##      2377      2378      2379      2380      2381      2382      2383      2384 
## 0.5195775 0.5137967 0.5135654 0.5216573 0.5126400 0.5179593 0.5174969 0.5170345 
##      2385      2386      2387      2388      2389      2390      2391      2392 
## 0.5216573 0.5133340 0.5186529 0.5156470 0.5205019 0.5124087 0.5140280 0.5209641 
##      2393      2394      2395      2396      2397      2398      2399      2400 
## 0.5191152 0.5131027 0.5110205 0.5140280 0.5193463 0.5142593 0.5195775 0.5218884 
##      2401      2402      2403      2404      2405      2406      2407      2408 
## 0.5202708 0.5110205 0.5140280 0.5163408 0.5172657 0.5205019 0.5114832 0.5168032 
##      2409      2410      2411      2412      2413      2414      2415      2416 
## 0.5135654 0.5172657 0.5198086 0.5168032 0.5137967 0.5154157 0.5117146 0.5209641 
##      2417      2418      2419      2420      2421      2422      2423      2424 
## 0.5188840 0.5151845 0.5112519 0.5161095 0.5221194 0.5163408 0.5172657 0.5124087 
##      2425      2426      2427      2428      2429      2430      2431      2432 
## 0.5105577 0.5156470 0.5117146 0.5119460 0.5144906 0.5110205 0.5131027 0.5135654 
##      2433      2434      2435      2436      2437      2438      2439      2440 
## 0.5131027 0.5218884 0.5112519 0.5216573 0.5144906 0.5165720 0.5133340 0.5221194 
##      2441      2442      2443      2444      2445      2446      2447      2448 
## 0.5158783 0.5163408 0.5114832 0.5188840 0.5191152 0.5168032 0.5163408 0.5191152 
##      2449      2450      2451      2452      2453      2454      2455      2456 
## 0.5142593 0.5149532 0.5184217 0.5193463 0.5205019 0.5170345 0.5168032 0.5112519 
##      2457      2458      2459      2460      2461      2462      2463      2464 
## 0.5126400 0.5174969 0.5168032 0.5186529 0.5214263 0.5181905 0.5211952 0.5128714 
##      2465      2466      2467      2468      2469      2470      2471      2472 
## 0.5135654 0.5105577 0.5188840 0.5211952 0.5193463 0.5114832 0.5172657 0.5198086 
##      2473      2474      2475      2476      2477      2478      2479      2480 
## 0.5209641 0.5119460 0.5144906 0.5112519 0.5147219 0.5191152 0.5119460 0.5200397 
##      2481      2482      2483      2484      2485      2486      2487      2488 
## 0.5147219 0.5154157 0.5170345 0.5207330 0.5174969 0.5193463 0.5198086 0.5209641 
##      2489      2490      2491      2492      2493      2494      2495      2496 
## 0.5107891 0.5117146 0.5207330 0.5117146 0.5158783 0.5128714 0.5214263 0.5172657 
##      2497      2498      2499      2500      2501      2502      2503      2504 
## 0.5156470 0.5177281 0.5195775 0.5174969 0.5195775 0.5124087 0.5209641 0.5165720 
##      2505      2506      2507      2508      2509      2510      2511      2512 
## 0.5154157 0.5112519 0.5117146 0.5140280 0.5195775 0.5218884 0.5140280 0.5110205 
##      2513      2514      2515      2516      2517      2518      2519      2520 
## 0.5184217 0.5170345 0.5156470 0.5135654 0.5172657 0.5216573 0.5209641 0.5105577 
##      2521      2522      2523      2524      2525      2526      2527      2528 
## 0.5154157 0.5170345 0.5193463 0.5174969 0.5112519 0.5179593 0.5209641 0.5191152 
##      2529      2530      2531      2532      2533      2534      2535      2536 
## 0.5170345 0.5195775 0.5161095 0.5128714 0.5163408 0.5181905 0.5207330 0.5156470 
##      2537      2538      2539      2540      2541      2542      2543      2544 
## 0.5149532 0.5205019 0.5168032 0.5198086 0.5121773 0.5216573 0.5117146 0.5154157 
##      2545      2546      2547      2548      2549      2550      2551      2552 
## 0.5124087 0.5214263 0.5211952 0.5126400 0.5119460 0.5105577 0.5133340 0.5144906 
##      2553      2554      2555      2556      2557      2558      2559      2560 
## 0.5128714 0.5110205 0.5158783 0.5202708 0.5163408 0.5218884 0.5165720 0.5214263 
##      2561      2562      2563      2564      2565      2566      2567      2568 
## 0.5214263 0.5158783 0.5135654 0.5214263 0.5198086 0.5154157 0.5158783 0.5179593 
##      2569      2570      2571      2572      2573      2574      2575      2576 
## 0.5126400 0.5131027 0.5205019 0.5158783 0.5103263 0.5142593 0.5188840 0.5165720 
##      2577      2578      2579      2580      2581      2582      2583      2584 
## 0.5140280 0.5218884 0.5135654 0.5121773 0.5205019 0.5205019 0.5119460 0.5172657 
##      2585      2586      2587      2588      2589      2590      2591      2592 
## 0.5158783 0.5198086 0.5156470 0.5121773 0.5154157 0.5131027 0.5170345 0.5114832 
##      2593      2594      2595      2596      2597      2598      2599      2600 
## 0.5174969 0.5119460 0.5172657 0.5174969 0.5195775 0.5119460 0.5216573 0.5119460 
##      2601      2602      2603      2604      2605      2606      2607      2608 
## 0.5191152 0.5133340 0.5209641 0.5165720 0.5170345 0.5193463 0.5163408 0.5154157 
##      2609      2610      2611      2612      2613      2614      2615      2616 
## 0.5214263 0.5163408 0.5214263 0.5163408 0.5168032 0.5154157 0.5170345 0.5177281 
##      2617      2618      2619      2620      2621      2622      2623      2624 
## 0.5191152 0.5202708 0.5170345 0.5107891 0.5126400 0.5188840 0.5202708 0.5144906 
##      2625      2626      2627      2628      2629      2630      2631      2632 
## 0.5214263 0.5181905 0.5147219 0.5117146 0.5105577 0.5140280 0.5140280 0.5200397 
##      2633      2634      2635      2636      2637      2638      2639      2640 
## 0.5211952 0.5168032 0.5214263 0.5119460 0.5119460 0.5133340 0.5170345 0.5103263 
##      2641      2642      2643      2644      2645      2646      2647      2648 
## 0.5117146 0.5114832 0.5135654 0.5165720 0.5193463 0.5137967 0.5117146 0.5140280 
##      2649      2650      2651      2652      2653      2654      2655      2656 
## 0.5126400 0.5214263 0.5131027 0.5126400 0.5179593 0.5103263 0.5174969 0.5191152 
##      2657      2658      2659      2660      2661      2662      2663      2664 
## 0.5181905 0.5170345 0.5140280 0.5128714 0.5179593 0.5137967 0.5188840 0.5198086 
##      2665      2666      2667      2668      2669      2670      2671      2672 
## 0.5184217 0.5158783 0.5174969 0.5158783 0.5156470 0.5216573 0.5188840 0.5209641 
##      2673      2674      2675      2676      2677      2678      2679      2680 
## 0.5112519 0.5207330 0.5216573 0.5154157 0.5158783 0.5135654 0.5149532 0.5205019 
##      2681      2682      2683      2684      2685      2686      2687      2688 
## 0.5128714 0.5128714 0.5172657 0.5172657 0.5151845 0.5198086 0.5186529 0.5174969 
##      2689      2690      2691      2692      2693      2694      2695      2696 
## 0.5151845 0.5137967 0.5105577 0.5158783 0.5216573 0.5186529 0.5105577 0.5216573 
##      2697      2698      2699      2700      2701      2702      2703      2704 
## 0.5149532 0.5209641 0.5170345 0.5131027 0.5172657 0.5154157 0.5198086 0.5103263 
##      2705      2706      2707      2708      2709      2710      2711      2712 
## 0.5154157 0.5218884 0.5214263 0.5124087 0.5144906 0.5142593 0.5151845 0.5158783 
##      2713      2714      2715      2716      2717      2718      2719      2720 
## 0.5133340 0.5133340 0.5128714 0.5179593 0.5191152 0.5170345 0.5121773 0.5184217 
##      2721      2722      2723      2724      2725      2726      2727      2728 
## 0.5200397 0.5170345 0.5172657 0.5105577 0.5177281 0.5191152 0.5216573 0.5168032 
##      2729      2730      2731      2732      2733      2734      2735      2736 
## 0.5110205 0.5105577 0.5174969 0.5186529 0.5121773 0.5205019 0.5142593 0.5142593 
##      2737      2738      2739      2740      2741      2742      2743      2744 
## 0.5181905 0.5112519 0.5142593 0.5172657 0.5184217 0.5156470 0.5154157 0.5172657 
##      2745      2746      2747      2748      2749      2750      2751      2752 
## 0.5107891 0.5121773 0.5209641 0.5137967 0.5147219 0.5216573 0.5105577 0.5221194 
##      2753      2754      2755      2756      2757      2758      2759      2760 
## 0.5181905 0.5107891 0.5174969 0.5131027 0.5163408 0.5209641 0.5181905 0.5221194 
##      2761      2762      2763      2764      2765      2766      2767      2768 
## 0.5214263 0.5186529 0.5137967 0.5177281 0.5221194 0.5119460 0.5156470 0.5121773 
##      2769      2770      2771      2772      2773      2774      2775      2776 
## 0.5177281 0.5209641 0.5114832 0.5147219 0.5170345 0.5177281 0.5121773 0.5128714 
##      2777      2778      2779      2780      2781      2782      2783      2784 
## 0.5140280 0.5191152 0.5151845 0.5147219 0.5179593 0.5124087 0.5156470 0.5207330 
##      2785      2786      2787      2788      2789      2790      2791      2792 
## 0.5221194 0.5151845 0.5121773 0.5191152 0.5165720 0.5147219 0.5211952 0.5154157 
##      2793      2794      2795      2796      2797      2798      2799      2800 
## 0.5165720 0.5172657 0.5179593 0.5193463 0.5119460 0.5140280 0.5119460 0.5211952 
##      2801      2802      2803      2804      2805      2806      2807      2808 
## 0.5191152 0.5112519 0.5216573 0.5221194 0.5151845 0.5211952 0.5158783 0.5114832 
##      2809      2810      2811      2812      2813      2814      2815      2816 
## 0.5128714 0.5140280 0.5209641 0.5207330 0.5124087 0.5207330 0.5124087 0.5103263 
##      2817      2818      2819      2820      2821      2822      2823      2824 
## 0.5126400 0.5131027 0.5126400 0.5205019 0.5221194 0.5195775 0.5200397 0.5121773 
##      2825      2826      2827      2828      2829      2830      2831      2832 
## 0.5105577 0.5200397 0.5107891 0.5147219 0.5147219 0.5133340 0.5165720 0.5110205 
##      2833      2834      2835      2836      2837      2838      2839      2840 
## 0.5103263 0.5191152 0.5174969 0.5163408 0.5144906 0.5112519 0.5107891 0.5172657 
##      2841      2842      2843      2844      2845      2846      2847      2848 
## 0.5198086 0.5137967 0.5186529 0.5214263 0.5133340 0.5103263 0.5107891 0.5168032 
##      2849      2850      2851      2852      2853      2854      2855      2856 
## 0.5198086 0.5200397 0.5200397 0.5161095 0.5200397 0.5117146 0.5163408 0.5147219 
##      2857      2858      2859      2860      2861      2862      2863      2864 
## 0.5124087 0.5172657 0.5163408 0.5186529 0.5135654 0.5188840 0.5205019 0.5207330 
##      2865      2866      2867      2868      2869      2870      2871      2872 
## 0.5211952 0.5207330 0.5186529 0.5216573 0.5107891 0.5156470 0.5170345 0.5133340 
##      2873      2874      2875      2876      2877      2878      2879      2880 
## 0.5218884 0.5209641 0.5218884 0.5135654 0.5170345 0.5207330 0.5207330 0.5200397 
##      2881      2882      2883      2884      2885      2886      2887      2888 
## 0.5205019 0.5163408 0.5179593 0.5184217 0.5110205 0.5107891 0.5218884 0.5149532 
##      2889      2890      2891      2892      2893      2894      2895      2896 
## 0.5221194 0.5142593 0.5137967 0.5128714 0.5161095 0.5170345 0.5117146 0.5174969 
##      2897      2898      2899      2900      2901      2902      2903      2904 
## 0.5184217 0.5193463 0.5117146 0.5214263 0.5117146 0.5200397 0.5202708 0.5184217 
##      2905      2906      2907      2908      2909      2910      2911      2912 
## 0.5133340 0.5184217 0.5158783 0.5184217 0.5124087 0.5207330 0.5156470 0.5184217 
##      2913      2914      2915      2916      2917      2918      2919      2920 
## 0.5168032 0.5147219 0.5142593 0.5170345 0.5200397 0.5154157 0.5172657 0.5144906 
##      2921      2922      2923      2924      2925      2926      2927      2928 
## 0.5112519 0.5205019 0.5133340 0.5200397 0.5163408 0.5135654 0.5181905 0.5110205 
##      2929      2930      2931      2932      2933      2934      2935      2936 
## 0.5174969 0.5198086 0.5124087 0.5172657 0.5179593 0.5149532 0.5133340 0.5163408 
##      2937      2938      2939      2940      2941      2942      2943      2944 
## 0.5209641 0.5137967 0.5137967 0.5119460 0.5202708 0.5126400 0.5147219 0.5214263 
##      2945      2946      2947      2948      2949      2950      2951      2952 
## 0.5110205 0.5121773 0.5105577 0.5165720 0.5144906 0.5193463 0.5161095 0.5170345 
##      2953      2954      2955      2956      2957      2958      2959      2960 
## 0.5110205 0.5177281 0.5211952 0.5137967 0.5181905 0.5131027 0.5165720 0.5161095 
##      2961      2962      2963      2964      2965      2966      2967      2968 
## 0.5186529 0.5149532 0.5151845 0.5151845 0.5207330 0.5170345 0.5105577 0.5184217 
##      2969      2970      2971      2972      2973      2974      2975      2976 
## 0.5119460 0.5211952 0.5200397 0.5119460 0.5214263 0.5135654 0.5137967 0.5140280 
##      2977      2978      2979      2980      2981      2982      2983      2984 
## 0.5198086 0.5195775 0.5195775 0.5119460 0.5149532 0.5184217 0.5191152 0.5221194 
##      2985      2986      2987      2988      2989      2990      2991      2992 
## 0.5117146 0.5193463 0.5154157 0.5117146 0.5202708 0.5218884 0.5121773 0.5128714 
##      2993      2994      2995      2996      2997      2998      2999      3000 
## 0.5154157 0.5103263 0.5137967 0.5156470 0.5168032 0.5195775 0.5172657 0.5179593 
##      3001      3002      3003      3004      3005      3006      3007      3008 
## 0.5202708 0.5154157 0.5128714 0.5184217 0.5112519 0.5156470 0.5158783 0.5147219 
##      3009      3010      3011      3012      3013      3014      3015      3016 
## 0.5133340 0.5221194 0.5211952 0.5211952 0.5121773 0.5198086 0.5209641 0.5195775 
##      3017      3018      3019      3020      3021      3022      3023      3024 
## 0.5112519 0.5110205 0.5158783 0.5165720 0.5105577 0.5216573 0.5149532 0.5170345 
##      3025      3026      3027      3028      3029      3030      3031      3032 
## 0.5179593 0.5154157 0.5140280 0.5110205 0.5184217 0.5179593 0.5149532 0.5151845 
##      3033      3034      3035      3036      3037      3038      3039      3040 
## 0.5135654 0.5156470 0.5147219 0.5200397 0.5186529 0.5154157 0.5170345 0.5110205 
##      3041      3042      3043      3044      3045      3046      3047      3048 
## 0.5184217 0.5121773 0.5135654 0.5172657 0.5202708 0.5218884 0.5202708 0.5177281 
##      3049      3050      3051      3052      3053      3054      3055      3056 
## 0.5161095 0.5200397 0.5103263 0.5107891 0.5144906 0.5137967 0.5140280 0.5195775 
##      3057      3058      3059      3060      3061      3062      3063      3064 
## 0.5124087 0.5165720 0.5126400 0.5131027 0.5172657 0.5110205 0.5154157 0.5158783 
##      3065      3066      3067      3068      3069      3070      3071      3072 
## 0.5131027 0.5174969 0.5154157 0.5163408 0.5112519 0.5177281 0.5135654 0.5114832 
##      3073      3074      3075      3076      3077      3078      3079      3080 
## 0.5158783 0.5202708 0.5214263 0.5214263 0.5170345 0.5198086 0.5205019 0.5207330 
##      3081      3082      3083      3084      3085      3086      3087      3088 
## 0.5151845 0.5140280 0.5177281 0.5170345 0.5207330 0.5221194 0.5161095 0.5110205 
##      3089      3090      3091      3092      3093      3094      3095      3096 
## 0.5103263 0.5209641 0.5135654 0.5174969 0.5121773 0.5170345 0.5193463 0.5163408 
##      3097      3098      3099      3100      3101      3102      3103      3104 
## 0.5200397 0.5191152 0.5195775 0.5142593 0.5142593 0.5124087 0.5151845 0.5193463 
##      3105      3106      3107      3108      3109      3110      3111      3112 
## 0.5158783 0.5184217 0.5177281 0.5188840 0.5202708 0.5142593 0.5218884 0.5103263 
##      3113      3114      3115      3116      3117      3118      3119      3120 
## 0.5218884 0.5191152 0.5163408 0.5147219 0.5131027 0.5174969 0.5165720 0.5105577 
##      3121      3122      3123      3124      3125      3126      3127      3128 
## 0.5137967 0.5214263 0.5186529 0.5112519 0.5174969 0.5211952 0.5165720 0.5211952 
##      3129      3130      3131      3132      3133      3134      3135      3136 
## 0.5107891 0.5133340 0.5205019 0.5172657 0.5214263 0.5216573 0.5135654 0.5105577 
##      3137      3138      3139      3140      3141      3142      3143      3144 
## 0.5181905 0.5126400 0.5154157 0.5156470 0.5214263 0.5186529 0.5211952 0.5172657 
##      3145      3146      3147      3148      3149      3150      3151      3152 
## 0.5188840 0.5200397 0.5121773 0.5105577 0.5172657 0.5140280 0.5144906 0.5198086 
##      3153      3154      3155      3156      3157      3158      3159      3160 
## 0.5117146 0.5188840 0.5202708 0.5193463 0.5172657 0.5158783 0.5156470 0.5147219 
##      3161      3162      3163      3164      3165      3166      3167      3168 
## 0.5168032 0.5211952 0.5200397 0.5149532 0.5154157 0.5202708 0.5103263 0.5126400 
##      3169      3170      3171      3172      3173      3174      3175      3176 
## 0.5221194 0.5144906 0.5174969 0.5114832 0.5147219 0.5135654 0.5149532 0.5133340 
##      3177      3178      3179      3180      3181      3182      3183      3184 
## 0.5188840 0.5207330 0.5158783 0.5172657 0.5142593 0.5124087 0.5216573 0.5142593 
##      3185      3186      3187      3188      3189      3190      3191      3192 
## 0.5154157 0.5184217 0.5174969 0.5209641 0.5221194 0.5142593 0.5147219 0.5181905 
##      3193      3194      3195      3196      3197      3198      3199      3200 
## 0.5188840 0.5128714 0.5135654 0.5202708 0.5214263 0.5137967 0.5151845 0.5151845 
##      3201      3202      3203      3204      3205      3206      3207      3208 
## 0.5147219 0.5218884 0.5154157 0.5172657 0.5110205 0.5133340 0.5184217 0.5191152 
##      3209      3210      3211      3212      3213      3214      3215      3216 
## 0.5107891 0.5186529 0.5128714 0.5121773 0.5140280 0.5174969 0.5154157 0.5211952 
##      3217      3218      3219      3220      3221      3222      3223      3224 
## 0.5131027 0.5168032 0.5156470 0.5181905 0.5158783 0.5133340 0.5128714 0.5195775 
##      3225      3226      3227      3228      3229      3230      3231      3232 
## 0.5117146 0.5193463 0.5186529 0.5105577 0.5107891 0.5168032 0.5119460 0.5188840 
##      3233      3234      3235      3236      3237      3238      3239      3240 
## 0.5112519 0.5142593 0.5170345 0.5133340 0.5195775 0.5147219 0.5168032 0.5149532 
##      3241      3242      3243      3244      3245      3246      3247      3248 
## 0.5170345 0.5218884 0.5188840 0.5172657 0.5151845 0.5163408 0.5149532 0.5209641 
##      3249      3250      3251      3252      3253      3254      3255      3256 
## 0.5105577 0.5161095 0.5140280 0.5158783 0.5191152 0.5163408 0.5172657 0.5158783 
##      3257      3258      3259      3260      3261      3262      3263      3264 
## 0.5119460 0.5191152 0.5218884 0.5128714 0.5172657 0.5126400 0.5131027 0.5218884 
##      3265      3266      3267      3268      3269      3270      3271      3272 
## 0.5137967 0.5181905 0.5149532 0.5110205 0.5177281 0.5126400 0.5205019 0.5103263 
##      3273      3274      3275      3276      3277      3278      3279      3280 
## 0.5105577 0.5198086 0.5205019 0.5107891 0.5170345 0.5119460 0.5117146 0.5218884 
##      3281      3282      3283      3284      3285      3286      3287      3288 
## 0.5184217 0.5174969 0.5133340 0.5142593 0.5163408 0.5112519 0.5114832 0.5135654 
##      3289      3290      3291      3292      3293      3294      3295      3296 
## 0.5198086 0.5135654 0.5128714 0.5214263 0.5142593 0.5151845 0.5144906 0.5128714 
##      3297      3298      3299      3300      3301      3302      3303      3304 
## 0.5151845 0.5133340 0.5188840 0.5170345 0.5170345 0.5135654 0.5140280 0.5112519 
##      3305      3306      3307      3308      3309      3310      3311      3312 
## 0.5135654 0.5144906 0.5221194 0.5179593 0.5149532 0.5133340 0.5142593 0.5131027 
##      3313      3314      3315      3316      3317      3318      3319      3320 
## 0.5174969 0.5112519 0.5172657 0.5218884 0.5174969 0.5181905 0.5172657 0.5195775 
##      3321      3322      3323      3324      3325      3326      3327      3328 
## 0.5105577 0.5114832 0.5135654 0.5174969 0.5105577 0.5195775 0.5135654 0.5184217 
##      3329      3330      3331      3332      3333      3334      3335      3336 
## 0.5154157 0.5156470 0.5168032 0.5198086 0.5170345 0.5117146 0.5117146 0.5137967 
##      3337      3338      3339      3340      3341      3342      3343      3344 
## 0.5200397 0.5172657 0.5205019 0.5179593 0.5103263 0.5172657 0.5170345 0.5105577 
##      3345      3346      3347      3348      3349      3350      3351      3352 
## 0.5105577 0.5209641 0.5181905 0.5151845 0.5149532 0.5163408 0.5209641 0.5131027 
##      3353      3354      3355      3356      3357      3358      3359      3360 
## 0.5191152 0.5188840 0.5174969 0.5207330 0.5188840 0.5128714 0.5154157 0.5128714 
##      3361      3362      3363      3364      3365      3366      3367      3368 
## 0.5188840 0.5177281 0.5165720 0.5200397 0.5103263 0.5181905 0.5151845 0.5163408 
##      3369      3370      3371      3372      3373      3374      3375      3376 
## 0.5205019 0.5133340 0.5165720 0.5216573 0.5151845 0.5147219 0.5158783 0.5218884 
##      3377      3378      3379      3380      3381      3382      3383      3384 
## 0.5119460 0.5221194 0.5207330 0.5154157 0.5151845 0.5121773 0.5188840 0.5205019 
##      3385      3386      3387      3388      3389      3390      3391      3392 
## 0.5200397 0.5170345 0.5209641 0.5214263 0.5200397 0.5117146 0.5170345 0.5135654 
##      3393      3394      3395      3396      3397      3398      3399      3400 
## 0.5172657 0.5172657 0.5112519 0.5135654 0.5105577 0.5119460 0.5133340 0.5151845 
##      3401      3402      3403      3404      3405      3406      3407      3408 
## 0.5177281 0.5198086 0.5105577 0.5195775 0.5114832 0.5154157 0.5205019 0.5131027 
##      3409      3410      3411      3412      3413      3414      3415      3416 
## 0.5133340 0.5158783 0.5161095 0.5172657 0.5151845 0.5195775 0.5207330 0.5165720 
##      3417      3418      3419      3420      3421      3422      3423      3424 
## 0.5128714 0.5137967 0.5163408 0.5191152 0.5103263 0.5117146 0.5158783 0.5207330 
##      3425      3426      3427      3428      3429      3430      3431      3432 
## 0.5207330 0.5110205 0.5184217 0.5117146 0.5181905 0.5195775 0.5174969 0.5207330 
##      3433      3434      3435      3436      3437      3438      3439      3440 
## 0.5218884 0.5156470 0.5211952 0.5179593 0.5200397 0.5174969 0.5209641 0.5168032 
##      3441      3442      3443      3444      3445      3446      3447      3448 
## 0.5221194 0.5179593 0.5147219 0.5202708 0.5181905 0.5121773 0.5105577 0.5103263 
##      3449      3450      3451      3452      3453      3454      3455      3456 
## 0.5172657 0.5172657 0.5198086 0.5205019 0.5188840 0.5142593 0.5144906 0.5184217 
##      3457      3458      3459      3460      3461      3462      3463      3464 
## 0.5128714 0.5117146 0.5209641 0.5207330 0.5140280 0.5151845 0.5156470 0.5112519 
##      3465      3466      3467      3468      3469      3470      3471      3472 
## 0.5137967 0.5172657 0.5207330 0.5207330 0.5140280 0.5105577 0.5165720 0.5177281 
##      3473      3474      3475      3476      3477      3478      3479      3480 
## 0.5137967 0.5163408 0.5158783 0.5211952 0.5103263 0.5193463 0.5135654 0.5205019 
##      3481      3482      3483      3484      3485      3486      3487      3488 
## 0.5188840 0.5207330 0.5195775 0.5133340 0.5117146 0.5179593 0.5207330 0.5188840 
##      3489      3490      3491      3492      3493      3494      3495      3496 
## 0.5209641 0.5131027 0.5174969 0.5142593 0.5121773 0.5121773 0.5209641 0.5151845 
##      3497      3498      3499      3500      3501      3502      3503      3504 
## 0.5154157 0.5221194 0.5140280 0.5147219 0.5112519 0.5218884 0.5184217 0.5221194 
##      3505      3506      3507      3508      3509      3510      3511      3512 
## 0.5181905 0.5186529 0.5135654 0.5184217 0.5124087 0.5198086 0.5144906 0.5174969 
##      3513      3514      3515      3516      3517      3518      3519      3520 
## 0.5195775 0.5103263 0.5209641 0.5144906 0.5211952 0.5193463 0.5165720 0.5202708 
##      3521      3522      3523      3524      3525      3526      3527      3528 
## 0.5184217 0.5121773 0.5149532 0.5103263 0.5128714 0.5105577 0.5177281 0.5110205 
##      3529      3530      3531      3532      3533      3534      3535      3536 
## 0.5137967 0.5161095 0.5209641 0.5151845 0.5131027 0.5151845 0.5112519 0.5126400 
##      3537      3538      3539      3540      3541      3542      3543      3544 
## 0.5179593 0.5117146 0.5126400 0.5174969 0.5112519 0.5151845 0.5165720 0.5200397 
##      3545      3546      3547      3548      3549      3550      3551      3552 
## 0.5121773 0.5207330 0.5161095 0.5209641 0.5107891 0.5114832 0.5209641 0.5149532 
##      3553      3554      3555      3556      3557      3558      3559      3560 
## 0.5214263 0.5137967 0.5151845 0.5221194 0.5110205 0.5214263 0.5144906 0.5154157 
##      3561      3562      3563      3564      3565      3566      3567      3568 
## 0.5188840 0.5114832 0.5177281 0.5140280 0.5198086 0.5179593 0.5112519 0.5135654 
##      3569      3570      3571      3572      3573      3574      3575      3576 
## 0.5177281 0.5200397 0.5121773 0.5174969 0.5198086 0.5147219 0.5156470 0.5195775 
##      3577      3578      3579      3580      3581      3582      3583      3584 
## 0.5124087 0.5207330 0.5103263 0.5137967 0.5133340 0.5170345 0.5165720 0.5177281 
##      3585      3586      3587      3588      3589      3590      3591      3592 
## 0.5119460 0.5144906 0.5147219 0.5221194 0.5137967 0.5107891 0.5216573 0.5121773 
##      3593      3594      3595      3596      3597      3598      3599      3600 
## 0.5105577 0.5126400 0.5172657 0.5191152 0.5126400 0.5200397 0.5137967 0.5135654 
##      3601      3602      3603      3604      3605      3606      3607      3608 
## 0.5216573 0.5181905 0.5105577 0.5128714 0.5103263 0.5174969 0.5105577 0.5163408 
##      3609      3610      3611      3612      3613      3614      3615      3616 
## 0.5135654 0.5128714 0.5211952 0.5144906 0.5140280 0.5195775 0.5103263 0.5218884 
##      3617      3618      3619      3620      3621      3622      3623      3624 
## 0.5112519 0.5144906 0.5154157 0.5209641 0.5195775 0.5137967 0.5119460 0.5174969 
##      3625      3626      3627      3628      3629      3630      3631      3632 
## 0.5128714 0.5133340 0.5103263 0.5119460 0.5110205 0.5172657 0.5168032 0.5114832 
##      3633      3634      3635      3636      3637      3638      3639      3640 
## 0.5163408 0.5172657 0.5117146 0.5211952 0.5133340 0.5216573 0.5158783 0.5168032 
##      3641      3642      3643      3644      3645      3646      3647      3648 
## 0.5168032 0.5103263 0.5133340 0.5154157 0.5172657 0.5200397 0.5205019 0.5149532 
##      3649      3650      3651      3652      3653      3654      3655      3656 
## 0.5110205 0.5205019 0.5158783 0.5114832 0.5117146 0.5131027 0.5184217 0.5198086 
##      3657      3658      3659      3660      3661      3662      3663      3664 
## 0.5114832 0.5172657 0.5114832 0.5103263 0.5142593 0.5126400 0.5117146 0.5214263 
##      3665      3666      3667      3668      3669      3670      3671      3672 
## 0.5124087 0.5216573 0.5195775 0.5163408 0.5165720 0.5126400 0.5128714 0.5165720 
##      3673      3674      3675      3676      3677      3678      3679      3680 
## 0.5110205 0.5168032 0.5158783 0.5156470 0.5142593 0.5207330 0.5121773 0.5144906 
##      3681      3682      3683      3684      3685      3686      3687      3688 
## 0.5174969 0.5193463 0.5188840 0.5131027 0.5135654 0.5209641 0.5202708 0.5177281 
##      3689      3690      3691      3692      3693      3694      3695      3696 
## 0.5181905 0.5179593 0.5140280 0.5135654 0.5170345 0.5112519 0.5163408 0.5193463 
##      3697      3698      3699      3700      3701      3702      3703      3704 
## 0.5186529 0.5154157 0.5207330 0.5156470 0.5110205 0.5168032 0.5140280 0.5103263 
##      3705      3706      3707      3708      3709      3710      3711      3712 
## 0.5170345 0.5121773 0.5140280 0.5110205 0.5121773 0.5172657 0.5105577 0.5137967 
##      3713      3714      3715      3716      3717      3718      3719      3720 
## 0.5151845 0.5198086 0.5119460 0.5161095 0.5151845 0.5198086 0.5202708 0.5172657 
##      3721      3722      3723      3724      3725      3726      3727      3728 
## 0.5172657 0.5174969 0.5119460 0.5188840 0.5211952 0.5209641 0.5193463 0.5198086 
##      3729      3730      3731      3732      3733      3734      3735      3736 
## 0.5207330 0.5144906 0.5172657 0.5198086 0.5207330 0.5179593 0.5131027 0.5211952 
##      3737      3738      3739      3740      3741      3742      3743      3744 
## 0.5147219 0.5110205 0.5158783 0.5170345 0.5140280 0.5184217 0.5195775 0.5165720 
##      3745      3746      3747      3748      3749      3750      3751      3752 
## 0.5216573 0.5191152 0.5198086 0.5147219 0.5200397 0.5181905 0.5205019 0.5188840 
##      3753      3754      3755      3756      3757      3758      3759      3760 
## 0.5198086 0.5188840 0.5156470 0.5193463 0.5195775 0.5193463 0.5161095 0.5181905 
##      3761      3762      3763      3764      3765      3766      3767      3768 
## 0.5131027 0.5184217 0.5168032 0.5119460 0.5144906 0.5200397 0.5193463 0.5198086 
##      3769      3770      3771      3772      3773      3774      3775      3776 
## 0.5158783 0.5193463 0.5140280 0.5174969 0.5200397 0.5179593 0.5107891 0.5107891 
##      3777      3778      3779      3780      3781      3782      3783      3784 
## 0.5121773 0.5202708 0.5216573 0.5179593 0.5195775 0.5207330 0.5195775 0.5172657 
##      3785      3786      3787      3788      3789      3790      3791      3792 
## 0.5131027 0.5103263 0.5112519 0.5181905 0.5110205 0.5214263 0.5205019 0.5156470 
##      3793      3794      3795      3796      3797      3798      3799      3800 
## 0.5110205 0.5126400 0.5149532 0.5114832 0.5158783 0.5211952 0.5133340 0.5117146 
##      3801      3802      3803      3804      3805      3806      3807      3808 
## 0.5179593 0.5161095 0.5218884 0.5216573 0.5188840 0.5124087 0.5107891 0.5149532 
##      3809      3810      3811      3812      3813      3814      3815      3816 
## 0.5172657 0.5172657 0.5179593 0.5149532 0.5207330 0.5184217 0.5107891 0.5214263 
##      3817      3818      3819      3820      3821      3822      3823      3824 
## 0.5186529 0.5131027 0.5186529 0.5221194 0.5165720 0.5221194 0.5133340 0.5110205 
##      3825      3826      3827      3828      3829      3830      3831      3832 
## 0.5135654 0.5188840 0.5147219 0.5112519 0.5161095 0.5103263 0.5137967 0.5181905 
##      3833      3834      3835      3836      3837      3838      3839      3840 
## 0.5174969 0.5137967 0.5117146 0.5198086 0.5114832 0.5110205 0.5126400 0.5121773 
##      3841      3842      3843      3844      3845      3846      3847      3848 
## 0.5198086 0.5114832 0.5202708 0.5205019 0.5221194 0.5161095 0.5133340 0.5170345 
##      3849      3850      3851      3852      3853      3854      3855      3856 
## 0.5168032 0.5119460 0.5121773 0.5181905 0.5221194 0.5221194 0.5209641 0.5177281 
##      3857      3858      3859      3860      3861      3862      3863      3864 
## 0.5214263 0.5133340 0.5202708 0.5117146 0.5137967 0.5174969 0.5147219 0.5158783 
##      3865      3866      3867      3868      3869      3870      3871      3872 
## 0.5135654 0.5133340 0.5184217 0.5202708 0.5126400 0.5124087 0.5149532 0.5170345 
##      3873      3874      3875      3876      3877      3878      3879      3880 
## 0.5151845 0.5181905 0.5119460 0.5202708 0.5172657 0.5216573 0.5221194 0.5177281 
##      3881      3882      3883      3884      3885      3886      3887      3888 
## 0.5161095 0.5186529 0.5112519 0.5193463 0.5179593 0.5103263 0.5214263 0.5174969 
##      3889      3890      3891      3892      3893      3894      3895      3896 
## 0.5105577 0.5170345 0.5110205 0.5195775 0.5124087 0.5209641 0.5186529 0.5177281 
##      3897      3898      3899      3900      3901      3902      3903      3904 
## 0.5177281 0.5195775 0.5186529 0.5144906 0.5205019 0.5147219 0.5181905 0.5114832 
##      3905      3906      3907      3908      3909      3910      3911      3912 
## 0.5218884 0.5218884 0.5193463 0.5103263 0.5119460 0.5117146 0.5207330 0.5214263 
##      3913      3914      3915      3916      3917      3918      3919      3920 
## 0.5205019 0.5188840 0.5161095 0.5193463 0.5202708 0.5110205 0.5186529 0.5147219 
##      3921      3922      3923      3924      3925      3926      3927      3928 
## 0.5105577 0.5200397 0.5186529 0.5137967 0.5174969 0.5110205 0.5147219 0.5112519 
##      3929      3930      3931      3932      3933      3934      3935      3936 
## 0.5142593 0.5103263 0.5126400 0.5144906 0.5133340 0.5205019 0.5170345 0.5151845 
##      3937      3938      3939      3940      3941      3942      3943      3944 
## 0.5177281 0.5177281 0.5188840 0.5214263 0.5165720 0.5200397 0.5214263 0.5135654 
##      3945      3946      3947      3948      3949      3950      3951      3952 
## 0.5107891 0.5149532 0.5186529 0.5119460 0.5154157 0.5131027 0.5114832 0.5135654 
##      3953      3954      3955      3956      3957      3958      3959      3960 
## 0.5165720 0.5216573 0.5168032 0.5119460 0.5188840 0.5207330 0.5207330 0.5110205 
##      3961      3962      3963      3964      3965      3966      3967      3968 
## 0.5158783 0.5193463 0.5163408 0.5172657 0.5200397 0.5144906 0.5195775 0.5114832 
##      3969      3970      3971      3972      3973      3974      3975      3976 
## 0.5112519 0.5117146 0.5181905 0.5158783 0.5151845 0.5177281 0.5144906 0.5195775 
##      3977      3978      3979      3980      3981      3982      3983      3984 
## 0.5221194 0.5119460 0.5119460 0.5149532 0.5193463 0.5137967 0.5103263 0.5158783 
##      3985      3986      3987      3988      3989      3990      3991      3992 
## 0.5221194 0.5214263 0.5221194 0.5181905 0.5154157 0.5128714 0.5186529 0.5105577 
##      3993      3994      3995      3996      3997      3998      3999      4000 
## 0.5177281 0.5181905 0.5179593 0.5168032 0.5207330 0.5207330 0.5209641 0.5121773 
##      4001      4002      4003      4004      4005      4006      4007      4008 
## 0.5131027 0.5202708 0.5181905 0.5110205 0.5135654 0.5202708 0.5195775 0.5221194 
##      4009      4010      4011      4012      4013      4014      4015      4016 
## 0.5211952 0.5163408 0.5103263 0.5133340 0.5154157 0.5207330 0.5179593 0.5221194 
##      4017      4018      4019      4020      4021      4022      4023      4024 
## 0.5110205 0.5191152 0.5200397 0.5179593 0.5168032 0.5107891 0.5121773 0.5207330 
##      4025      4026      4027      4028      4029      4030      4031      4032 
## 0.5117146 0.5126400 0.5191152 0.5128714 0.5154157 0.5163408 0.5163408 0.5177281 
##      4033      4034      4035      4036      4037      4038      4039      4040 
## 0.5156470 0.5165720 0.5154157 0.5140280 0.5172657 0.5195775 0.5147219 0.5205019 
##      4041      4042      4043      4044      4045      4046      4047      4048 
## 0.5154157 0.5211952 0.5216573 0.5135654 0.5144906 0.5218884 0.5165720 0.5142593 
##      4049      4050      4051      4052      4053      4054      4055      4056 
## 0.5140280 0.5198086 0.5195775 0.5186529 0.5211952 0.5202708 0.5140280 0.5191152 
##      4057      4058      4059      4060      4061      4062      4063      4064 
## 0.5112519 0.5126400 0.5144906 0.5163408 0.5184217 0.5165720 0.5135654 0.5179593 
##      4065      4066      4067      4068      4069      4070      4071      4072 
## 0.5117146 0.5186529 0.5174969 0.5135654 0.5103263 0.5128714 0.5221194 0.5149532 
##      4073      4074      4075      4076      4077      4078      4079      4080 
## 0.5174969 0.5202708 0.5128714 0.5188840 0.5119460 0.5170345 0.5168032 0.5170345 
##      4081      4082      4083      4084      4085      4086      4087      4088 
## 0.5179593 0.5186529 0.5107891 0.5174969 0.5119460 0.5202708 0.5209641 0.5142593 
##      4089      4090      4091      4092      4093      4094      4095      4096 
## 0.5151845 0.5119460 0.5200397 0.5211952 0.5163408 0.5200397 0.5103263 0.5170345 
##      4097      4098      4099      4100      4101      4102      4103      4104 
## 0.5131027 0.5121773 0.5168032 0.5205019 0.5147219 0.5137967 0.5193463 0.5221194 
##      4105      4106      4107      4108      4109      4110      4111      4112 
## 0.5161095 0.5165720 0.5107891 0.5177281 0.5126400 0.5211952 0.5188840 0.5211952 
##      4113      4114      4115      4116      4117      4118      4119      4120 
## 0.5202708 0.5174969 0.5149532 0.5214263 0.5128714 0.5156470 0.5181905 0.5205019 
##      4121      4122      4123      4124      4125      4126      4127      4128 
## 0.5207330 0.5149532 0.5172657 0.5214263 0.5193463 0.5121773 0.5165720 0.5124087 
##      4129      4130 
## 0.5218884 0.5221194

Gráfica del Modelo RLogS

La gráfica muestra la relación entre la edad (age) y el género (gender) según un modelo de regresión logística (RLogS). La línea horizontal alrededor de 0.5 indica que, según este modelo, la probabilidad de pertenecer a cada género es aproximadamente la misma para todas las edades.

gender <- Modelos_Nissan_Depurado$gender
age <- Modelos_Nissan_Depurado$age
dataPlot <- data.frame(age, gender)
plot(gender~age, data = dataPlot, main = "Modelo RLogS: age - gender", xlab = "age", ylab = "gender = 0 | gender = 1", col = "gold", pch = "I")
curve(predict(glm(gender~age, family = "binomial", data = dataPlot), data.frame(age = x), type = "response"), col = "orange", lwd = 3, add = TRUE)

6. Conclusiones

Complementariamente a los análisis que fueron expuestos en las secciones de estudio es importante hacer una mención global sobre el problema considerado a la luz de lo obtenido.

Como se menciona en el trabajo hecho en el curso de Gestión de Datos (que puede ser consultado temporalmente a través de: https://rpubs.com/hugo_chicaG3/1221892), Las personas mayores tienden a tener carros con un precio más elevado, lo que nos indica que estas personas, a lo largo de los años, han acumulado un capital lo suficientemente robusto para conseguir un modelo de auto costoso. Además, se constata, desde la perspectiva de estudio multivariable, que, por lo menos descriptivamente, una variable clasificadora categórica como el sexo resulta significativa al estudiar todo el conjunto de datos. Un ejemplo de ello es que los valores atípicos, o que se salen del promedio, son en su mayoría hombres, y podemos diferenciar el comportamiento masculino en diferentes espacios. Podemos hacer una inferencia en la que podemos decir que una persona de genero masculino mayor a 50 años puede tener un auto costoso. Esto es visible en: Diagrama Conjunto de Dispersión, Distribución y Correlación[gender]

Asimismo, la fase de correspondencias revela patrones claros entre los modelos de autos Nissan y su relación con una clasificación específica. Modelos como “March”, “Juke” y “Altima” parecen tener una participación significativa, lo que podría indicar que son clave para las métricas evaluadas. La información de probabilidades y el gráfico complementan este análisis al resaltar modelos con mayor afinidad hacia ciertas categorías. La fase de correspondencias en este análisis ha identificado patrones claros entre los modelos de autos Nissan, sus características y categorías asociadas. Las dimensiones clave (Dim1 y Dim2) explican patrones importantes en las preferencias del mercado o características de los autos que afectan su clasificación. Además: -Las variables model, condition y color tienen un impacto dominante en la organización de los datos, lo que sugiere que estas son las principales características que influyen en las ventas o clasificaciones de los vehículos. -Los modelos y colores específicos podrían representar segmentos de mercado que merecen atención estratégica en términos de comercialización.

Adicionalmente, el análisis de conglomerados mostró que efectivamente existían en el conjunto de datos registros significativamente homogéneos entre sí y a su vez se parados de otros. En este sentido, los métodos de aglomeración jerárquicos y no-jerárquicos ayudaron a comprender cómo estaban dispuestos esos grupos y los valores extraños por reevaluar. Así, utilizando la variable clasificadora de nuestro conjunto de datos llamada color. La agrupación jerárquica nos indica que tan cercana es la relacion de cada una de los registros y esta nos muestra los grupos que se deben hacer dependiendo del enlace que se utilice.

Complementariamente, El modelo de regresión lineal simple no es adecuado para estimar la edad del vehículo en función del precio, ya que no es estadísticamente significativo y el intervalo de confianza incluye el cero. El modelo múltiple ofrece una perspectiva más rica, destacando la importancia de las variables categóricas como condition. A pesar de ello, los ajustes obtenidos muestran que la relación entre las variables analizadas y la edad sigue siendo limitada, sugiriendo que otros factores no considerados podrían ser más relevantes para predecir la edad de los dueños de los vehículos.

Por último, es importante resaltar el aspecto técnico relacionado con el procesamiento estadístico hecho en este estudio a nivel de robustez, eficiencia e integración que R, RStudio y RMarkdown ofrecen al usuario para que este se pueda enfocar en él sin pasar mayores inconvenientes con el soporte documental para presentarlo.

7. Bibliografía

Aldás, J., & Uriel, E. (2017). https://drive.google.com/file/d/1Hj9pNOS7mcwZVNu6O4ridf6eo-he08Z3/view?usp=sharing (2nd ed.). ALFACENTAURO.

https://drive.google.com/file/d/1XcAGp1xrCgWB-ZvQoJLPNWznIcOCSHgk/view?usp=sharing

Estudio de Análisis Multivariado con base en un conjunto de datos de aspirantes extranjeros para ser admitidos en estudios superiores en EE.UU. https://glibrerosl.github.io/Applied-Statistics-FULL/#[Conglomerados]

Estudio de Análisis de Regresión con base en un conjunto de datos de aspirantes extranjeros para ser admitidos en estudios superiores en EE.UU. https://rpubs.com/glibrerosl/Applied-Statistics-FULL

Fuente del conjunto de datos: https://www.kaggle.com/datasets/marius2303/nissan-all-models-price-prediction-dataset

LS0tDQp0aXRsZTogIlJNRF9HMyINCnN1YnRpdGxlOiAiRXN0dWRpbyBkZSBBbsOhbGlzaXMgTXVsdGl2YXJpYWRvIGNvbiBiYXNlIGVuIHVuIGNvbmp1bnRvIGRlIGRhdG9zIHNvYnJlIG1vZGVsb3MgYXV0b21vdHJpY2VzIGRlIGxhIG1hcmNhIE5pc3NhbiINCmF1dGhvcjogImh1Z28uY2hpY2E6OmFsZWphbmRyby5oZW5hby5vcm96Y286Omp1YW4uZGF2aWQudmVyZ2FyYTo6QGNvcnJlb3VuaXZhbGxlLmVkdS5jbyINCmRhdGU6ICJlc3R1ZGlvIGhlY2hvIGR1cmFudGUgZWwgcGVyaW9kbyBhY2Fkw6ltaWNvIGFnb3N0by1kaWNpZW1icmUgZGUgMjAyNCINCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDogDQogICAgdG9jOiB0cnVlDQogICAgdG9jX2Zsb2F0OiB0cnVlDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICAgIHRoZW1lOiBsdW1lbg0KYmlibGlvZ3JhcGh5OiBiaWJsaW9ncmFmaWFfTUUuYmliDQpjc2w6IGFwYS5jc2wNCmxpbmstY2l0YXRpb25zOiB5ZXMNCi0tLQ0KPCEtLSBDb25maWd1cmFjacOzbiBHbG9iYWwgZGUgUiAtLT4NCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQ0KbGlicmFyeShyZWFkeGwpDQpsaWJyYXJ5KGNvcnJwbG90KQ0KbGlicmFyeShHR2FsbHkpDQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KGFuZHJld3MpDQpsaWJyYXJ5KHRjbHRrKQ0KbGlicmFyeShhcGxwYWNrKQ0KbGlicmFyeShncmFwaGljcykNCmxpYnJhcnkoY29ycnBsb3QpDQpsaWJyYXJ5KE1WTikNCmxpYnJhcnkocmVzaGFwZTIpDQpsaWJyYXJ5KEZhY3RvTWluZVIpDQpsaWJyYXJ5KGZhY3RvZXh0cmEpDQpsaWJyYXJ5KHBzeWNoKQ0KbGlicmFyeShGYWN0b0NsYXNzKQ0KbGlicmFyeShjbHVzdGVyKQ0KbGlicmFyeShkZW5kZXh0ZW5kKQ0KbGlicmFyeShtYWdyaXR0cikNCmxpYnJhcnkoTmJDbHVzdCkNCmxpYnJhcnkoc3RhcmdhemVyKQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG89VFJVRSkNCg0KTW9kZWxvc19OaXNzYW4gPC0gcmVhZF9leGNlbCgiQzovVXNlcnMvSG9tZS9EZXNrdG9wL0N1cnNvIEdkRCAyMDI0XzEgWzNdL01vZGVsb3NfTmlzc2FuLnhsc3giKQ0KVmlldyhNb2RlbG9zX05pc3NhbikNCg0KTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8gPC0gcmVhZF9leGNlbCgiQzovVXNlcnMvSG9tZS9EZXNrdG9wL0N1cnNvIEdkRCAyMDI0XzEgWzNdL01vZGVsb3NfTmlzc2FuX0RlcHVyYWRvLnhsc3giKQ0KVmlldyhNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbykNCg0KYGBgDQoNCiMjICoqRmFzZSAxIFtEZXNjcmlwY2lvbmVzIE11bHRpdmFyaWFudGVzXSoqDQojIyMgKioxLjEuIE9iamV0aXZvcyoqDQpEZXNhcnJvbGxhciB1bmEgZGVzY3JpcGNpw7NuIG11bHRpdmFyaWFudGUgZGV0YWxsYWRhIGRlbCBjb25qdW50byBkZSBkYXRvcyBvcmlnaW5hbCB5IGRlcHVyYWRvLCBhbmFsaXphbmRvIHkgZXN0cnVjdHVyYW5kbyBsYXMgdmFyaWFibGVzIHByZXNlbnRlcyBlbiBhbWJvcyBjb25qdW50b3MgcGFyYSBpZGVudGlmaWNhciBwYXRyb25lcywgcmVsYWNpb25lcyB5IGNhcmFjdGVyw61zdGljYXMgY2xhdmUuIEVzdG8gaW5jbHVpcsOhIGxhIGV2YWx1YWNpw7NuIGRlIGxhIGVzdHJ1Y3R1cmEgZGVsIGNvbmp1bnRvIGRlIGRhdG9zIG9yaWdpbmFsIHkgZGVwdXJhZG8sIGNvbiBlbCBmaW4gZGUgYXNlZ3VyYXIgc3UgY2FsaWRhZCwgY29uc2lzdGVuY2lhIHkgYWRlY3VhY2nDs24gcGFyYSBzdSBwb3N0ZXJpb3IgYW7DoWxpc2lzIHkgdG9tYSBkZSBkZWNpc2lvbmVzLg0KDQojIyMgMS4yLiBEZXNjcmlwY2nDs24gZGUgbG9zIGRhdG9zIA0KDQojIyMjIDEuMi4xIEZ1ZW50ZSBkZWwgY29uanVudG8gZGUgZGF0b3MuDQpFbCBjb25qdW50byBkZSBkYXRvcyBkZSB0cmFiYWpvIHNlIG9idHV2byBjYXNpIHRvdGFsbWVudGUgZGUgS2FnZ2xlOiBodHRwczovL3d3dy5rYWdnbGUuY29tL21hcml1czIzMDMuIEVzIGNvbnZlbmllbnRlIGFub3RhciBxdWUgS2FnZ2xlIGVzIHVuYSBjb21wYcOxw61hIHN1YnNpZGlhcmlhIGRlIEdvb2dsZSBMTEMgcXVlIG1hbnRpZW5lIHVuYSBjb211bmlkYWQgb25saW5lIGRlIGNpZW50w61maWNvcyBkZSBkYXRvcyB5IHByb2Zlc2lvbmFsZXMgZGVsIGFwcmVuZGl6YWplIGF1dG9tw6F0aWNvLiBFc3RhIGVtcHJlc2EgcGVybWl0ZSBhIHN1cyB1c3VhcmlvcyBlbmNvbnRyYXIgeSBwdWJsaWNhciBjb25qdW50b3MgZGUgZGF0b3MsIGV4cGxvcmFyIHkgY3JlYXIgbW9kZWxvcyBlbiB1biBlbnRvcm5vIGRlIGNpZW5jaWEgZGUgZGF0b3MgYmFzYWRvIGVuIGxhIHdlYiwgdHJhYmFqYXIgY29uIG90cm9zIGNpZW50w61maWNvcyBkZSBkYXRvcyBlIGluZ2VuaWVyb3MgZGUgYXByZW5kaXphamUgYXV0b23DoXRpY28geSBwYXJ0aWNpcGFyIGVuIGNvbmN1cnNvcyBwYXJhIHJlc29sdmVyIGRlc2Fmw61vcyBkZSBjaWVuY2lhIGRlIGRhdG9zLg0KDQojIyMjIDEuMi4yIENvbnRleHRvIGRlbCBjb25qdW50byBkZSBkYXRvcy4gDQpFc3RlIGNvbmp1bnRvIGRlIGRhdG9zIGNvbnRpZW5lIGluZm9ybWFjacOzbiBkZXRhbGxhZGEgc29icmUgbG9zIHByb3BpZXRhcmlvcyBkZSBhdXRvbcOzdmlsZXMgeSBzdXMgdmVow61jdWxvcywgY2VudHLDoW5kb3NlIGVzcGVjw61maWNhbWVudGUgZW4gbG9zIG1vZGVsb3MgTmlzc2FuLg0KDQojIyMjIDEuMi4zIERlc2NyaXBjaW9uIGRlbCBjb25qdW50byBkZSBkYXRvcy4gey50YWJzZXQgLnRhYnNldC1waWxsc30NCkVsIGNvbmp1bnRvIGRlIGRhdG9zIGNvbnRpZW5lIDEwIGNhbXBvcyB5IDQxODkgcmVnaXN0cm9zLiBVbm8gZGUgbG9zIGNhbXBvcyBlcyBzaW1wbGVtZW50ZSB1biBpZGVudGlmaWNhZG9yIG51bcOpcmljbyBzZWN1ZW5jaWFsIGRlIGxvcyByZWdpc3Ryb3MuIENvbnRpZW5lIDQgY2FtcG9zIGRlIG5hdHVyYWxlemEgY3VhbGl0YXRpdmE7IGNvbnRpZW5lIHVuIGNhbXBvIGRlIG5hdHVyYWxlemEgZGljb3TDs21pY2EgeSBlbCByZXN0byBzb24gbnVtw6lyaWNvcyBlc3RyaWN0YW1lbnRlIHBvc2l0aXZvcy4gTGEgbGlzdGEgc2lndWllbnRlIGxvcyBkZXNjcmliZSBkZSBpenF1aWVyZGEgYSBkZXJlY2hhLCBjb21vIGFwYXJlY2VuIGVuIGVsIHJhbmdvIGRlIGRhdG9zIHF1ZSBsb3MgY29udGllbmUgeSBzZSBlc3RhYmxlY2UgcGFyYSBjYWRhIGNhbXBvLiANCg0KLSAqKklEKiogKGlkZW50aWZpY2Fkb3IpOiByZWdpc3RyYSB1biBuw7ptZXJvIHNlY3VlbmNpYWRvIGEgcGFydGlyIGRlIDEgcGFyYSBpZGVudGlmaWNhciBkZSBmb3JtYSDDum5pY2EgY2FkYSByZWdpc3RybyBjb25zaWduYWRvIGVuIGVsIGNvbmp1bnRvIGRlIGRhdG9zLg0KDQotICoqRnVsbF9uYW1lKiogKGN1YWxpdGF0aXZhOjpub21pbmFsKTogUmVnaXN0cmEgZWwgbm9tYnJlIGRlbCBkdWXDsW8gZGVsIGF1dG8gZGVsIGN1YWwgc2UgcmVnaXN0cmFyb24gbG9zIGRhdG9zLg0KDQotICoqQWdlKiogKGN1YW50aXRhdGl2YTo6bm9taW5hbCk6IFJlZ2lzdHJhIGxhIGVkYWQgZGVsIGR1ZcOxbyBkZWwgYXV0b23Ds3ZpbC4NCg0KLSAqKkdlbmRlcioqIChjdWFsaXRhdGl2YTo6bm9taW5hbCk6IFJlZ2lzdHJhIGVsIGdlbmVybyBkZWwgZHVlw7FvIGRlbCBhdXRvbcOzdmlsOiAxIGNvcnJlc3BvbmRlIGEgbG9zIGR1ZcOxb3MgZGUgZ2VuZXJvIG1hc2N1bGlubyB5IDAgYSBsb3MgZHVlw7FvcyBkZSBnw6luZXJvIGZlbWVuaW5vLg0KDQotICoqTW9kZWwqKiAoY3VhbGl0YXRpdmE6Om5vbWluYWwpOiBSZWdpc3RyYSBlbCBtb2RlbG8gZGUgYXV0byBuaXNzYW4gcXVlIHRpZW5lbiBsb3MgZHVlw7FvcyBkZSBsb3MgY3VhbGVzIHNlIHJlZ2lzdHJhcm9uIGxvcyBkYXRvcy4NCg0KLSAqKkNvbG9yKiogKGN1YWxpdGF0aXZhOjpub21pbmFsKTogUmVnaXN0cmEgZWwgY29sb3IgZGVsIGF1dG8gZGUgY2FkYSBkdWXDsW8gZGUgbG9zIGN1YWxlcyBzZSByZWdpc3RyYXJvbiBsb3MgZGF0b3MuDQoNCi0gKipQZXJmb21hbmNlKiogKGN1YW50aXRhdGl2YTo6cmF6w7NuKTogUmVnaXN0cmEgZWwgcmVuZGltaWVudG8gZGVsIGF1dG8uIEVsIHJlbmRpbWllbnRvIGVuIGVzdGUgY2FzbyBlcyBsYSB2ZWxvY2lkYWQgcXVlIGVsIGF1dG8gcHVlZGUgYWxjYW56YXIuLg0KDQotICoqS00qKiAoY3VhbnRpdGF0aXZhOjpyYXrDs24pOiBSZWdpc3RyYSBlbCBraWxvbWV0cmFqZSB0b3RhbCBxdWUgdGllbmUgZWwgYXV0by4gRWwga2lsb21ldHJhamUgZXMgbGEgZGlzdGFuY2lhIHF1ZSBlbCBhdXRvIHlhIGhhIHJlY29ycmlkbywgZXN0byBkZWJpZG8gYSBxdWUgbG9zIGF1dG9tw7N2aWxlcyBkZSBlc3RlIGNvbmp1bnRvIGRlIGRhdG9zIHNvbiB1c2Fkb3MuDQoNCi0gKipDb25kaXRpb24qKiAoY3VhbGl0YXRpdmE6OnJhesOzbik6IFJlZ2lzdHJhIGxhIGNvbmRpY2nDs24gZW4gbGEgcXVlIHNlIGVuY3VlbnRyYSBlbCBhdXRvLiAxIGNvcnJlc3BvbmRlIGEgbG9zIGF1dG9zIGVuIGNvbmRpY2lvbmVzIG11eSBtYWxhcywgMiBjb3JyZXNwb25kZSBhIGxvcyBhdXRvcyBlbiBjb25kaWNpb25lcyBtYWxhcywgMyBjb3JyZXNwb25kZSBhIGxvcyBhdXRvcyBlbiBjb25kaWNpb25lcyBidWVuYXMsIDQgY29ycmVzcG9uZGUgYSBsb3MgYXV0b3MgZW4gY29uZGljaW9uZXMgbXV5IGJ1ZW5hcywgNSBjb3JyZXNwb25kZSBhIGxvcyBhdXRvcyBlbiBjb25kaWNpb25lcyBkZSBhbnRpZ8O8ZWRhZCAodmllam9zKSB5IDYgY29ycmVzcG9uZGUgYSBsb3MgYXV0b3MgbcOhcyBudWV2b3MuIA0KDQotICoqUHJpY2UqKiAoY3VhbnRpdGF0aXZhOjpub21pbmFsKTogUmVnaXN0cmEgZWwgcHJlY2lvIGRlIGNhZGEgYXV0byBkZSBsb3MgY3VhbGVzIHNlIHJlZ2lzdHJhcm9uIGxvcyBkYXRvcy4NCg0KIyMjIyMgRXN0cnVjdHVyYSBkZWwgQ29uanVudG8gZGUgRGF0b3MgT3JpZ2luYWwuDQpgYGB7ciBFc3RydWN0dXJhX2RlbF9Db25qdW50b19kZV9EYXRvc19PcmlnaW5hbCwgZmlnLmFsaWduID0gJ2NlbnRlcid9DQpzdHIoTW9kZWxvc19OaXNzYW4pDQpgYGANCg0KIyMjIyMgQ29uanVudG8gZGUgRGF0b3MgT3JpZ2luYWwuDQpgYGB7ciBDb25qdW50b19kZV9EYXRvc19PcmlnaW5hbCwgIGZpZy5hbGlnbiA9ICdjZW50ZXInfQ0KTW9kZWxvc19OaXNzYW4NCmBgYA0KIyMjIyMgRXN0cnVjdHVyYSBkZSBDb25qdW50byBkZSBEYXRvcyBEZXB1cmFkby4NCkNhYmUgYWNsYXJhciBxdWUgYSBlc3RlIGNvbmp1bnRvIGRlIGRhdG9zIHNlIGxlIHJlYWxpemFyb24gYWxndW5hcyBtb2RpZmljYWNpb25lczogc2UgY29udmlydGllcm9uIHZhcmlhYmxlcyBjb21vICoqZ2VuZGVyKiogeSAqKmNvbmRpdGlvbioqLCBkYWRhIHN1IG5hdHVyYWxlemEgY2F0ZWfDs3JpY2EuIFRhbWJpw6luIHNlIHJlYWxpemFyb24gZGVwdXJhY2lvbmVzIGdlbmVyYWxlcywgY29tbyBsYSBlbGltaW5hY2nDs24gZGUgZmlsYXMgdmFjw61hcywgbGEgY29ycmVjY2nDs24gZGUgZGF0b3MgaW5jb2hlcmVudGVzIHkgbGEgZWxpbWluYWNpw7NuIGRlIGZpbGFzIGNvbiBjZWxkYXMgdmFjw61hcy4gQWRlbcOhcywgc2UgYWp1c3Rhcm9uIGxhcyB2YXJpYWJsZXMgbnVtw6lyaWNhcyBxdWUgbm8gdGVuw61hbiBlbCBmb3JtYXRvIGFkZWN1YWRvIHBhcmEgYXNlZ3VyYXIgdW4gYW7DoWxpc2lzIGNvcnJlY3RvLg0KYGBge3IgRXN0cnVjdHVyYV9kZV9jb25qdW50b19kZV9EYXRvc19EZXB1cmFkbywgZmlnLmFsaWduPSdjZW50ZXInfQ0Kc3RyKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvKQ0KYGBgDQojIyMjIyBDb25qdW50byBkZSBEYXRvcyBEZXB1cmFkby4NCmBgYHtyfQ0KTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8NCmBgYA0KDQoNCiMjIyAqKjEuMy4gRXN0aW1hY2lvbmVzIE11bHRpdmFyaWFkYXMqKiB7LnRhYnNldCAudGFic2V0LXBpbGxzfQ0KTGFzIGVzdGltYWNpb25lcyBtdWx0aXZhcmlhZGFzIHNvbiB0w6ljbmljYXMgZXN0YWTDrXN0aWNhcyB1dGlsaXphZGFzIHBhcmEgYW5hbGl6YXIgbcOhcyBkZSB1bmEgdmFyaWFibGUgZGVwZW5kaWVudGUgYSBsYSB2ZXosIG1pZW50cmFzIHNlIGNvbnRyb2xhbiBvIGNvbnNpZGVyYW4gbcO6bHRpcGxlcyB2YXJpYWJsZXMgaW5kZXBlbmRpZW50ZXMuIEEgZGlmZXJlbmNpYSBkZSBsYXMgZXN0aW1hY2lvbmVzIHVuaXZhcmlhZGFzLCBxdWUgc29sbyBpbnZvbHVjcmFuIHVuYSB2YXJpYWJsZSBkZXBlbmRpZW50ZSwgbGFzIG11bHRpdmFyaWFkYXMgcGVybWl0ZW4gZXN0dWRpYXIgcmVsYWNpb25lcyBtw6FzIGNvbXBsZWphcyB5IHNpbXVsdMOhbmVhcyBlbnRyZSB2YXJpYXMgdmFyaWFibGVzLCBsbyBxdWUgbGFzIGhhY2Ugw7p0aWxlcyBlbiBlc2NlbmFyaW9zIGRvbmRlIGxvcyByZXN1bHRhZG9zIHNvbiBpbmZsdWVuY2lhZG9zIHBvciBtw7psdGlwbGVzIGZhY3RvcmVzLg0KDQpFbiB1biBhbsOhbGlzaXMgbXVsdGl2YXJpYWRvLCBlbCB2ZWN0b3IgZGUgbWVkaWFzIHJlcHJlc2VudGEgbGFzIG1lZGlhcyBvIHZhbG9yZXMgcHJvbWVkaW8gZGUgY2FkYSB1bmEgZGUgbGFzIHZhcmlhYmxlcyBlbiB1biBjb25qdW50byBkZSBkYXRvcywgcHJvcG9yY2lvbmFuZG8gdW5hIG1lZGlkYSBjZW50cmFsIHBhcmEgY2FkYSB2YXJpYWJsZS4gTGEgbWF0cml6IGRlIHZhcmlhbnphcy1jb3ZhcmlhbnphcyBkZXNjcmliZSBjw7NtbyB2YXLDrWFuIGxhcyB2YXJpYWJsZXMgcmVzcGVjdG8gYSBzdXMgbWVkaWFzIHkgY8OzbW8gc2UgcmVsYWNpb25hbiBlbnRyZSBzw60uIExvcyBlbGVtZW50b3MgZGlhZ29uYWxlcyBkZSBlc3RhIG1hdHJpeiBzb24gbGFzIHZhcmlhbnphcyBkZSBjYWRhIHZhcmlhYmxlLCBtaWVudHJhcyBxdWUgbG9zIGVsZW1lbnRvcyBmdWVyYSBkZSBsYSBkaWFnb25hbCBzb24gbGFzIGNvdmFyaWFuemFzLCBxdWUgaW5kaWNhbiBsYSBtYWduaXR1ZCB5IGRpcmVjY2nDs24gZGUgbGEgcmVsYWNpw7NuIGxpbmVhbCBlbnRyZSBwYXJlcyBkZSB2YXJpYWJsZXMuIExhIG1hdHJpeiBkZSBjb3JyZWxhY2lvbmVzLCBwb3Igc3UgcGFydGUsIGVzdGFuZGFyaXphIGVzdGFzIHJlbGFjaW9uZXMsIG1vc3RyYW5kbyBsb3MgY29lZmljaWVudGVzIGRlIGNvcnJlbGFjacOzbiAoZW50cmUgLTEgeSAxKSBxdWUgcmVmbGVqYW4gbGEgZnVlcnphIHkgZGlyZWNjacOzbiBkZSBsYSByZWxhY2nDs24gZW50cmUgbGFzIHZhcmlhYmxlcy4gQSBkaWZlcmVuY2lhIGRlIGxhIGNvdmFyaWFuemEsIGxhIGNvcnJlbGFjacOzbiBlcyB1bmEgbWVkaWRhIGFkaW1lbnNpb25hbCwgbG8gcXVlIGZhY2lsaXRhIGxhIGNvbXBhcmFjacOzbiBlbnRyZSB2YXJpYWJsZXMgY29uIGRpZmVyZW50ZXMgZXNjYWxhcy4NCg0KQ29uIGJhc2UgZW4gZWwgY29uanVudG8gZGUgZGF0b3MgZGVzY3JpdG8gc2UgY2FsY3VsYXLDoW4gZSBpbnRlcHJldGFyw6FuLCBwYXJhIGxhcyB2YXJpYWJsZXMgbnVtw6lyaWNhcywgZWwgdmVjdG9yIGRlIG1lZGlhcywgbGEgbWF0cml6IGRlIHZhcmlhbnphcy1jb3ZhcmlhbnphcyB5IGxhIG1hdHJpeiBkZSBjb3JyZWxhY2lvbmVzLiBTZSByZWN1ZXJkYSBxdWUgbGFzIHZhcmlhYmxlcyBudW3DqXJpY2FzIChlbiBlc2NhbGFkYSBkZSBtZWRpY2nDs24gZGUgcmF6w7NuKSBzb246ICoqYWdlKiosICoqcGVyZm9ybWFuY2UqKiwgKiprbSoqIHkgKipwcmljZSoqLg0KDQpMYSAqKk1hdHJpeiBkZSBWYXJpYW56YXMtQ292YXJpYW56YXMqKiBub3MgbXVlc3RyYSBxdWUgZXN0b3MgZGF0b3MgZXN0YW4gbXV5IGFsZWphZG9zIGRlIHN1IG1lZGlhIHkgcXVlIGhheSBkYXRvcyBxdWUgc2UgcmVsYWNpb25hbiBkZSBtYW5lcmEgbmVnYXRpdmEsIGxvIHF1ZSBxdWlyZSBkZWNpciBxdWUgc2kgZWwgdmFsb3IgZGUgdW5hIHZhcmlhYmxlIGF1bWVudGEgbGEgb3RyYSBkaXNtaW51eWUNCg0KQ29uIGJhc2UgZW4gbGEgbWF0cml6IGRlIGNvcnJlbGFjaW9uZXMsIHNlIG9ic2VydmEgdW5hIGludGVuc2lkYWQgbXV5IGJhamEgZW50cmUgbGFzIHZhcmlhYmxlcy4gU2luIGVtYmFyZ28sIGVzdG8gbm8gaW1wbGljYSBxdWUgbGFzIHZhcmlhYmxlcyBubyBlc3TDqW4gcmVsYWNpb25hZGFzIGVudHJlIHPDrTsgc29sbyBlcyBuZWNlc2FyaW8gcmVhbGl6YXIgcHJ1ZWJhcyBtw6FzIHJvYnVzdGFzIHBhcmEgaWRlbnRpZmljYXIgY3XDoWxlcyB2YXJpYWJsZXMgcHJlc2VudGFuIHVuYSByZWxhY2nDs24gbcOhcyBlc3RyZWNoYS4NCg0KIyMjIyBWZWN0b3IgZGUgTWVkaWFzIHkgQm94cGxvdHMuDQpgYGB7ciBWZWN0b3JfZGVfbWVkaWFzX3lfQm94cGxvdHMsIGZpZy5hbGlnbj0nY2VudGVyJ30NCmFwcGx5KE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvWywtYygxLDIsNCw1LDYsOSldLCAyLCBtZWFuKQ0KTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9fUmVkdWNpZG8gPSBNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1ssLWMoMSwyLDQsNSw2LDkpXQ0Kbm9tYnJlc19ib3hwbG90cyA8LSBjKCJhZ2UiLCAicGVyZm9ybWFuY2UiLCAia20iLCAicHJpY2UiKQ0KcGFyKG1mcm93ID0gYygxLCBuY29sKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvX1JlZHVjaWRvKSkpDQppbnZpc2libGUobGFwcGx5KDE6bmNvbChNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb19SZWR1Y2lkbyksIGZ1bmN0aW9uKGkpIGJveHBsb3QoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9fUmVkdWNpZG9bLCBpXSwgbWFpbiA9IG5vbWJyZXNfYm94cGxvdHNbaV0pKSkNCmBgYA0KDQojIyMjIE1hdHJpeiBkZSBWYXJpYW56YXMtQ292YXJpYW56YXMuDQpgYGB7ciBNYXRyaXpfZGVfVmFyaWFuemFzLUNvdmFyaWFuemFzLCBmaWcuYWxpZ249J2NlbnRlcid9DQpyb3VuZChjb3YoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9bLC1jKDEsMiw0LDUsNiw5KV0pLDIpDQpgYGANCg0KIyMjIyBNYXRyaXogZGUgQ29ycmVsYWNpb25lcy4NCmBgYHtyIE1hdHJpel9kZV9Db3JyZWxhY2lvbmVzLCBmaWcuYWxpZ249J2NlbnRlcid9DQpyb3VuZChjb3IoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9bLC1jKDEsMiw0LDUsNiw5KV0pLDQpDQpgYGANCg0KIyMjICoqMS40LiBHcsOhZmljYXMgTXVsdGl2YXJpYWRhcyoqIHsudGFic2V0IC50YWJzZXQtcGlsbHN9DQogDQoqKkRpYWdyYW1hIGRlIGRpc3BlcnNpw7NuKio6IFVuIGRpYWdyYW1hIGRlIGRpc3BlcnNpw7NuIGVzIHVuYSBoZXJyYW1pZW50YSBncsOhZmljYSB1dGlsaXphZGEgcGFyYSB2aXN1YWxpemFyIGxhIHJlbGFjacOzbiBlbnRyZSBkb3MgdmFyaWFibGVzIGN1YW50aXRhdGl2YXMuIEVuIHVuIGdyw6FmaWNvIGRlIGRpc3BlcnNpw7NuLCBjYWRhIHB1bnRvIHJlcHJlc2VudGEgdW4gcGFyIGRlIHZhbG9yZXMgKHgsIHkpLCBsbyBxdWUgZmFjaWxpdGEgbGEgaWRlbnRpZmljYWNpw7NuIGRlIHBhdHJvbmVzIG8gdGVuZGVuY2lhcy4gRXN0ZSB0aXBvIGRlIGRpYWdyYW1hIGVzIG11eSDDunRpbCBwYXJhIGRldGVjdGFyIGNvcnJlbGFjaW9uZXMsIHBvc2libGVzIGFub21hbMOtYXMgeSBsYSB2YXJpYWJpbGlkYWQgZW4gbG9zIGRhdG9zLCBheXVkYW5kbyBhIGxvcyBhbmFsaXN0YXMgYSBlbnRlbmRlciBtZWpvciBjw7NtbyBzZSBjb21wb3J0YW4gbGFzIHZhcmlhYmxlcyBlbiBjb25qdW50by4gDQoNCioqRGlhZ3JhbWEgZGUgZGlzdHJpYnVjacOzbioqOiBzZSByZWZpZXJlIGEgY8OzbW8gc2UgZGlzcGVyc2FuIG8gZXNwYXJjZW4gbG9zIGRhdG9zIGEgbG8gbGFyZ28gZGUgdW4gcmFuZ28gZGUgdmFsb3Jlcy4gU2UgcHVlZGUgcmVwcmVzZW50YXIgZGUgZGl2ZXJzYXMgbWFuZXJhcywgc2llbmRvIGxvcyBoaXN0b2dyYW1hcyB5IGxhcyBjdXJ2YXMgZGUgZGVuc2lkYWQgZG9zIGRlIGxhcyBmb3JtYXMgbcOhcyBjb211bmVzLiBMYSBkaXN0cmlidWNpw7NuIG5vcyBwcm9wb3JjaW9uYSBpbmZvcm1hY2nDs24gc29icmUgbGEgY2VudHJhbGlkYWQgKG1lZGlhLCBtZWRpYW5hKSwgZGlzcGVyc2nDs24gKHZhcmlhbnphLCBkZXN2aWFjacOzbiBlc3TDoW5kYXIpIHkgbGEgZm9ybWEgZGUgbG9zIGRhdG9zIChzaW1ldHLDrWEsIGN1cnRvc2lzKSwgcGVybWl0aWVuZG8gZW50ZW5kZXIgY8OzbW8gc2UgYWdydXBhbiBsb3MgZGF0b3MgeSBxdcOpIHRhbiBkaXNwZXJzb3MgZXN0w6FuLiANCg0KKipEaWFncmFtYSBkZSBjb3JyZWxhY2nDs24qKjogbWlkZSBsYSBmdWVyemEgeSBsYSBkaXJlY2Npw7NuIGRlIGxhIHJlbGFjacOzbiBsaW5lYWwgZW50cmUgZG9zIHZhcmlhYmxlcy4gVW4gdmFsb3IgZGUgY29ycmVsYWNpw7NuIHB1ZWRlIHZhcmlhciBlbnRyZSAtMSB5IDE7IHVuIHZhbG9yIGNlcmNhbm8gYSAxIGluZGljYSB1bmEgZnVlcnRlIGNvcnJlbGFjacOzbiBwb3NpdGl2YSwgdW4gdmFsb3IgY2VyY2FubyBhIC0xIGluZGljYSB1bmEgZnVlcnRlIGNvcnJlbGFjacOzbiBuZWdhdGl2YSwgeSB1biB2YWxvciBjZXJjYW5vIGEgMCBpbmRpY2EgcXVlIG5vIGhheSB1bmEgcmVsYWNpw7NuIGxpbmVhbCBzaWduaWZpY2F0aXZhIGVudHJlIGxhcyB2YXJpYWJsZXMuIExvcyBjb2VmaWNpZW50ZXMgZGUgY29ycmVsYWNpw7NuLCBjb21vIGVsIGNvZWZpY2llbnRlIGRlIFBlYXJzb24sIHNvbiBjb23Dum5tZW50ZSB1dGlsaXphZG9zIHBhcmEgY3VhbnRpZmljYXIgZXN0YSByZWxhY2nDs24uIEVzIGltcG9ydGFudGUgdGVuZXIgZW4gY3VlbnRhIHF1ZSBsYSBjb3JyZWxhY2nDs24gbm8gaW1wbGljYSBjYXVzYWxpZGFkLCBzaW5vIHNpbXBsZW1lbnRlIHVuYSBhc29jaWFjacOzbiBlbnRyZSBsYXMgdmFyaWFibGVzLg0KDQpMYSBncsOhZmljYSBtdWVzdHJhIHVuYSBtYXRyaXogZGUgZGlhZ3JhbWFzIHF1ZSB2aXN1YWxpemEgbGEgcmVsYWNpw7NuIGVudHJlIGN1YXRybyB2YXJpYWJsZXM6ICoqYWdlKiosICoqcGVyZm9ybWFuY2UqKiwgKiprbSoqIHkgKipwcmljZSoqIGRlbCBjb25qdW50byBkZSBkYXRvcy4gIENhZGEgY2VsZGEgcmVwcmVzZW50YSB1bmEgY29tYmluYWNpw7NuIGRlIGRvcyB2YXJpYWJsZXMuIEVuIGxhIHBhcnRlIGRpYWdvbmFsIGRlIGxhIGdyw6FmaWNhLCBkb25kZSBzZSByZXBpdGUgbGEgbWlzbWEgdmFyaWFibGUgZW4gYW1ib3MgZWplcywgbm8gaGF5IHB1bnRvcyBkaXNwZXJzb3MuIEVuIGNhbWJpbywgdmVzIGdyw6FmaWNvcyBxdWUgbXVlc3RyYW4gY3XDoW50b3MgY29jaGVzIGhheSBkZSBkaWZlcmVudGVzIGVkYWRlcywgcmVuZGltaWVudG9zLCBraWxvbWV0cmFqZXMgeSBwcmVjaW9zLiBFc3RvIHRlIGF5dWRhIGEgdmVyIGPDs21vIHNlIGRpc3RyaWJ1eWVuIGxvcyBjb2NoZXMgcG9yIGVzYXMgY2FyYWN0ZXLDrXN0aWNhcy4NCg0KUGFyYSByZWFsaXphciBlc3RlIGdyw6FmaWNvLCBzZSB1dGlsaXrDsyB1bmEgbXVlc3RyYSBhbGVhdG9yaWEgZmlqYSBkZSA2MDAgcmVnaXN0cm9zLCB5YSBxdWUgdXNhciBlbCB0b3RhbCBkZSByZWdpc3Ryb3MgcmVzdWx0YXLDrWEgbXV5IGNvbXBsaWNhZG8gZGViaWRvIGFsIHRhbWHDsW8gZGUgbnVlc3RybyBjb25qdW50byBkZSBkYXRvcy4NCg0KRW4gZWwgKipEaWFncmFtYSBDb25qdW50byBkZSBEaXNwZXJzacOzbiwgRGlzdHJpYnVjacOzbiB5IENvcnJlbGFjacOzbiBbZ2VuZGVyXSoqLCB2ZW1vcyBlbCBtaXNtbyBhbsOhbGlzaXMgZGVzY3JpdG8gYW50ZXJpb3JtZW50ZSwgc29sbyBxdWUgZXN0ZSBhbsOhbGlzaXMgY29udGllbmUgdW5hIGRpZmVyZW5jaWEgZnVuZGFtZW50YWw6IHV0aWxpemFtb3MgbGEgdmFyaWFibGUgKipnZW5kZXIqKiBwYXJhIGRpdmlkaXIgbG9zIGRhdG9zIGVuIGRvcyBncnVwb3MgeSBhbmFsaXphcmxvcyBkZSBtYW5lcmEgaW5kaXZpZHVhbC4gRW4gZXN0ZSBhbsOhbGlzaXMsIG9ic2VydmFtb3MgY2FtYmlvcyBxdWUgYW50ZXMgbm8gZXJhbiBwb3NpYmxlcy4gVW4gZWplbXBsbyBkZSBlbGxvIGVzIHF1ZSBhbGd1bm9zIGRlIGxvcyB2YWxvcmVzIGF0w61waWNvcyBzZSBwcmVzZW50YW4gZW4gc3VqZXRvcyBkZW5vbWluYWRvcyBjb24gZWwgZ8OpbmVybyAxIChtYXNjdWxpbm8pLg0KDQpFbCAqKmRpYWdyYW1hIGRlIGVzdHJlbGxhKiosIGF1bnF1ZSBzaW1wbGlmaWNhZG8sIHNpcnZlIHBhcmEgdmlzdWFsaXphciBsYXMgdmFyaWFibGVzIChkaW1lbnNpb25lcykgaW52b2x1Y3JhZGFzIGVuIGVsIGFuw6FsaXNpcyB5IHN1cyBwb3NpYmxlcyBjb21iaW5hY2lvbmVzIHBhcmEgZ2VuZXJhciBkaWZlcmVudGVzIHZpc3RhcyBkZSBsb3MgZGF0b3MuIA0KDQpsYXMgKipjYXJhcyBkZSBDaGVybm9mZioqIHNvbiB1bmEgZm9ybWEgZGUgdmlzdWFsaXphY2nDs24gZGUgZGF0b3MgcXVlIHV0aWxpemEgbGFzIGNhcmFjdGVyw61zdGljYXMgZmFjaWFsZXMgKGZvcm1hIGRlIGxhIGNhcmEsIHRhbWHDsW8gZGUgbGEgbmFyaXosIG9qb3MsIGJvY2EsIGV0Yy4pIHBhcmEgcmVwcmVzZW50YXIgZGlmZXJlbnRlcyB2YXJpYWJsZXMuICBFbiBlc3RlIGNhc28sIGNhZGEgY2FyYSByZXByZXNlbnRhIHVuIGFzcGVjdG8gbyBtw6l0cmljYSByZWxhY2lvbmFkYSBjb24gbGFzIHZhcmlhYmxlcyBjdWFudGl0YXRpdmFzIGRlIHNhY2FsYSByYXpvbiBkZSBsb3MgMjMgZGF0b3MgdG9tYWRvcyBjb21vIG11ZXN0cmEuIA0KDQojIyMjIERpYWdyYW1hIENvbmp1bnRvIGRlIERpc3BlcnNpw7NuLCBEaXN0cmlidWNpw7NuIHkgQ29ycmVsYWNpw7NuDQpgYGB7ciBEaWFncmFtYV9Db25qdW50b19kZV9EaXNwZXJzaW9uX0Rpc3RyaWJ1Y2lvbl95X0NvcnJlbGFjaW9uLCBmaWcuYWxpZ249J2NlbnRlcid9DQpzZXQuc2VlZCgxMjMpDQpuX211ZXN0cmFzIDwtIDYwMA0KDQptdWVzdHJhIDwtIE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvW3NhbXBsZSgxOm5yb3coTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8pLCBuX211ZXN0cmFzKSwgXQ0KDQpnZ3BhaXJzKG11ZXN0cmFbLC1jKDEsMiw0LDUsNiw5KV0pDQoNCmBgYA0KDQojIyMjIERpYWdyYW1hIENvbmp1bnRvIGRlIERpc3BlcnNpw7NuLCBEaXN0cmlidWNpw7NuIHkgQ29ycmVsYWNpw7NuIFtnZW5kZXJdDQoNCmBgYHtyIERpYWdyYW1hX0Nvbmp1bnRvX2RlX0Rpc3BlcnNpb25fRGlzdHJpYnVjaW9uX3lfQ29ycmVsYWNpb25fZ2VuZGVyLCBmaWcuYWxpZ249J2NlbnRlcid9DQptdWVzdHJhJGdlbmRlciA8LSBmYWN0b3IobXVlc3RyYSRnZW5kZXIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGV2ZWxzID0gYygwLCAxKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCJGIiwgIk0iKSkNCg0KZ2dwYWlycyhtdWVzdHJhLCBjb2x1bW5zID0gYygzLDcsOCwxMCksIGFlcyhjb2xvciA9IGdlbmRlciwgYWxwaGEgPSAwLjUpLCB1cHBlciA9IGxpc3QoY29udGludW91cyA9IHdyYXAoImNvciIsIHNpemUgPSAyLjUpKSkNCmBgYA0KDQojIyMjIERpYWdyYW1hIGRlIEVzdHJlbGxhDQoNCmBgYHtyIERpYWdyYW1hX2RlX0VzdHJlbGxhLCBmaWcuYWxpZ249J2NlbnRlcid9DQpzZXQuc2VlZCg3ODA3MjgpDQpNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb19NdWVzdHJlYWRvID0gTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9bc2FtcGxlKDE6bnJvdyhNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyksMjMpLC1jKDEsMiw0LDUsNiw5KV0NCnN0YXJzKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvX011ZXN0cmVhZG8sIGxlbiA9IDEsIGNleCA9IDAuNCwga2V5LmxvYyA9IGMoMTAsIDIpLCBkcmF3LnNlZ21lbnRzID0gVFJVRSkNCg0KYGBgDQoNCiMjIyMgQ2FyYXMgZGUgQ2hlcm5vZmYNCmBgYHtyIENhcmFzX2RlX0NoZXJub2ZmLGZpZy5hbGlnbj0nY2VudGVyJ30NCnNldC5zZWVkKDc4MDcyOCkNCk1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvX011ZXN0cmVhZG8gPSBNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1tzYW1wbGUoMTpucm93KE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvKSwyMyksLWMoMSwyLDQsNSw2LDkpXQ0KZmFjZXMoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9fTXVlc3RyZWFkbykNCmBgYA0KDQoNCiMjIyAqKjEuNS4gTm9ybWFsaWRhZCBNdWx0aXZhcmlhZGEqKiB7LnRhYnNldCAudGFic2V0LXBpbGxzfQ0KTGEgbm9ybWFsaWRhZCBtdWx0aXZhcmlhZGEgZXMgdW4gc3VwdWVzdG8gY3J1Y2lhbCBlbiBlbCBhbsOhbGlzaXMgZGUgZGF0b3MgbXVsdGl2YXJpYW50ZXMsIHF1ZSBpbXBsaWNhIHF1ZSB1biBjb25qdW50byBkZSB2YXJpYWJsZXMgc2lndWUgdW5hIGRpc3RyaWJ1Y2nDs24gbm9ybWFsIGNvbmp1bnRhLiBFc3RlIHN1cHVlc3RvIGVzIGVzZW5jaWFsIHBhcmEgbGEgdmFsaWRleiBkZSBtdWNob3MgbcOpdG9kb3MgZXN0YWTDrXN0aWNvcyBtdWx0aXZhcmlhbnRlcywgY29tbyBlbCBhbsOhbGlzaXMgZGUgcmVncmVzacOzbiBtdWx0aXZhcmlhbnRlLCBlbCBhbsOhbGlzaXMgZGUgY29tcG9uZW50ZXMgcHJpbmNpcGFsZXMgeSBlbCBhbsOhbGlzaXPCoGRlwqBjb3ZhcmlhbnphDQoNCkVuIGVzdGUgYXBhcnRhZG8gc2UgY29udGVtcGxhIGVsIHVzbyBkZSBwcm9jZWRpbWllbnRvcyBpbmZlcmVuY2lhbGVzIHBhcmEgZGV0ZXJtaW5hciBzaSBlbCBjb25qdW50byBkZSBkYXRvcyBkZSB0cmFiYWpvLCBlbiByZWxhY2nDs24gY29uIHN1cyB2YXJpYWJsZXMgbnVtw6lyaWNhcywgc2UgZGlzdHJpYnV5ZSBub3JtYWwgbXVsdGl2YXJpYWRvIChETk0pLiBMYXMgcHJ1ZWJhcyBkZSBub3JtYWxpZGFkIG11bHRpdmFyaWFkYSAoUE5NKSBhIGxhcyBxdWUgc2Vyw6Egc29tZXRpZG8gc29uOiBNYXJkaWEsIEhlbnplLVppcmtsZXIsIERvb3JuaWstSGFuc2VuIHkgUm95c3Rvbi4gUGFyYSBlc3RhcyBwcnVlYmFzIGRlIG5vcm1hbGlkYWQgbG9zIHRlc3Qgb2JlZGVjZW4gYSB1biBuaXZlbCBkZSBzaWduaWZpY2FuY2lhICRcYWxwaGEgPSAwLjA1JCB5IGEgbGFzIGhpcMOzdGVzaXM6JCRIXzA6IFx0ZXh0IHtMYXMgdmFyaWFibGVzIHRpZW5lbiB1bmEgRE5NfSQkICQkSF8xOiBcdGV4dCB7TGFzIHZhcmlhYmxlcyBOTyB0aWVuZW4gdW5hIEROTX0kJCANCg0KRW4gbGEgcHJ1ZWJhIGRlICoqTWFyZGlhKiogTG9zIHZhbG9yZXMgcCBleHRyZW1hZGFtZW50ZSBiYWpvcyBvYnRlbmlkb3MgcGFyYSBsYSBhc2ltZXRyw61hIHkgY3VydG9zaXMgaW5kaWNhbiBxdWUgbGEgaGlww7N0ZXNpcyBkZSBub3JtYWxpZGFkIG11bHRpdmFyaWFkYSBzZSByZWNoYXphLiBMb3MgZGF0b3Mgbm8gc2lndWVuIHVuYSBkaXN0cmlidWNpw7NuIG5vcm1hbCBtdWx0aXZhcmlhZGEuICBFcyBpbXBvcnRhbnRlIHRlbmVyIGVuIGN1ZW50YSBxdWUgZXN0YSBjb25jbHVzacOzbiBzZSBiYXNhIGVuIGxvcyByZXN1bHRhZG9zIGRlIGxhIHBydWViYSBkZSBNYXJkaWEsIHkgc2UgZGViZW4gY29uc2lkZXJhciBvdHJvcyBtw6l0b2RvcyBvIHBydWViYXMgZGUgbm9ybWFsaWRhZCBzacKgZXPCoG5lY2VzYXJpby4NCg0KRW4gbGEgcHJ1ZWJhIGRlICoqSGVuemUtemlya2xlcioqIGxhIHRhYmxhIGluZGljYSB1bmEgY2xhcmEgZmFsdGEgZGUgbm9ybWFsaWRhZCB0YW50byBlbiBsYSBkaXN0cmlidWNpw7NuIG11bHRpdmFyaWFkYSBjb21vIGVuIGxhcyBkaXN0cmlidWNpb25lcyB1bml2YXJpYWRhcyBkZSBsb3MgZGF0b3MuICBFc3RvIHRpZW5lIGltcGxpY2FjaW9uZXMgaW1wb3J0YW50ZXMgcGFyYSBlbCBhbsOhbGlzaXMgcG9zdGVyaW9yLCB5YSBxdWUgbXVjaG9zIG3DqXRvZG9zIGVzdGFkw61zdGljb3MgYXN1bWVuIGxhIG5vcm1hbGlkYWQgZGUgbG9zIGRhdG9zLiAgU2kgc2UgcmVxdWllcmVuIGFuw6FsaXNpcyBxdWUgYXN1bWVuIG5vcm1hbGlkYWQsIHNlcsOhIG5lY2VzYXJpbyBjb25zaWRlcmFyIHRyYW5zZm9ybWFjaW9uZXMgZGUgbG9zIGRhdG9zIHUgb3B0YXIgcG9yIG3DqXRvZG9zIGVzdGFkw61zdGljb3Mgbm/CoHBhcmFtw6l0cmljb3MuDQoNCkxhIHByZXViYSBkZSAqKkRvb3JuaWstaGFuc2VuKiogbXVlc3RyYSBxdWUgdGFudG8gbGFzIHZhcmlhYmxlcyBpbmRpdmlkdWFsZXMgY29tbyBlbCBjb25qdW50byBkZSBlbGxhcyBubyBzaWd1ZW4gdW5hIGRpc3RyaWJ1Y2nDs24gbm9ybWFsLiBFc3RvIHNlIGluZGljYSBwb3IgbG9zIHZhbG9yZXMgcCBleHRyZW1hZGFtZW50ZSBiYWpvcyAobWVub3JlcyBxdWUgMC4wMDEpIGVuIGxhcyBwcnVlYmFzIGRlIG5vcm1hbGlkYWQgdW5pdmFyaWFkYSB5IG11bHRpdmFyaWFkYSwgbG8gcXVlIHN1Z2llcmUgcXVlIGxvcyBkYXRvcyBwdWVkZW4gcHJlc2VudGFyIHNlc2dvcyBvIHZhcmlhY2lvbmVzIHNpZ25pZmljYXRpdmFzLg0KDQpMYSBwcnVlYmEgZGUgKipSb3lzdG9uKiogaW5kaWNhIHF1ZSBsb3MgZGF0b3Mgbm8gc2UgYWp1c3RhbiBhIHVuYSBkaXN0cmlidWNpw7NuIG5vcm1hbCBtdWx0aXZhcmlhZGEuICBFc3RvIGVzIGltcG9ydGFudGUgcG9ycXVlIG11Y2hvcyBtw6l0b2RvcyBlc3RhZMOtc3RpY29zLCBlc3BlY2lhbG1lbnRlIGxvcyBkZSBpbmZlcmVuY2lhLCBhc3VtZW4gbGEgbm9ybWFsaWRhZCBkZSBsb3MgZGF0b3MuICBTaSBsb3MgZGF0b3Mgbm8gc29uIG5vcm1hbGVzLCBsYSBhcGxpY2FjacOzbiBkZSBlc3RvcyBtw6l0b2RvcyBwb2Ryw61hIGxsZXZhciBhIGNvbmNsdXNpb25lcyBlcnLDs25lYXMuIFNlIGRlYmVuIGNvbnNpZGVyYXIgbcOpdG9kb3MgZXN0YWTDrXN0aWNvcyByb2J1c3RvcyBhIGxhwqBub8Kgbm9ybWFsaWRhZC4NCg0KIyMjIyBQTk0gTWFyZGlhDQoNCmBgYHtyIFBOTV9NYXJkaWEsIGZpZy5hbGlnbj0nY2VudGVyJ30NCm12bihNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1ssLWMoMSwyLDQsNSw2LDkpXSwgbXZuVGVzdD0ibWFyZGlhIikNCmBgYA0KDQojIyMjIFBOTSBIZW56ZS16aXJrbGVyDQoNCmBgYHtyIFBOTV9IZW56ZS16aXJrbGVyLCBmaWcuYWxpZ249J2NlbnRlcid9DQptdm4oTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9bLC1jKDEsMiw0LDUsNiw5KV0sIG12blRlc3Q9Imh6IikNCmBgYA0KDQojIyMjIFBOTSBEb29ybmlrLWhhbnNlbg0KDQpgYGB7ciBQTk1fRG9vcm5pay1oYW5zZW4sIGZpZy5hbGlnbj0nY2VudGVyJ30NCm12bihNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1ssLWMoMSwyLDQsNSw2LDkpXSwgbXZuVGVzdD0iZGgiKQ0KYGBgDQoNCiMjIyMgUE5NIFJveXN0b24NCg0KYGBge3IgUE5NX1JveXN0b24sIGZpZy5hbGlnbj0nY2VudGVyJ30NCnNldC5zZWVkKDc4MDcyOCkNCk1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvX011ZXN0cmVhZG8gPSBNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1tzYW1wbGUoMTpucm93KE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvKSwyMDAwKSwtYygxLDIsNCw1LDYsOSldDQptdm4oTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9fTXVlc3RyZWFkbywgbXZuVGVzdD0icm95c3RvbiIpDQpgYGANCg0KDQojIyAqKkZhc2UgMiBbQ29tcG9uZW50ZXMgUHJpbmNpcGFsZXNdKioNCg0KIyMjICoqMi4xLiBPYmpldGl2b3MqKg0KDQpBcGxpY2FyIGVsIEFuw6FsaXNpcyBkZSBDb21wb25lbnRlcyBQcmluY2lwYWxlcyAoQUNQKSBwYXJhIHJlZHVjaXIgbGEgZGltZW5zaW9uYWxpZGFkIGRlIHVuIGNvbmp1bnRvIGRlIGRhdG9zLCBpZGVudGlmaWNhbmRvIGxhcyB2YXJpYWJsZXMgbcOhcyBzaWduaWZpY2F0aXZhcywgb3B0aW1pemFuZG8gbGEgcmVwcmVzZW50YWNpw7NuIGRlIGxhIGluZm9ybWFjacOzbiB5IG1lam9yYW5kbyBsYSBpbnRlcnByZXRhY2nDs24geSB2aXN1YWxpemFjacOzbiBkZSBsYSBlc3RydWN0dXJhIHN1YnlhY2VudGUgZGUgbG9zIGRhdG9zIGEgdHJhdsOpcyBkZSB0w6ljbmljYXMgY29tbyBsYSBtYXRyaXogQUNQLCBsb3MgdmFsb3JlcyB5IHZlY3RvcmVzIHByb3Bpb3MsIGxvcyBncsOhZmljb3MgZGUgQ2F0dGVsbCB5IGVsIGNyaXRlcmlvIGRlIEthaXNlci4NCg0KIyMjICoqMi4yLiBTZWxlY2Npw7NuIGRlIENvbXBvbmVudGVzKiogey50YWJzZXQgLnRhYnNldC1waWxsc30NCg0KRWwgb2JqZXRpdm8gcHJpbmNpcGFsIGRlIGVzdGUgYW7DoWxpc2lzIGVzIG9wdGltaXphciBsYSBzZWxlY2Npw7NuIGRlIGNvbXBvbmVudGVzIHBhcmEgaWRlbnRpZmljYXIgbGFzIHZhcmlhYmxlcyBtw6FzIHJlbGV2YW50ZXMgcXVlIGNvbnRyaWJ1eWVuIHNpZ25pZmljYXRpdmFtZW50ZSBhIGxhIHZhcmlhYmlsaWRhZCBkZSBsb3MgZGF0b3MuIEVzdGUgcHJvY2VzbyBlcyBlc2VuY2lhbCBwYXJhIG1lam9yYXIgbGEgZWZpY2llbmNpYSBkZWwgbW9kZWxvIHkgZmFjaWxpdGFyIGxhIGludGVycHJldGFjacOzbiBkZSBsb3MgcmVzdWx0YWRvcywgcGVybWl0aWVuZG8gdW5hIHJlcHJlc2VudGFjacOzbiBtw6FzIGNsYXJhIHkgY29uY2lzYSBkZSBsYSBlc3RydWN0dXJhIHN1YnlhY2VudGUgZGUgbG9zIGRhdG9zLg0KDQpBZGVtw6FzLCBzZSBidXNjYSBhc2VndXJhciB1bmEgYWx0YSBjYWxpZGFkIGRlIHJlcHJlc2VudGFjacOzbiwgZ2FyYW50aXphbmRvIHF1ZSBsYXMgY2FyYWN0ZXLDrXN0aWNhcyBlc2VuY2lhbGVzIGRlIGxvcyBkYXRvcyBzZSBjYXB0dXJlbiB5IHJlZmxlamVuIGNvbiBwcmVjaXNpw7NuLiBVbmEgYnVlbmEgY2FsaWRhZCBkZSByZXByZXNlbnRhY2nDs24gZXMgZnVuZGFtZW50YWwgcGFyYSBxdWUgbGFzIHJlbGFjaW9uZXMgeSBwYXRyb25lcyBpbXBvcnRhbnRlcyBubyBzZSBwaWVyZGFuIGR1cmFudGUgZWwgcHJvY2VzbyBkZSByZWR1Y2Npw7NuIGRlIGRpbWVuc2lvbmFsaWRhZCwgbG8gcXVlIGEgc3UgdmV6IGFzZWd1cmEgcXVlIGxhcyBjb25jbHVzaW9uZXMgZGVyaXZhZGFzIGRlbCBhbsOhbGlzaXMgc2VhbiB2w6FsaWRhcyB5IMO6dGlsZXMgcGFyYSBsYSB0b21hIGRlIGRlY2lzaW9uZXMuDQoNCkZpbmFsbWVudGUsIHNlIHV0aWxpemFyw6FuIGJpdHBsb3RzIHBhcmEgdmlzdWFsaXphciB5IGV2YWx1YXIgbGFzIGNvbnRyaWJ1Y2lvbmVzIGRlIGNhZGEgY29tcG9uZW50ZSBzZWxlY2Npb25hZG8gZW4gZWwgbW9kZWxvLiBFc3RvcyBncsOhZmljb3MgcGVybWl0aXLDoW4gaWRlbnRpZmljYXIgcXXDqSBjb21wb25lbnRlcyB0aWVuZW4gbWF5b3IgaW1wYWN0byBlbiBsYSB2YXJpYWJpbGlkYWQgZGUgbG9zIGRhdG9zLCBheXVkYW5kbyBhIHRvbWFyIGRlY2lzaW9uZXMgaW5mb3JtYWRhcyBzb2JyZSBxdcOpIGNvbXBvbmVudGVzIGluY2x1aXIgZW4gZWwgbW9kZWxvIGZpbmFsLiBEZSBlc3RhIG1hbmVyYSwgc2UgbWF4aW1pemEgbGEgY2FsaWRhZCBkZSBsYSByZXByZXNlbnRhY2nDs24geSBzZSBhc2VndXJhIHF1ZSBsYXMgY29udHJpYnVjaW9uZXMgbcOhcyBzaWduaWZpY2F0aXZhc8Kgc2XCoG1hbnRlbmdhbi4NCg0KTGEgKipNYXRyaXogQUNQKiogbXVlc3RyYSBxdWUgbG9zIGN1YXRybyBwcmltZXJvcyBjb21wb25lbnRlcyBwcmluY2lwYWxlcyBleHBsaWNhbiBlbCAxMDAlIGRlIGxhIHZhcmlhbnphIGRlIGxvcyBkYXRvcy4gIFNpbiBlbWJhcmdvLCBzZSBvYnNlcnZhIHF1ZSBsb3MgcHJpbWVyb3MgZG9zIGNvbXBvbmVudGVzIHByaW5jaXBhbGVzIChEaW0uMSB5IERpbS4yKSBleHBsaWNhbiB1bmEgcHJvcG9yY2nDs24gY29uc2lkZXJhYmxlICg1MS4xNCUpIGRlIGxhIHZhcmlhbnphLiAgRXN0byBzdWdpZXJlIHF1ZSB1bmEgcmVkdWNjacOzbiBkZSBkaW1lbnNpb25hbGlkYWQgYSBzb2xvIGRvcyBjb21wb25lbnRlcyBwcmluY2lwYWxlcyBwb2Ryw61hIHNlciBzdWZpY2llbnRlIHBhcmEgY2FwdHVyYXIgdW5hIGdyYW4gcGFydGUgZGUgbGEgaW5mb3JtYWNpw7NuIHJlbGV2YW50ZSBlbiBsb3MgZGF0b3MuICBTZSBwb2Ryw61hIGNvbnNpZGVyYXIgY29uc2VydmFyIHPDs2xvIGxvcyBjb21wb25lbnRlcyBwcmluY2lwYWxlcyBjb24gbWF5b3IgdmFyaWFuemEgcGFyYSBzaW1wbGlmaWNhcsKgbG9zwqBkYXRvcy4NCg0KTGEgKiptYXRyaXogZGUgY29ycmVsYWNpb25lcyoqLCBwb3Igc3UgcGFydGUsIGVzdGFuZGFyaXphIGVzdGFzIHJlbGFjaW9uZXMsIG1vc3RyYW5kbyBsb3MgY29lZmljaWVudGVzIGRlIGNvcnJlbGFjacOzbiAoZW50cmUgLTEgeSAxKSBxdWUgcmVmbGVqYW4gbGEgZnVlcnphIHkgZGlyZWNjacOzbiBkZSBsYSByZWxhY2nDs24gZW50cmUgbGFzIHZhcmlhYmxlcy4gTGEgY29ycmVsYWNpw7NuIGVzIHVuYSBtZWRpZGEgYWRpbWVuc2lvbmFsLCBsbyBxdWUgZmFjaWxpdGEgbGEgY29tcGFyYWNpw7NuIGVudHJlIHZhcmlhYmxlcyBjb24gZGlmZXJlbnRlcyBlc2NhbGFzLg0KDQpFbiAqKlZhbG9yZXMgeSBWZWN0b3JlcyBQcm9waW9zKiogbGEgcHJpbWVyYSB0YWJsYSBub3MgZGEgbGEgaW1wb3J0YW5jaWEgZGUgY2FkYSBjb21wb25lbnRlIGVuIHTDqXJtaW5vcyBkZSBsYSB2YXJpYW56YSBleHBsaWNhZGEuIExhIHNlZ3VuZGEgdGFibGEgbXVlc3RyYSBjw7NtbyBsYXMgdmFyaWFibGVzIG9yaWdpbmFsZXMgY29udHJpYnV5ZW4gYSBsYSBmb3JtYWNpw7NuIGRlIGNhZGEgY29tcG9uZW50ZSBwcmluY2lwYWwuIEFtYmFzIHRhYmxhcywgZW4gY29uanVudG8sIG5vcyBheXVkYW4gYSBjb21wcmVuZGVyIGxhIGVzdHJ1Y3R1cmEgZGUgbG9zIGRhdG9zIHkgYSBpZGVudGlmaWNhciBsYXMgdmFyaWFibGVzIG3DoXMgaW1wb3J0YW50ZXMgcGFyYSBleHBsaWNhciBsYSB2YXJpYWJpbGlkYWQuDQoNCioqQ29ycmVsYWNpb25lcyBjb21wcmFkYXMqKjogTGEgZ3LDoWZpY2EgdmlzdWFsaXphIGxhcyByZWxhY2lvbmVzIGVudHJlIGxhcyB2YXJpYWJsZXMgb3JpZ2luYWxlcyB5IGPDs21vIGVzdGFzIHNlIHByb3llY3RhbiBlbiBudWV2b3MgZWplcyAoY29tcG9uZW50ZXMgcHJpbmNpcGFsZXMpIHF1ZSByZXN1bWVuIGxhIHZhcmlhYmlsaWRhZCBlbiBsb3MgZGF0b3MuIExhIGZ1ZXJ6YSB5IGxhIGRpcmVjY2nDs24gZGUgZXN0YXMgcmVsYWNpb25lcyBzZSByZXByZXNlbnRhbiBtZWRpYW50ZSBlbCBjb2xvciB5IGxhIGludGVuc2lkYWQgZGVsIGNvbG9yIGF6dWwgZW4gbGEgbWF0cml6LiAgQW5hbGl6YW5kbyBsYSBpbnRlbnNpZGFkIGRlbCBjb2xvciBhenVsIGVuIGFtYmFzIG1hdHJpY2VzLCBzZSBwdWVkZW4gZXh0cmFlciBjb25jbHVzaW9uZXMgc29icmUgcXXDqSB2YXJpYWJsZXMgaW5mbHV5ZW4gbcOhcyBlbiBjYWRhIGNvbXBvbmVudGUgcHJpbmNpcGFsIHkgcXXDqSByZWxhY2lvbmVzIGV4aXN0ZW4gZW50cmUgbGFzIHZhcmlhYmxlc8Kgb3JpZ2luYWxlcy4NCg0KRWwgKipHcsOhZmljbyBkZSBDYXR0ZWxsKiogbm9zIG11ZXN0cmEgbGEgbMOtbmVhIHF1ZSBjb25lY3RhIGxvcyBwdW50b3MgcmVwcmVzZW50YSBsYSBkaXNtaW51Y2nDs24gZGUgbGEgdmFyaWFuemEgZXhwbGljYWRhIGEgbWVkaWRhIHF1ZSBzZSBpbmNsdXllbiBtw6FzIGNvbXBvbmVudGVzLiAgRWwgImNvZG8iIChlbGJvdykgZW4gZXN0YSBsw61uZWEsIGVzIGRlY2lyLCBlbCBwdW50byBkb25kZSBsYSBkaXNtaW51Y2nDs24gZGUgbGEgdmFyaWFuemEgc2UgaGFjZSBtZW5vcyBwcm9udW5jaWFkYSwgc2lydmUgY29tbyB1bmEgZ3XDrWEgcGFyYSBkZXRlcm1pbmFyIGN1w6FudG9zIGNvbXBvbmVudGVzIHByaW5jaXBhbGVzIHNvbiBzdWZpY2llbnRlcyBwYXJhIGNhcHR1cmFyIGxhIG1heW9yIHBhcnRlIGRlIGxhIGluZm9ybWFjacOzbiByZWxldmFudGUgZW4gbG9zIGRhdG9zLiBFbiBlc3RlIGNhc28sIGVsIGNvZG8gbm8gZXMgbXV5IGRlZmluaWRvLCAgbG8gcXVlIHN1Z2llcmUgcXVlIGxhIGRlY2lzacOzbiBzb2JyZSBlbCBuw7ptZXJvIGRlIGNvbXBvbmVudGVzIGEgcmV0ZW5lciBlcyBzdWJqZXRpdmEgeSBwb2Ryw61hIGRlcGVuZGVyIGRlbCBjb250ZXh0byB5IGVsIG9iamV0aXZvIGRlbCBhbsOhbGlzaXMuICBQb2Ryw61hIGNvbnNpZGVyYXJzZSBsYSByZXRlbmNpw7NuIGRlIGRvcyBvIHRyZXMgY29tcG9uZW50ZXMsIGRhZG8gcXVlIGRlc3B1w6lzIGVsIGRlY3JlY2ltaWVudG/CoGVzwqBtw6FzwqBsZW50by4NCg0KZWwgR3LDoWZpY28gZGUgKipDYXR0ZWxsLUthaXNlcioqIGF5dWRhIGEgZGVjaWRpciBjdcOhbnRvcyBjb21wb25lbnRlcyBwcmluY2lwYWxlcyBzb24gc3VmaWNpZW50ZXMgcGFyYSByZXByZXNlbnRhciBsYSBtYXlvciBwYXJ0ZSBkZSBsYSB2YXJpYWJpbGlkYWQgZW4gbG9zIGRhdG9zLiAgU2UgYnVzY2EgZWwgcHVudG8gZW4gZWwgcXVlIGxhIGNhw61kYSBlbiBsb3MgdmFsb3JlcyBwcm9waW9zIGVzIHN1c3RhbmNpYWwsIGluZGljYXRpdm8gZGUgcXVlIGxhIGluZm9ybWFjacOzbiBhZGljaW9uYWwgcHJvcG9yY2lvbmFkYSBwb3IgbG9zIGNvbXBvbmVudGVzIHNpZ3VpZW50ZXMgZXMgbcOtbmltYS4gTGEgbMOtbmVhIHB1bnRlYWRhIGVuIGVsIGdyw6FmaWNvIGVzIHVuYSBheXVkYSB2aXN1YWwsIHBlcm8gbGEgZGVjaXNpw7NuIGZpbmFsIHB1ZWRlIGludm9sdWNyYXIgdGFtYmnDqW4gb3RyYXMgY29uc2lkZXJhY2lvbmVzLg0KDQojIyMjIE1hdHJpeiBBQ1ANCmBgYHtyIE1hdHJpel9BQ1AgLGZpZy5hbGlnbj0nY2VudGVyJ30NCmdldF9laWdlbnZhbHVlKFBDQShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1ssLWMoMSwyLDQsNSw2LDkpXSwgbmNwID0gNiwgc2NhbGUudW5pdCA9IFRSVUUsIGdyYXBoID0gRikpDQoNCmBgYA0KDQojIyMjIE1hdHJpeiBkZSBjb3JyZWxhY2lvbmVzX0FDUA0KYGBge3IgTWF0cml6X2RlX2NvcnJlbGFjaW9uZXNfQUNQLCBmaWcuYWxpZ249J2NlbnRlcid9DQpyb3VuZChjb3IoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9bLC1jKDEsMiw0LDUsNiw5KV0pLDQpDQpgYGANCg0KIyMjIyBWYWxvcmVzIHkgVmVjdG9yZXMgUHJvcGlvcw0KYGBge3IgVmFsb3Jlc195X1ZlY3RvcmVzX1Byb3Bpb3MsIGZpZy5hbGlnbiA9ICdjZW50ZXInfQ0KcHJpbmNvbXAoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9bLC1jKDEsMiw0LDUsNiw5KV0sIGNvciA9IFRSVUUpJHNkZXZeMg0KcHJpbmNvbXAoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9bLC1jKDEsMiw0LDUsNiw5KV0sIGNvciA9IFRSVUUpJGxvYWRpbmdzWyAsMTo0XQ0KYGBgDQoNCiMjIyMgQ29ycmVsYWNpb25lcyBDb21wYXJhZGFzDQpgYGB7ciBDb3JyZWxhY2lvbmVzX0NvbXBhcmFkYXMsIGZpZy5hbGlnbj0nY2VudGVyJ30NCnBhcihtZnJvdz1jKDEsMikpDQpjb3JycGxvdDo6Y29ycnBsb3QoY29yKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvWywtYygxLDIsNCw1LDYsOSldKSwgbWV0aG9kID0gImNvbG9yIiwgdHlwZSA9ICJ1cHBlciIsIG51bWJlci5jZXggPSAwLjQpDQpjb3JycGxvdDo6Y29ycnBsb3QoY29yKHByaW5jb21wKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvWywtYygxLDIsNCw1LDYsOSldLCBjb3IgPSBUUlVFKSRzY29yZXMpLCBtZXRob2QgPSAiY29sb3IiLCB0eXBlID0gInVwcGVyIiwgbnVtYmVyLmNleCA9IDAuNCkNCg0KYGBgDQoNCiMjIyMgR3LDoWZpY28gZGUgQ2F0dGVsbA0KYGBge3IgR3JhZmljb19kZV9DYXR0ZWxsLCBmaWcuYWxpZ24gPSAnY2VudGVyJ30NCmZ2aXpfZWlnKFBDQShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1ssLWMoMSwyLDQsNSw2LDkpXSwgc2NhbGUudW5pdCA9IFQsIGdyYXBoID0gRiksIGFkZGxhYmVscyA9IFQsIHlsaW09YygwLDkwKSwgbWFpbiA9ICIiKQ0KDQpgYGANCg0KIyMjIyBHcsOhZmljbyBkZSBDYXR0ZWxsLUthaXNlcg0KYGBge3IgR3JhZmljb19kZV9DYXR0ZWxsX0thaXNlciwgZmlnLmFsaWduID0gJ2NlbnRlcid9DQpzY3JlZShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1ssLWMoMSwyLDQsNSw2LDkpXSxmYWN0b3JzID0gRkFMU0UsIHBjID0gVFJVRSwgbWFpbiA9IiIpDQpgYGANCg0KIyMjICoqMi4zLiBDYWxpZGFkIGRlIFJlcHJlc2VudGFjacOzbioqIHsudGFic2V0IC50YWJzZXQtcGlsbHN9DQoNCkxhIGNhbGlkYWQgZGUgcmVwcmVzZW50YWNpw7NuIGVuIGxhIGdlc3Rpw7NuIGRlIGRhdG9zIHNlIHJlZmllcmUgYSBsYSBwcmVjaXNpw7NuIHkgY29uc2lzdGVuY2lhIGNvbiBsYSBxdWUgbG9zIGRhdG9zIHJlZmxlamFuIGxhIHJlYWxpZGFkIHF1ZSBwcmV0ZW5kZW4gZGVzY3JpYmlyLiBFc3RvIGltcGxpY2EgcXVlIGxvcyBkYXRvcyBkZWJlbiBzZXIgZXhhY3RvcywgY29tcGxldG9zIHkgYWN0dWFsaXphZG9zLCBwZXJtaXRpZW5kbyBxdWUgbGFzIGRlY2lzaW9uZXMgYmFzYWRhcyBlbiBlbGxvcyBzZWFuIGNvbmZpYWJsZXMgeSBlZmVjdGl2YXMuIExhIGNhbGlkYWQgZGUgbG9zIGRhdG9zIGVzIGNydWNpYWwgcGFyYSBldml0YXIgZXJyb3JlcyB5IG1hbGVudGVuZGlkb3MgcXVlIHB1ZWRhbiBhZmVjdGFyIG5lZ2F0aXZhbWVudGUgYSBsYXMgb3BlcmFjaW9uZXMgeSBlc3RyYXRlZ2lhcyBkZSB1bmEgb3JnYW5pemFjacOzbi4NCg0KUGFyYSBhc2VndXJhciB1bmEgYWx0YSBjYWxpZGFkIGRlIHJlcHJlc2VudGFjacOzbiwgZXMgZnVuZGFtZW50YWwgaW1wbGVtZW50YXIgcHLDoWN0aWNhcyBkZSBnZXN0acOzbiBkZSBkYXRvcyBxdWUgaW5jbHV5YW4gbGEgdmFsaWRhY2nDs24geSBsaW1waWV6YSBkZSBkYXRvcywgYXPDrSBjb21vIGxhIGVzdGFuZGFyaXphY2nDs24gZGUgZm9ybWF0b3MgeSBsYSBlbGltaW5hY2nDs24gZGUgZHVwbGljYWRvcy4gRXN0YXMgcHLDoWN0aWNhcyBheXVkYW4gYSBtYW50ZW5lciBsYSBpbnRlZ3JpZGFkIHkgY29oZXJlbmNpYSBkZSBsb3MgZGF0b3MgYSBsbyBsYXJnbyBkZSBzdSBjaWNsbyBkZSB2aWRhLiBBZGVtw6FzLCBlcyBpbXBvcnRhbnRlIGVzdGFibGVjZXIgcG9sw610aWNhcyBjbGFyYXMgZGUgZ29iZXJuYW56YSBkZSBkYXRvcyBxdWUgZGVmaW5hbiByZXNwb25zYWJpbGlkYWRlcyB5IHByb2NlZGltaWVudG9zIHBhcmEgbGEgZ2VzdGnDs24geSBlbCB1c28gZGUgbG9zIGRhdG9zLg0KDQpMYSBjYWxpZGFkIGRlIGxvcyBkYXRvcyBubyBzb2xvIG1lam9yYSBsYSBlZmljaWVuY2lhIG9wZXJhdGl2YSwgc2lubyBxdWUgdGFtYmnDqW4gZmFjaWxpdGEgZWwgY3VtcGxpbWllbnRvIGRlIG5vcm1hdGl2YXMgeSBsYSBwZXJzb25hbGl6YWNpw7NuIGRlIHNlcnZpY2lvcyBwYXJhIGxvcyBjbGllbnRlcy4gRGF0b3MgZGUgYWx0YSBjYWxpZGFkIHBlcm1pdGVuIGEgbGFzIGVtcHJlc2FzIHRvbWFyIGRlY2lzaW9uZXMgbcOhcyBpbmZvcm1hZGFzLCBvcHRpbWl6YXIgcHJvY2Vzb3MgeSBvZnJlY2VyIGV4cGVyaWVuY2lhcyBtw6FzIHJlbGV2YW50ZXMgYSBzdXMgdXN1YXJpb3MuIEVuIHJlc3VtZW4sIGxhIGNhbGlkYWQgZGUgcmVwcmVzZW50YWNpw7NuIGVuIGxhIGdlc3Rpw7NuIGRlIGRhdG9zIGVzIHVuIGNvbXBvbmVudGUgZXNlbmNpYWwgcGFyYSBlbCDDqXhpdG8geSBsYSBjb21wZXRpdGl2aWRhZCBkZSBjdWFscXVpZXLCoG9yZ2FuaXphY2nDs24uDQoNCmVsICoqQ8OtcmN1bG8gZGUgQ29ycmVsYWNpb25lcyoqICBheXVkYSBhIGVudGVuZGVyIGPDs21vIGxhcyB2YXJpYWJsZXMgb3JpZ2luYWxlcyBzZSByZWxhY2lvbmFuIGVudHJlIHPDrSB5IGNvbiBsb3MgY29tcG9uZW50ZXMgcHJpbmNpcGFsZXMgb2J0ZW5pZG9zIHBvciBlbCBQQ0EuICBWYXJpYWJsZXMgYWdydXBhZGFzIGNlcmNhIGVuIGVsIGdyw6FmaWNvIHRpZW5kZW4gYSBlc3RhciBjb3JyZWxhY2lvbmFkYXMuICBTZSBwdWVkZSB2ZXIgcXVlICJhZ2UiIHkgInBlcmZvcm1hbmNlIiBlc3TDoW4gcG9zaXRpdmFtZW50ZSBjb3JyZWxhY2lvbmFkYXMgZW50cmUgc8OtIHkgY29uIGxhIERpbTEsIG1pZW50cmFzIHF1ZSAicHJpY2UiIHkgImttIiBlc3TDoW4gbcOhcyBjZXJjYW5hcyBlbnRyZSBlbGxhcyB5IGVuIGVsIGVqZSBob3Jpem9udGFsLCBtb3N0cmFuZG8gdW5hIGNvcnJlbGFjacOzbsKgY29uwqBEaW0xLg0KDQoqKk1hdHJpeiBkZSBSZXByZXNlbnRhY2nDs24qKjogRXN0YSBtYXRyaXogcHJvcG9yY2lvbmEgaW5mb3JtYWNpw7NuIHZhbGlvc2EgcGFyYSBpbnRlcnByZXRhciBjw7NtbyBsYXMgdmFyaWFibGVzIGNvbnRyaWJ1eWVuIGFsIG1vZGVsbyBBQ1AgeSBxdcOpIGRpbWVuc2lvbmVzIHNvbiBtw6FzIHJlbGV2YW50ZXMgcGFyYSByZXByZXNlbnRhcmxhcy4gUHVlZGVzIHVzYXIgZXN0YSBpbmZvcm1hY2nDs24gcGFyYSByZWR1Y2lyIGRpbWVuc2lvbmFsaWRhZCBvIGlkZW50aWZpY2FyIHBhdHJvbmVzIGNsYXZlIGVuIHR1cyBkYXRvcy4gDQpMYSBEaW0uMiBwYXJlY2Ugc2VyIGNydWNpYWwgcGFyYSBkZXNjcmliaXIgbGEgdmFyaWFiaWxpZGFkIGRlIGFnZSwgcG9yIGxvIHF1ZSBlc3RhIHZhcmlhYmxlIHRpZW5lIHVuYSBmdWVydGUgYXNvY2lhY2nDs24gY29uIGVzZSBjb21wb25lbnRlLg0KTGEgRGltLjMgZXhwbGljYSBwYXRyb25lcyBxdWUgaW52b2x1Y3JhbiB0YW50byBwZXJmb3JtYW5jZSBjb21vIGttLCBpbmRpY2FuZG8gdW5hIHBvc2libGUgcmVsYWNpw7NuIGVudHJlIGVzdGFzIHZhcmlhYmxlcyBlbiBlbCBjb250ZXh0byBkZSBsb3MgZGF0b3MuDQpMYSB2YXJpYWJsZSBwcmljZSBlc3TDoSByZXBhcnRpZGEgZW50cmUgbGEgRGltLjEgeSBsYSBEaW0uNCwgbG8gcXVlIHN1Z2llcmUgcXVlIGRpZmVyZW50ZXMgZGltZW5zaW9uZXMgY2FwdHVyYW4gZGlzdGludG9zIGFzcGVjdG9zIGRlIHN1IHZhcmlhYmlsaWRhZC4NCg0KKipDYWxpZGFkIGRlIFJlcHJlc2VudGFjacOzbioqOiBFbCBncsOhZmljbyBkZSBjYWxpZGFkIGRlIHJlcHJlc2VudGFjacOzbiBtdWVzdHJhIHF1ZSBsYSB2YXJpYWJsZSAqKmFnZSoqIHRpZW5lIHVuYSBpbmZsdWVuY2lhIHNpZ25pZmljYXRpdmEgZW4gbGEgc2VndW5kYSBkaW1lbnNpw7NuIChEaW0yKSwgbWllbnRyYXMgcXVlICoqa20qKiBlc3TDoSBiaWVuIHJlcHJlc2VudGFkYSBlbiBsYSBwcmltZXJhIGRpbWVuc2nDs24gKERpbTEpLiBFc3RvIHN1Z2llcmUgcXVlIGxhIGVkYWQgZGUgbG9zIGR1ZcOxb3MgIHkgZWwga2lsb21ldHJhamUgZGUgbG9zIGF1dG9zIHNvbiBmYWN0b3JlcyBjbGF2ZSBxdWUgYWZlY3RhbiBsYSB2YXJpYWJpbGlkYWQgZW4gbG9zIGRhdG9zIHksIHBvciBlbmRlLCBwdWVkZW4gc2VyIGRldGVybWluYW50ZXMgZW4gbGFzIGRlY2lzaW9uZXMgcXVlIHNlIHF1aWVyYW4gdG9tYXIgZGVwZW5kaWVuZG8gYWwgbW9tZXRvIHNpZ3VpZW50ZSBkZSBhbmFsaXphciBsb3MgZGF0b3MuDQoNCioqQ29vcmRlbmFkYXMgSW5kaXZpZHVhbGVzKio6IEVzdG8gZXMgw7p0aWwgY3VhbmRvIGRlc2VhcyByZWR1Y2lyIGxhIGRpbWVuc2lvbmFsaWRhZCBkZSBsb3MgZGF0b3MsIHZpc3VhbGl6YXIgcmVsYWNpb25lcyBlbnRyZSBvYnNlcnZhY2lvbmVzLCBvIHNpbXBsaWZpY2FyIGxhIGVzdHJ1Y3R1cmEgcGFyYSBhbsOhbGlzaXPCoHBvc3RlcmlvcmVzLg0KDQoNCiMjIyMgQ8OtcmN1bG8gZGUgQ29ycmVsYWNpb25lcw0KYGBge3IgQ2lyY3Vsb19kZV9Db3JyZWxhY2lvbmVzLCBmaWcuYWxpZ24gPSAnY2VudGVyJ30NCmZ2aXpfcGNhX3ZhcihQQ0EoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9bLC1jKDEsMiw0LDUsNiw5KV0sIHNjYWxlLnVuaXQgPSBULCBncmFwaCA9IEYpLGNvbC52YXI9IiMzQjgzQkQiLCByZXBlbCA9IFQsIGNvbC5jaXJjbGUgPSAiI0NEQ0RDRCIsIGdndGhlbWUgPSB0aGVtZV9idygpKQ0KYGBgDQoNCiMjIyMgTWF0cml6IGRlIFJlcHJlc2VudGFjacOzbg0KYGBge3IgTWF0cml6X2RlX1JlcHJlc3NlbnRhY2lvbl9DT1MyLCBmaWcuYWxpZ24gPSAnY2VudGVyJ30NCihnZXRfcGNhX3ZhcihQQ0EoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9bLC1jKDEsMiw0LDUsNiw5KV0sIG5jcCA9IDYsIHNjYWxlLnVuaXQgPSBUUlVFLCBncmFwaCA9IEYpKSkkY29zMg0KYGBgDQoNCiMjIyMgQ2FsaWRhZCBkZSBSZXByZXNlbnRhY2nDs24NCmBgYHtyIENhbGlkYWRfZGVfbGFfUmVwcmVzZW50YWNpb24sIGZpZy5hbGlnbiA9ICdjZW50ZXInfQ0KZnZpel9wY2FfdmFyKFBDQShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1ssLWMoMSwyLDQsNSw2LDkpXSwgbmNwID0gNiwgc2NhbGUudW5pdCA9IFRSVUUsIGdyYXBoID0gRiksIGNvbC52YXI9ImNvczIiLCBncmFkaWVudC5jb2xzPWMoIiMwMEFGQkIiLCIjRTdCODAwIiwiI0ZDNEUwNyIpLCByZXBlbCA9IFRSVUUpDQpgYGANCg0KIyMjIyBDb29yZGVuYWRhcyBJbmRpdmlkdWFsZXMNCmBgYHtyIENvb3JkZW5hZGFzX1JlZ2lzdHJvcywgZmlnLmFsaWduID0gJ2NlbnRlcid9DQpoZWFkKChQQ0EoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9bLC1jKDEsMiw0LDUsNiw5KV0sIG5jcCA9IDYsIHNjYWxlLnVuaXQgPSBUUlVFLCBncmFwaCA9IEYpKSRpbmQkY29vcmQsIG4gPSAyM0wpDQpgYGANCg0KDQojIyMgKioyLjQuIENvbnRyaWJ1Y2lvbmVzIHkgYmlwbG90cyoqIHsudGFic2V0IC50YWJzZXQtcGlsbHN9DQoNCkVuIHTDqXJtaW5vcyBnZW5lcmFsZXMsIGxhcyBjb250cmlidWNpb25lcyB5IGxvcyBiaXBsb3RzIHNvbiBoZXJyYW1pZW50YXMgZnVuZGFtZW50YWxlcyBwYXJhIGludGVycHJldGFyIGxvcyByZXN1bHRhZG9zIGRlIGFuw6FsaXNpcyBtdWx0aXZhcmlhZG9zLCBjb21vIGVsIEFuw6FsaXNpcyBkZSBDb21wb25lbnRlcyBQcmluY2lwYWxlcyAoQUNQKSBvIGVsIEFuw6FsaXNpcyBkZSBDb3JyZXNwb25kZW5jaWFzLiBMYXMgY29udHJpYnVjaW9uZXMgcGVybWl0ZW4gaWRlbnRpZmljYXIgcXXDqSB2YXJpYWJsZXMgb3JpZ2luYWxlcyBvIHF1w6kgaW5kaXZpZHVvcyAobyBmaWxhcykgZGVsIGNvbmp1bnRvIGRlIGRhdG9zIHNvbiBsb3MgcHJpbmNpcGFsZXMgcmVzcG9uc2FibGVzIGRlIGxhIHZhcmlhYmlsaWRhZCBleHBsaWNhZGEgcG9yIGxvcyBjb21wb25lbnRlcyBvIGRpbWVuc2lvbmVzIHByaW5jaXBhbGVzLiBFc3RhcyBjb250cmlidWNpb25lcyBzZSBleHByZXNhbiBjb21vIHBvcmNlbnRhamVzIHkgYXl1ZGFuIGEgZGVzdGFjYXIgY3XDoWxlcyBzb24gbG9zIGVsZW1lbnRvcyBtw6FzIGluZmx1eWVudGVzIGVuIGxhIGZvcm1hY2nDs24gZGUgdW4gY29tcG9uZW50ZSBlbiBwYXJ0aWN1bGFyLg0KDQpQb3Igb3RybyBsYWRvLCBsb3MgYmlwbG90cyBzb24gcmVwcmVzZW50YWNpb25lcyBncsOhZmljYXMgcXVlIGNvbWJpbmFuIGluZm9ybWFjacOzbiBzb2JyZSBpbmRpdmlkdW9zIHkgdmFyaWFibGVzIGVuIHVuIG1pc21vIGVzcGFjaW8sIGdlbmVyYWxtZW50ZSBiaWRpbWVuc2lvbmFsLiBFbiB1biBiaXBsb3QsIGxvcyBwdW50b3MgcmVwcmVzZW50YW4gYSBsb3MgaW5kaXZpZHVvcywgbWllbnRyYXMgcXVlIGxhcyBmbGVjaGFzIG8gdmVjdG9yZXMgaW5kaWNhbiBsYXMgdmFyaWFibGVzLiBMYSBkaXJlY2Npw7NuIHkgbG9uZ2l0dWQgZGUgbGFzIGZsZWNoYXMgcmVmbGVqYW4gbGEgaW5mbHVlbmNpYSB5IGxhIGNvcnJlbGFjacOzbiBkZSBjYWRhIHZhcmlhYmxlIGNvbiBsb3MgY29tcG9uZW50ZXMgcHJpbmNpcGFsZXMuIEVzdG8gcGVybWl0ZSB1bmEgdmlzdWFsaXphY2nDs24gaW50dWl0aXZhIGRlIGxhIHJlbGFjacOzbiBlbnRyZSB2YXJpYWJsZXMgeSBjw7NtbyBsb3MgaW5kaXZpZHVvcyBzZSBhZ3J1cGFuIG8gZGlzdHJpYnV5ZW4gZW4gZnVuY2nDs24gZGUgZWxsYXMuDQoNCkVuIGNvbmp1bnRvLCBsYXMgY29udHJpYnVjaW9uZXMgeSBsb3MgYmlwbG90cyBzb24gaGVycmFtaWVudGFzIGNvbXBsZW1lbnRhcmlhcyBwYXJhIGFuYWxpemFyIHkgY29tdW5pY2FyIGxvcyByZXN1bHRhZG9zIGRlIHTDqWNuaWNhcyBtdWx0aXZhcmlhZGFzLiBNaWVudHJhcyBxdWUgbGFzIGNvbnRyaWJ1Y2lvbmVzIG9mcmVjZW4gdW5hIHZpc2nDs24gY3VhbnRpdGF0aXZhIHNvYnJlIGxhIGltcG9ydGFuY2lhIHJlbGF0aXZhIGRlIGNhZGEgZWxlbWVudG8sIGxvcyBiaXBsb3RzIGZhY2lsaXRhbiB1bmEgaW50ZXJwcmV0YWNpw7NuIHZpc3VhbCBkZSBsYSBlc3RydWN0dXJhIHkgcmVsYWNpb25lcyBkZWwgY29uanVudG8gZGUgZGF0b3MuIEVzdG8gZXMgcGFydGljdWxhcm1lbnRlIMO6dGlsIHBhcmEgaWRlbnRpZmljYXIgcGF0cm9uZXMsIGNvcnJlbGFjaW9uZXMgeSB0ZW5kZW5jaWFzIHF1ZSBwb2Ryw61hbiBubyBzZXIgZXZpZGVudGVzIGEgc2ltcGxlIHZpc3RhIGVuIGxvcyBkYXRvc8Kgb3JpZ2luYWxlcy4NCg0KKipNYXRyaXogZGUgQ29udHJpYnVjaW9uZXMqKjogTGEgbWF0cml6IGRlIGNvbnRyaWJ1Y2lvbmVzIHJldmVsYSBxdWUgZGlmZXJlbnRlcyB2YXJpYWJsZXMgaW5mbHV5ZW4gZGUgbWFuZXJhIGRpc3RpbnRhIGVuIGxhcyBkaW1lbnNpb25lcyBkZWwgYW7DoWxpc2lzIGRlIGNvbXBvbmVudGVzIHByaW5jaXBhbGVzIChQQ0EpIGFwbGljYWRvIGFsIGNvbmp1bnRvIGRlIGRhdG9zIGFuYWxpemFkby4gRW4gcGFydGljdWxhciwgbGEgZWRhZCBkZWwgcHJvcGlldGFyaW8gdmVow61jdWxvIGVzIHVuIGZhY3RvciBjbGF2ZSBlbiBsYSBzZWd1bmRhIGRpbWVuc2nDs24sIG1pZW50cmFzIHF1ZSBlbCByZW5kaW1pZW50byBzZSBkaXN0cmlidXllIG3DoXMgZXF1aXRhdGl2YW1lbnRlIGVudHJlIHZhcmlhcyBkaW1lbnNpb25lcy4gQWRlbcOhcywgZWwga2lsb21ldHJhamUgdGllbmUgdW4gaW1wYWN0byBub3RhYmxlIGVuIGxhIHRlcmNlcmEgZGltZW5zacOzbiwgeSBlbCBwcmVjaW8gc2UgZGVzdGFjYSBlbiBsYSBjdWFydGEgZGltZW5zacOzbi4gDQoNCioqQmlwbG90IGRlIFZhcmlhYmxlcyB5IFJlZ2lzdHJvcyBbRmlsdHJvIEdlbmRlcl0qKjogbXVlc3RyYSBzaW11bHTDoW5lYW1lbnRlIGxhIHJlbGFjacOzbiBlbnRyZSBsYXMgdmFyaWFibGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsb3MgcmVnaXN0cm9zIChpbmRpdmlkdW9zKSBlbiB1biBlc3BhY2lvIHJlZHVjaWRvLCBnZW5lcmFsbWVudGUgYmlkaW1lbnNpb25hbCwgZGVmaW5pZG8gcG9yIGxvcyBwcmltZXJvcyBjb21wb25lbnRlcyBwcmluY2lwYWxlcy4gRXN0ZSB0aXBvIGRlIGdyw6FmaWNvIGVzIHVuYSBoZXJyYW1pZW50YSB2aXN1YWwgcG9kZXJvc2EgcGFyYSBhbmFsaXphciBwYXRyb25lcyB5IHJlbGFjaW9uZXMgZGVudHJvIGRlIGxvcyBkYXRvc8KgZmlsdHJhZG9zLg0KDQoqKkNvb3JkZW5hZGFzIEluZGl2aWR1YWxlcyBbU3ViY29uanVudG8gY29uZGl0aW9uXSoqOiAgbXVlc3RyYSBjw7NtbyBsYXMgdmFyaWFibGVzIGNvbnRyaWJ1eWVuIGEgbGEgZXN0cnVjdHVyYSBkZWwgc3ViY29uanVudG8geSBjw7NtbyBsb3MgcmVnaXN0cm9zIChpbmRpdmlkdW9zKSBkZW50cm8gZGUgZXNlIHN1YmNvbmp1bnRvIHNlIHJlbGFjaW9uYW4gZW50cmUgc8OtIGVuIGVsIGVzcGFjaW8gZGVmaW5pZG8gcG9yIGxvcyBjb21wb25lbnRlcyBwcmluY2lwYWxlcyBvIGRpbWVuc2lvbmVzIHNlbGVjY2lvbmFkYXMuDQoNCioqQmlwbG90IGRlIFZhcmlhYmxlcyB5IFJlZ2lzdHJvcyBbU3ViY29uanVudG8gY29uZGl0aW9uXSoqOiANCg0KIyMjIyBNYXRyaXogZGUgQ29udHJpYnVjaW9uZXMNCmBgYHtyIE1hdHJpel9kZV9Db250cmlidWNpb25lcywgZmlnLmFsaWduID0gJ2NlbnRlcid9DQooZ2V0X3BjYV92YXIoUENBKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvWywtYygxLDIsNCw1LDYsOSldLCBuY3AgPSA2LCBzY2FsZS51bml0ID0gVFJVRSwgZ3JhcGggPSBGKSkpJGNvbnRyaWINCmBgYA0KDQojIyMjIENvbnRyaWJ1Y2lvbmVzIGEgRDENCmBgYHtyIENvbnRyaWJ1Y2lvbmVzX2FfRDEsZmlnLmFsaWduPSdjZW50ZXInfQ0KZnZpel9jb250cmliKFBDQShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1ssLWMoMSwyLDQsNSw2LDkpXSwgbmNwID0gNCwgc2NhbGUudW5pdCA9IFRSVUUsIGdyYXBoID0gRiksIGNob2ljZSA9ICJ2YXIiLCBheGVzID0gMSwgdG9wID0gMTApDQoNCmBgYA0KDQojIyMjIENvbnRyaWJ1Y2lvbmVzIGEgRDINCmBgYHtyIENvbnRyaWJ1Y2lvbmVzX0RJTV8yLCBmaWcuYWxpZ24gPSAnY2VudGVyJ30NCmZ2aXpfY29udHJpYihQQ0EoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9bLC1jKDEsMiw0LDUsNiw5KV0sIG5jcCA9IDQsIHNjYWxlLnVuaXQgPSBUUlVFLCBncmFwaCA9IEYpLCBjaG9pY2UgPSAidmFyIiwgYXhlcyA9IDIsIHRvcCA9IDEwKQ0KYGBgDQoNCiMjIyMgQ29udHJpYnVjaW9uZXMgYSBEMw0KYGBge3IgQ29udHJpYnVjaW9uZXNfRElNXzMsIGZpZy5hbGlnbiA9ICdjZW50ZXInfQ0KZnZpel9jb250cmliKFBDQShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1ssLWMoMSwyLDQsNSw2LDkpXSwgbmNwID0gNCwgc2NhbGUudW5pdCA9IFRSVUUsIGdyYXBoID0gRiksIGNob2ljZSA9ICJ2YXIiLCBheGVzID0gMywgdG9wID0gMTApDQpgYGANCg0KIyMjIyBDb250cmlidWNpb25lcyBhIEQ0DQpgYGB7ciBDb250cmlidWNpb25lc19ESU1fNCwgZmlnLmFsaWduID0gJ2NlbnRlcid9DQpmdml6X2NvbnRyaWIoUENBKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvWywtYygxLDIsNCw1LDYsOSldLCBuY3AgPSA0LCBzY2FsZS51bml0ID0gVFJVRSwgZ3JhcGggPSBGKSwgY2hvaWNlID0gInZhciIsIGF4ZXMgPSA0LCB0b3AgPSAxMCkNCmBgYA0KDQojIyMjIEJpcGxvdCBkZSBWYXJpYWJsZXMgeSBSZWdpc3Ryb3MgW0ZpbHRybyBHZW5kZXJdDQpgYGB7ciBCaXBsb3RfZGVfVmFyaWFibGVzX3lfUmVnaXN0cm9zX0ZpbHRyb19HZW5kZXIsIGZpZy5hbGlnbj0nY2VudGVyJ30NCg0Kc2V0LnNlZWQoNzgwNzIwKQ0KTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9fTXVlc3RyZWFkbyA9IE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvW3NhbXBsZSgxOm5yb3coTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8pLDEwMCksLWMoMSwyLDUsNiw5KV0NCk1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvX011ZXN0cmVhZG8kZ2VuZGVyIDwtIGFzLmZhY3RvcihNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb19NdWVzdHJlYWRvJGdlbmRlcikNCmZ2aXpfcGNhX2JpcGxvdChQQ0EoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9fTXVlc3RyZWFkbywgbmNwID0gLCBzY2FsZS51bml0ID0gVFJVRSwgZ3JhcGggPSBGLCBxdWFsaS5zdXAgPSAiZ2VuZGVyIiksIGF4ZXMgPSBjKDEsIDIpLCByZXBlbCA9IFRSVUUsIGhhYmlsbGFnZSA9ICJnZW5kZXIiKQ0KYGBgDQoNCiMjIyMgQ29vcmRlbmFkYXMgSW5kaXZpZHVhbGVzIFtTdWJjb25qdW50byBjb25kaXRpb25dDQpgYGB7ciBDb29yZGVuYWRhc19JbmRpdmlkdWFsZXNfU3ViY29uanVudG9fY29uZGl0aW9uLCBmaWcuYWxpZ24gPSAnY2VudGVyJ30NCnNldC5zZWVkKDc4MDcyOCkNCk1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvX011ZXN0cmVhZG9fMiA8LSBNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1tzYW1wbGUoMTpucm93KE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvKSwgMTAwKSwgLWMoMSwyLDUsNildDQpzZXQuc2VlZCg3ODA3MjgpDQpzYW1wbGVkX3Jvd3MgPC0gc2FtcGxlKDE6bnJvdyhNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb19NdWVzdHJlYWRvXzIpLCAxMDApDQoNCmRhdGFfNjEgPC0gY2JpbmQoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9fTXVlc3RyZWFkb18yW3NhbXBsZWRfcm93cyxdKQ0KaGVhZChQQ0EoZGF0YV82MSwgbmNwID0gNiwgc2NhbGUudW5pdCA9IFQsIGdyYXBoID0gRiwgcXVhbGkuc3VwID0gNSkkaW5kJGNvb3JkLCBuID0gNjFMKQ0KYGBgDQoNCiMjIyMgQmlwbG90IGRlIFZhcmlhYmxlcyB5IFJlZ2lzdHJvcyBbU3ViY29uanVudG8gY29uZGl0aW9uXQ0KYGBge3IgQmlwbG90X2RlX1ZhcmlhYmxlc195X1JlZ2lzdHJvcywgZmlnLmFsaWduID0gJ2NlbnRlcid9DQpzZXQuc2VlZCg3ODA3MjgpDQpNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb19NdWVzdHJlYWRvXzIgPC0gTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9bc2FtcGxlKDE6bnJvdyhNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyksIDEwMCksIC1jKDEsMiw1LDYpXQ0Kc2V0LnNlZWQoNzgwNzI4KQ0Kc2FtcGxlZF9yb3dzIDwtIHNhbXBsZSgxOm5yb3coTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9fTXVlc3RyZWFkb18yKSwgMTAwKQ0KDQpkYXRhXzYxIDwtIGNiaW5kKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvX011ZXN0cmVhZG9fMltzYW1wbGVkX3Jvd3MsXSkNCmZ2aXpfcGNhX2JpcGxvdChQQ0EoZGF0YV82MSwgbmNwID0gNiwgc2NhbGUudW5pdCA9IFQsIGdyYXBoID0gRiwgcXVhbGkuc3VwID0gNSksIGF4ZXMgPSBjKDEsIDIpLCByZXBlbCA9IFQsIGhhYmlsbGFnZSA9IDUpDQpgYGANCg0KIyMgKipGYXNlIDMgW0NvcnJlc3BvbmRlbmNpYXNdKioNCg0KIyMjICoqMy4xLiBPYmpldGl2b3MqKg0KDQpFeHBsb3JhciB5IHZpc3VhbGl6YXIgbGFzIHJlbGFjaW9uZXMgZW50cmUgY2F0ZWdvcsOtYXMgZGUgZG9zIHZhcmlhYmxlcyBjdWFsaXRhdGl2YXMgcmVwcmVzZW50YWRhcyBlbiB1bmEgdGFibGEgZGUgY29udGluZ2VuY2lhLiBFc3RlIG3DqXRvZG8gcGVybWl0ZSBzaW1wbGlmaWNhciBkYXRvcyBjb21wbGVqb3MgbWVkaWFudGUgbGEgcmVkdWNjacOzbiBkZSBkaW1lbnNpb25hbGlkYWQsIGZhY2lsaXRhbmRvIGxhIGlkZW50aWZpY2FjacOzbiBkZSBwYXRyb25lcywgYXNvY2lhY2lvbmVzIHkgc2ltaWxpdHVkZXMgZW50cmUgbGFzIGNhdGVnb3LDrWFzLiBBZGVtw6FzLCBnZW5lcmEgcmVwcmVzZW50YWNpb25lcyBncsOhZmljYXMgcXVlIG11ZXN0cmFuIGxhcyByZWxhY2lvbmVzIGVuIHVuIGVzcGFjaW8gZGUgbWVub3IgZGltZW5zacOzbiwgdXN1YWxtZW50ZSBlbiBkb3MgZWplcywgbG8gcXVlIGF5dWRhIGEgaW50ZXJwcmV0YXIgbGFzIGNvbmV4aW9uZXMgeSBwcm94aW1pZGFkZXMgZW50cmUgZmlsYXMgeSBjb2x1bW5hcyBkZSBtYW5lcmEgY2xhcmEgeSBkZXNjcmlwdGl2YS4gRXMgdW5hIGhlcnJhbWllbnRhIHZhbGlvc2EgcGFyYSBlbCBhbsOhbGlzaXMgZXhwbG9yYXRvcmlvIGRlIGRhdG9zIGN1YWxpdGF0aXZvcyBhbnRlcyBkZSBhcGxpY2FyIG3DqXRvZG9zIG3DoXMgZXNwZWPDrWZpY29zLg0KDQojIyMgKiozLjIuIENvcnJlc3BvbmRlbmNpYXMgU2ltcGxlcyoqIHsudGFic2V0IC50YWJzZXQtcGlsbHN9DQoNCkxhcyBjb3JyZXNwb25kZW5jaWFzIHNpbXBsZXMgc29uIHVuYSB0w6ljbmljYSBkZSBhbsOhbGlzaXMgbXVsdGl2YXJpYWRvIHF1ZSBwZXJtaXRlIGVzdHVkaWFyIGxhIHJlbGFjacOzbiBlbnRyZSBkb3MgdmFyaWFibGVzIGNhdGVnw7NyaWNhcyBhIHRyYXbDqXMgZGUgdW5hIHRhYmxhIGRlIGNvbnRpbmdlbmNpYS4gRXN0ZSBtw6l0b2RvIGJ1c2NhIGlkZW50aWZpY2FyIHBhdHJvbmVzIGRlIGFzb2NpYWNpw7NuIHkgbGFzIGludGVyYWNjaW9uZXMgc3VieWFjZW50ZXMgZW50cmUgbGFzIGNhdGVnb3LDrWFzIGRlIGFtYmFzIHZhcmlhYmxlcywgdHJhbnNmb3JtYW5kbyBsb3MgZGF0b3Mgb3JpZ2luYWxlcyBlbiB1biBlc3BhY2lvIGdlb23DqXRyaWNvIGRvbmRlIGxhcyBmaWxhcyB5IGNvbHVtbmFzIHNlIHJlcHJlc2VudGFuIGNvbW8gcHVudG9zLiBFc3RvIGZhY2lsaXRhIGxhIGludGVycHJldGFjacOzbiB2aXN1YWwgeSBjdWFudGl0YXRpdmEgZGUgbGFzIHJlbGFjaW9uZXMgZW50cmUgY2F0ZWdvcsOtYXMuDQoNCkVuIGVzdGUgYW7DoWxpc2lzLCBjYWRhIGZpbGEgeSBjYWRhIGNvbHVtbmEgZGUgbGEgdGFibGEgc2UgcHJveWVjdGFuIGVuIHVuIHNpc3RlbWEgZGUgZWplcyBwcmluY2lwYWxlcyBxdWUgcmVzdW1lbiBsYSBtYXlvciBwYXJ0ZSBkZSBsYSB2YXJpYWJpbGlkYWQgZW4gbG9zIGRhdG9zLiBMYXMgZGlzdGFuY2lhcyBlbnRyZSBwdW50b3MgZW4gZXN0ZSBlc3BhY2lvIHJlcHJlc2VudGFuIHNpbWlsaXR1ZGVzIG8gZGlmZXJlbmNpYXMgZW4gbGFzIGRpc3RyaWJ1Y2lvbmVzIGRlIGxhcyBjYXRlZ29yw61hcy4gUG9yIGVqZW1wbG8sIGZpbGFzIChjYXRlZ29yw61hcyBkZSBsYSBwcmltZXJhIHZhcmlhYmxlKSBjZXJjYW5hcyBhIGNvbHVtbmFzIChjYXRlZ29yw61hcyBkZSBsYSBzZWd1bmRhIHZhcmlhYmxlKSBpbmRpY2FuIHVuYSBhc29jaWFjacOzbiBmdWVydGUgZW50cmUgZGljaGFzIGNhdGVnb3LDrWFzLiBFc3RlIGVuZm9xdWUgZXMgw7p0aWwgcGFyYSBpZGVudGlmaWNhciBwYXRyb25lcyBjbGF2ZSBxdWUgcHVlZGVuIG5vIHNlciBldmlkZW50ZXMgYSBzaW1wbGUgdmlzdGEgZW4gbG9zIGRhdG9zIHRhYnVsYXJlcy4NCg0KTGFzIGNvcnJlc3BvbmRlbmNpYXMgc2ltcGxlcyBwZXJtaXRlbiByZWR1Y2lyIGxhIGNvbXBsZWppZGFkIGRlIGxvcyBkYXRvcyBjYXRlZ8Ozcmljb3MsIHByb3BvcmNpb25hbmRvIHVuYSByZXByZXNlbnRhY2nDs24gZ3LDoWZpY2EgeSBudW3DqXJpY2EgZGUgbGFzIGFzb2NpYWNpb25lcy4gRXN0byBmYWNpbGl0YSBsYSB0b21hIGRlIGRlY2lzaW9uZXMgaW5mb3JtYWRhcyB5IGVsIGVudGVuZGltaWVudG8gZGUgbGFzIHJlbGFjaW9uZXMgZW50cmUgdmFyaWFibGVzIGVuIGNvbnRleHRvcyBjb21vIGVuY3Vlc3RhcywgZXN0dWRpb3MgZGUgbWVyY2FkbyBvIGFuw6FsaXNpcyBzb2NpYWxlcywgZG9uZGUgZXMgZXNlbmNpYWwgY29tcHJlbmRlciBjw7NtbyBzZSB2aW5jdWxhbiBsYXMgZGlmZXJlbnRlcyBjYXRlZ29yw61hc8KgZGXCoGludGVyw6lzLg0KDQoNCiMjIyMgYW5hbGlzaXMgZGUgY29ycmVzcG9uZGVuY2lhcyB7LnRhYnNldCAudGFic2V0LXBpbGxzfQ0KRWwgYW7DoWxpc2lzIGRlIGNvcnJlc3BvbmRlbmNpYSBkZSB1biBjb25qdW50byBkZSBkYXRvcyByZXZlbGEgbGFzIHJlbGFjaW9uZXMgeSBhc29jaWFjaW9uZXMgZW50cmUgY2F0ZWdvcsOtYXMgZGUgdmFyaWFibGVzIGNhdGVnw7NyaWNhcywgcmVwcmVzZW50YWRhcyBlbiB1bmEgdGFibGEgZGUgY29udGluZ2VuY2lhLiBQcm95ZWN0YSBlc3RhcyByZWxhY2lvbmVzIGVuIHVuIGVzcGFjaW8gZGUgYmFqYSBkaW1lbnNpw7NuLCBkb25kZSBmaWxhcyB5IGNvbHVtbmFzIHNlIG11ZXN0cmFuIGNvbW8gcHVudG9zLCB5IHN1cyBwb3NpY2lvbmVzIHJlZmxlamFuIHNpbWlsaXR1ZGVzIG8gYXNvY2lhY2lvbmVzLg0KDQoqKlRhYmxhcyBkZSBDb250aW5nZW5jaWEqKjogbGEgdGFibGEgZGUgY29udGluZ2VuY2lhIG11ZXN0cmEgbGEgcmVsYWNpw7NuIGVudHJlIGRpZmVyZW50ZXMgbW9kZWxvcyBkZSB2ZWjDrWN1bG9zIHkgc3UgZXN0YWRvLCBlcyBkZWNpciwgc2kgc29uIG51ZXZvcyBvIHVzYWRvcy4gQ2FkYSBmaWxhIHJlcHJlc2VudGEgdW4gbW9kZWxvIGVzcGVjw61maWNvIHkgbGFzIGNvbHVtbmFzIGluZGljYW4gY3XDoW50b3MgdmVow61jdWxvcyBkZSBjYWRhIHRpcG8gaGF5IHBhcmEgZXNlIG1vZGVsby4gRXN0byBwZXJtaXRlIHZlciByw6FwaWRhbWVudGUgY8OzbW8gc2UgZGlzdHJpYnV5ZW4gbG9zIHZlaMOtY3Vsb3MgbnVldm9zIHkgdXNhZG9zIGVudHJlIGxvcyBkaWZlcmVudGVzIG1vZGVsb3MuIEVzIMO6dGlsIHBhcmEgZW50ZW5kZXIgbGEgb2ZlcnRhwqBkZcKgdmVow61jdWxvcy4NCg0KKipQcm9iYWJpbGlkYWRlcyoqOiBMYSB0YWJsYSBkZSBwcm9iYWJpbGlkYWRlcyBtdWVzdHJhIGxhIGRpc3RyaWJ1Y2nDs24gZGUgY2llcnRvcyBldmVudG9zIG8gY2FyYWN0ZXLDrXN0aWNhcyBhc29jaWFkYXMgYSBsb3MgbW9kZWxvcyBkZSB2ZWjDrWN1bG9zIGVuIGVsIGNvbmp1bnRvIGRlIGRhdG9zLiBDYWRhIGZpbGEgcmVwcmVzZW50YSB1biBtb2RlbG8gZGlmZXJlbnRlLCB5IGxhcyBjb2x1bW5hcyBpbmRpY2FuIGxhIHByb2JhYmlsaWRhZCBkZSBxdWUgb2N1cnJhIHVuIGV2ZW50byBlc3BlY8OtZmljbyBvIHF1ZSBzZSBwcmVzZW50ZSB1bmEgY2FyYWN0ZXLDrXN0aWNhIHBhcnRpY3VsYXIgKGNvbW8gc2VyIG51ZXZvIG8gdXNhZG8pLiBFc3RvIHBlcm1pdGUgZW50ZW5kZXIgY3XDoW4gcHJvYmFibGUgZXMgcXVlIHVuIG1vZGVsbyBkZXRlcm1pbmFkbyB0ZW5nYSBjaWVydGFzIGNhcmFjdGVyw61zdGljYXMgZW4gY29tcGFyYWNpw7NuwqBjb27CoG90cm9zLg0KDQoqKkZyZWN1ZW5jaWFzKio6IExhcyBmcmVjdWVuY2lhcyBtdWVzdHJhbiBjdcOhbnRvcyB2ZWjDrWN1bG9zIGhheSBkZSBjYWRhIG1vZGVsbyBlbiBlbCBjb25qdW50byBkZSBkYXRvcy4gQ2FkYSBmaWxhIGNvcnJlc3BvbmRlIGEgdW4gbW9kZWxvIGVzcGVjw61maWNvIHkgbGFzIGNvbHVtbmFzIGluZGljYW4gY3XDoW50b3MgdmVow61jdWxvcyBwZXJ0ZW5lY2VuIGEgZGlmZXJlbnRlcyBjYXRlZ29yw61hcy4gRXN0byBwZXJtaXRlIHZlciBjw7NtbyBzZSBkaXN0cmlidXllbiBsb3MgdmVow61jdWxvcyBlbnRyZSBsb3MgbW9kZWxvc8KgecKgY2F0ZWdvcsOtYXMuDQoNCioqUGVyZmlsZXMqKjogTGEgdGFibGEgZGUgcGVyZmlsZXMgbXVlc3RyYSBjw7NtbyBzZSBkaXN0cmlidXllbiBkaWZlcmVudGVzIGNhcmFjdGVyw61zdGljYXMgbyBjYXRlZ29yw61hcyBlbiBlbCBjb25qdW50byBkZSBkYXRvcy4gQ2FkYSBmaWxhIHJlcHJlc2VudGEgdW4gZ3J1cG8gbyBjYXRlZ29yw61hIChjb21vIG1vZGVsb3MgZGUgdmVow61jdWxvcyksIHkgbGFzIGNvbHVtbmFzIGluZGljYW4gZGlmZXJlbnRlcyBhdHJpYnV0b3MgKGNvbW8gZ8OpbmVybyBvIGFsZ3VuYSBvdHJhIHZhcmlhYmxlKS4gRXN0byB0ZSBheXVkYSBhIHZlciBwYXRyb25lcyBvIHRlbmRlbmNpYXMgZW4gbG9zIGRhdG9zLCBwZXJtaXRpZW5kbyBlbnRlbmRlciBtZWpvciBsYXMgcmVsYWNpb25lcyBlbnRyZSBsYXMgZGlzdGludGFzwqB2YXJpYWJsZXMuDQoNCioqUHJ1ZWJhcyBkZSBIaXBvdGVzaXMqKjogTGEgcHJ1ZWJhIGRlIGhpcMOzdGVzaXMgZXZhbMO6YSBzaSBoYXkgcmVsYWNpb25lcyBzaWduaWZpY2F0aXZhcyBlbnRyZSBkaWZlcmVudGVzIHZhcmlhYmxlcywgY29tbyBlbCBnw6luZXJvLCBlbCBtb2RlbG8gZGUgdmVow61jdWxvIHkgc3UgY29uZGljacOzbiAobnVldm8gbyB1c2FkbykuIExvcyByZXN1bHRhZG9zIGluZGljYW4gcXVlIG5vIGhheSB1bmEgcmVsYWNpw7NuIHNpZ25pZmljYXRpdmEgZW50cmUgZWwgZ8OpbmVybyB5IGVsIG1vZGVsbyBkZWwgdmVow61jdWxvLCBuaSBlbnRyZSBlbCBnw6luZXJvIHkgbGEgY29uZGljacOzbiBkZWwgdmVow61jdWxvLiBTaW4gZW1iYXJnbywgc8OtIHNlIGVuY29udHLDsyB1bmEgcmVsYWNpw7NuIHNpZ25pZmljYXRpdmEgZW50cmUgZWwgbW9kZWxvIGRlbCB2ZWjDrWN1bG8geSBzdSBjb25kaWNpw7NuLiBsYSBwcnVlYmEgZGUgaGlww7N0ZXNpcyBheXVkYSBhIGVudGVuZGVyIHNpIGxhcyB2YXJpYWJsZXMgdGllbmVuIGFsZ3VuYSBjb25leGnDs24gbyBzaSBzb24gaW5kZXBlbmRpZW50ZXPCoGVudHJlwqBzw60uDQpQYXJhIGVzdGFzIHBydWViYXMsIHkgY29uc2lkZXJhbmRvIHVuIG5pdmVsIGRlIHNpZ25pZmljYW5jaWEgzrE9MC4wNSwgc2UgZm9ybXVsYXJvbiBsYXMgc2lndWllbnRlcyBoaXDDs3Rlc2lzOjoNCiQkSF8wOiBcdGV4dCB7TGFzIHZhcmlhYmxlcyBjYXRlZ8OzcmljYXMgc29uIGluZGVwZW5kaWVudGVzfSQkICQkSF8xOiBcdGV4dCB7bGFzIHZhcmlhYmxlcyBjYXRlZ8OzcmljYXMgc29uIGRlcGVuZGllbnRlc30kJA0KDQojIyMjIyBUYWJsYXMgZGUgQ29udGluZ2VuY2lhLg0KYGBge3IgVGFibGFzX2RlX0NvbnRpbmdlbmNpYSxmaWcuYWxpZ249J2NlbnRlcid9DQphZGRtYXJnaW5zKHRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGdlbmRlciwgTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kbW9kZWwpKQ0KYWRkbWFyZ2lucyh0YWJsZShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXIsIE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGNvbmRpdGlvbikpDQphZGRtYXJnaW5zKHRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGNvbmRpdGlvbiwgTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kbW9kZWwpKQ0KYGBgDQoNCiMjIyMjIFByb2JhYmlsaWRhZGVzLg0KYGBge3IgUHJvYmFiaWxpZGFkZXMsIGZpZy5hbGlnbj0nY2VudGVyJ30NCmFkZG1hcmdpbnMocHJvcC50YWJsZSh0YWJsZShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXIsIE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJG1vZGVsKSkqMTAwKQ0KYWRkbWFyZ2lucyhwcm9wLnRhYmxlKHRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGdlbmRlciwgTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kY29uZGl0aW9uKSkqMTAwKQ0KYWRkbWFyZ2lucyhwcm9wLnRhYmxlKHRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGNvbmRpdGlvbiwgTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kbW9kZWwpKSoxMDApDQpgYGANCg0KIyMjIyMgRnJlY3VlbmNpYXMuDQpgYGB7ciBGcmVjdWVuY2lhLCBmaWcuYWxpZ249J2NlbnRlcid9DQpyb3VuZChhZGRtYXJnaW5zKHByb3AudGFibGUodGFibGUoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kZ2VuZGVyLCBNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRtb2RlbCksIDEpKjEwMCwgMiksIDIpDQpyb3VuZChhZGRtYXJnaW5zKHByb3AudGFibGUodGFibGUoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kZ2VuZGVyLCBNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRtb2RlbCksIDIpKjEwMCwgMSksIDIpDQpyb3VuZChhZGRtYXJnaW5zKHByb3AudGFibGUodGFibGUoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kZ2VuZGVyLCBNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRjb25kaXRpb24pLCAxKSoxMDAsIDIpLCAyKQ0Kcm91bmQoYWRkbWFyZ2lucyhwcm9wLnRhYmxlKHRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGdlbmRlciwgTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kY29uZGl0aW9uKSwgMikqMTAwLCAxKSwgMikNCnJvdW5kKGFkZG1hcmdpbnMocHJvcC50YWJsZSh0YWJsZShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRjb25kaXRpb24sIE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJG1vZGVsKSwgMSkqMTAwLCAyKSwgMikNCnJvdW5kKGFkZG1hcmdpbnMocHJvcC50YWJsZSh0YWJsZShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRjb25kaXRpb24sIE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJG1vZGVsKSwgMikqMTAwLCAxKSwgMikNCmBgYA0KDQojIyMjIyBQZXJmaWxlcy4NCmBgYHtyIFBlcmZpbGVzLGZpZy5hbGlnbj0nY2VudGVyJ30NCnBsb3RjdCh0YWJsZShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXIsIE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJG1vZGVsKSwicm93IikNCnBsb3RjdCh0YWJsZShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXIsIE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJG1vZGVsKSwiY29sIikNCnBsb3RjdCh0YWJsZShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXIsIE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGNvbmRpdGlvbiksInJvdyIpDQpwbG90Y3QodGFibGUoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kZ2VuZGVyLCBNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRjb25kaXRpb24pLCJjb2wiKQ0KcGxvdGN0KHRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGNvbmRpdGlvbiwgTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kbW9kZWwpLCJyb3ciKQ0KcGxvdGN0KHRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGNvbmRpdGlvbiwgTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kbW9kZWwpLCJjb2wiKQ0KDQpgYGANCg0KIyMjIyMgUHJ1ZWJhcyBkZSBIaXBvdGVzaXMuDQpgYGB7ciBQcnVlYmFzX2RlX0hpcG90ZXNpcywgZmlnLmFsaWduPSdjZW50ZXInfQ0KY2hpc3EudGVzdCh0YWJsZShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXIsIE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJG1vZGVsKSkNCmNoaXNxLnRlc3QodGFibGUoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kZ2VuZGVyLCBNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRjb25kaXRpb24pKQ0KY2hpc3EudGVzdCh0YWJsZShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRjb25kaXRpb24sIE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJG1vZGVsKSkNCmBgYA0KDQojIyMjIEFDIFBhcmVqYSDDmm5pY2EuIHsudGFic2V0IC50YWJzZXQtcGlsbHN9DQpMYSBBQyAoQW7DoWxpc2lzIGRlIENvcnJlc3BvbmRlbmNpYSkgZGUgcGFyZWphIMO6bmljYSBleGFtaW5hIGxhIHJlbGFjacOzbiBlc3BlY8OtZmljYSBlbnRyZSBkb3MgdmFyaWFibGVzIGNhdGVnw7NyaWNhcyBkZSB1biBjb25qdW50byBkZSBkYXRvcywgYXl1ZGFuZG8gYSBpZGVudGlmaWNhciBwYXRyb25lcyBkZSBhc29jaWFjacOzbiBxdWUgZmFjaWxpdGFuIGxhIGludGVycHJldGFjacOzbsKgZGXCoGxvc8KgZGF0b3MuDQoNCioqQ29udGluZ2VuY2lhcyB5IFJlc2lkdWFsZXMqKjogTGEgdGFibGEgbXVlc3RyYSBjw7NtbyBsYXMgZnJlY3VlbmNpYXMgb2JzZXJ2YWRhcyBzZSBjb21wYXJhbiBjb24gbGFzIGVzcGVyYWRhcywgbGFzIGRpZmVyZW5jaWFzIChyZXNpZHVhbGVzKSBlbnRyZSBlc3RhcyBmcmVjdWVuY2lhcyB5IGxhIG1hZ25pdHVkIGRlIGVzYXMgZGlmZXJlbmNpYXMgZW4gdMOpcm1pbm9zIGRlIGRlc3ZpYWNpw7NuIGVzdMOhbmRhci4gRXN0byBheXVkYSBhIGRldGVybWluYXIgc2kgZXhpc3RlIHVuYSBhc29jaWFjacOzbiBzaWduaWZpY2F0aXZhIGVudHJlIGxhcyBkb3MgdmFyaWFibGVzLCAqKmdlbmRlcioqIHkgKipjb25kaXRpb24qKi4NCg0KKipDb250cmlidWNpb25lcyoqOkVzdGEgdGFibGEgbXVlc3RyYSBsYXMgY29udHJpYnVjaW9uZXMgaW5kaXZpZHVhbGVzIGRlIGNhZGEgY2VsZGEgZGUgbGEgdGFibGEgZGUgY29udGluZ2VuY2lhIGFsIHZhbG9yIHRvdGFsIGRlbCBlc3RhZMOtc3RpY28gZGUgY2hpLWN1YWRyYWRvLCBsbyBxdWUgYXl1ZGEgYSBpZGVudGlmaWNhciBxdcOpIGNvbWJpbmFjaW9uZXMgZGUgY2F0ZWdvcsOtYXMgdGllbmVuIG1heW9yIGltcGFjdG8gZW4gbGEgcHJ1ZWJhIGRlIGluZGVwZW5kZW5jaWEgZW50cmUgbGFzIHZhcmlhYmxlcyAqKmdlbmRlcioqIHkgKipjb25kaXRpb24qKi4NCg0KKipDb3JyZXNwb25kZW5jaWEgU2ltcGxlIFVuaWRpbWVuc2lvbmFsKio6IExhIGNvcnJlc3BvbmRlbmNpYSBzaW1wbGUgdW5pZGltZW5zaW9uYWwgYXl1ZGEgYSBpZGVudGlmaWNhciBxdcOpIGNhdGVnb3LDrWFzIHNvbiBtw6FzIHNpZ25pZmljYXRpdmFzIGVuIHJlbGFjacOzbiBjb24gbG9zIGNvbXBvbmVudGVzIHByaW5jaXBhbGVzIHkgY8OzbW8gc2UgYWdydXBhbiBlbiBmdW5jacOzbiBkZSBsYSB2YXJpYWJpbGlkYWQgZXhwbGljYWRhLiBFc3RvcyByZXN1bHRhZG9zIHByb3BvcmNpb25hbiBpbmZvcm1hY2nDs24gY2xhdmUgc29icmUgY8OzbW8gc2UgZGlzdHJpYnV5ZW4gbGFzIGNhdGVnb3LDrWFzIGRlIGxhIHZhcmlhYmxlIGVuIGVsIGVzcGFjaW8gcmVkdWNpZG8geSBjw7NtbyBpbmZsdXllbiBlbiBsYSBlc3RydWN0dXJhIGdsb2JhbMKgZGVswqBhbsOhbGlzaXMuDQoNCiMjIyMjIENvbnRpbmdlbmNpYXMgeSBSZXNpZHVhbGVzLg0KYGBge3IgQ29udGluZ2VuY2lhc195X1Jlc2lkdWFsZXMsZmlnLmFsaWduPSdjZW50ZXInfQ0KY2hpc3EudGVzdCh0YWJsZShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXIsIE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGNvbmRpdGlvbikpJG9ic2VydmVkDQpjaGlzcS50ZXN0KHRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGdlbmRlciwgTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kY29uZGl0aW9uKSkkZXhwZWN0ZWQgDQpjaGlzcS50ZXN0KHRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGdlbmRlciwgTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kY29uZGl0aW9uKSkkcmVzaWR1YWxzDQpjaGlzcS50ZXN0KHRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGdlbmRlciwgTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kY29uZGl0aW9uKSkkc3RkcmVzDQpgYGANCg0KIyMjIyMgQ29udHJpYnVjaW9uZXMuDQpgYGB7ciBDb250cmlidWNpb25lcyxmaWcuYWxpZ249J2NlbnRlcid9DQpjaGlzcS50ZXN0KHRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGdlbmRlciwgTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kY29uZGl0aW9uKSkkcmVzaWR1YWxzXjIvY2hpc3EudGVzdCh0YWJsZShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXIsIE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGNvbmRpdGlvbikpJHN0YXRpc3RpYyoxMDANCg0KYGBgDQoNCiMjIyMjIENvcnJlc3BvbmRlbmNpYSBTaW1wbGUgVW5pZGltZW5zaW9uYWwuDQpgYGB7ciBDb3JyZXNwb25kZW5jaWFfU2ltcGxlX1VuaWRpbWVuc2lvbmFsfQ0KQ0EodGFibGUoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kZ2VuZGVyLCBNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRjb25kaXRpb24pLCBncmFwaCA9IEZBTFNFKSRlaWcNCkNBKHRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGdlbmRlciwgTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kY29uZGl0aW9uKSwgZ3JhcGggPSBGQUxTRSkkY29sDQpDQSh0YWJsZShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXIsIE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGNvbmRpdGlvbiksIGdyYXBoID0gRkFMU0UpJHJvdw0KYGBgDQoNCg0KIyMjICoqMy4zLiBDb3JyZXNwb25kZW5jaWFzIE3Dumx0aXBsZXMqKiB7LnRhYnNldCAudGFic2V0LXBpbGxzfQ0KRWwgYW7DoWxpc2lzIGRlIGNvcnJlc3BvbmRlbmNpYXMgbcO6bHRpcGxlcyAoQUNNKSBlcyB1bmEgdMOpY25pY2EgZXN0YWTDrXN0aWNhIHV0aWxpemFkYSBwYXJhIGFuYWxpemFyIGRhdG9zIGNhdGVnw7NyaWNvcyBub21pbmFsZXMuIFN1IG9iamV0aXZvIHByaW5jaXBhbCBlcyBkZXRlY3RhciB5IHJlcHJlc2VudGFyIGVzdHJ1Y3R1cmFzIHN1YnlhY2VudGVzIGVuIHVuIGNvbmp1bnRvIGRlIGRhdG9zLCBwZXJtaXRpZW5kbyB2aXN1YWxpemFyIGxhcyByZWxhY2lvbmVzIGVudHJlIGRpZmVyZW50ZXMgY2F0ZWdvcsOtYXMuIEVzdG8gc2UgbG9ncmEgcmVwcmVzZW50YW5kbyBsb3MgZGF0b3MgY29tbyBwdW50b3MgZW4gdW4gZXNwYWNpbyBldWNsaWRpYW5vIGRlIGJhamEgZGltZW5zacOzbjEuDQoNCioqQUNNKio6IExhIHRhYmxhIGF5dWRhIGEgZW50ZW5kZXIgcXXDqSBjYW50aWRhZCBkZSBpbmZvcm1hY2nDs24gKHZhcmlhbnphKSBzZSByZXRpZW5lIGFsIHJlZHVjaXIgbGEgZGltZW5zaW9uYWxpZGFkIGRlIGxvcyBkYXRvcyB1c2FuZG8gQUNQLiAgU2UgcHVlZGUgb2JzZXJ2YXIgcXVlIGxhIG1heW9yIHBhcnRlIGRlIGxhIHZhcmlhbnphIHNlIGNvbmNlbnRyYSBlbiBsb3MgcHJpbWVyb3MgY29tcG9uZW50ZXMgcHJpbmNpcGFsZXMgKGRpbSAxLCBwcmluY2lwYWxtZW50ZSkuICBMb3Mgw7psdGltb3MgY29tcG9uZW50ZXMgcHJpbmNpcGFsZXMgY29udHJpYnV5ZW4gbXV5IHBvY28gYSBsYSB2YXJpYW56YSB0b3RhbC4gIEVzdG8gc3VnaWVyZSBxdWUgbGEgcmVkdWNjacOzbiBkZSBsYSBkaW1lbnNpb25hbGlkYWQgYSB1biBuw7ptZXJvIG1lbm9yIGRlIGNvbXBvbmVudGVzIHByaW5jaXBhbGVzLCBtYW50ZW5pZW5kbyB1bmEgYWx0YSBwcm9wb3JjacOzbiBkZSBsYSB2YXJpYW56YSwgcG9kcsOtYSBzZXIgcG9zaWJsZSBzaW4gdW5hIHDDqXJkaWRhIHNpZ25pZmljYXRpdmHCoGRlwqBpbmZvcm1hY2nDs24NCg0KKipCaXBsb3QgQUNNKio6IExhIGdyw6FmaWNhIGRlIEFDTSBwcm9wb3JjaW9uYSB1bmEgdmlzacOzbiBjbGFyYSBkZSBsYXMgcmVsYWNpb25lcyBlbnRyZSBsYXMgZGlmZXJlbnRlcyBvYnNlcnZhY2lvbmVzIChtb2RlbG9zIGRlIGNvY2hlcywgZW4gZXN0ZSBjYXNvKSB5IGxhcyB2YXJpYWJsZXMgY2F0ZWfDs3JpY2FzIGFuYWxpemFkYXMuIEFsIG9ic2VydmFyIGxhIGRpc3Bvc2ljacOzbiBkZSBsb3MgcHVudG9zIHkgbG9zIHZlY3RvcmVzLCBzZSBwdWVkZSBjb25jbHVpciBxdWUgaGF5IHBhdHJvbmVzIHNpZ25pZmljYXRpdm9zIGVuIGxvcyBkYXRvcy4gTG9zIHB1bnRvcyBxdWUgZXN0w6FuIGFncnVwYWRvcyBpbmRpY2FuIHF1ZSBlc29zIG1vZGVsb3MgZGUgY29jaGVzIGNvbXBhcnRlbiBjYXJhY3RlcsOtc3RpY2FzIHNpbWlsYXJlcywgbWllbnRyYXMgcXVlIGxhIGRpcmVjY2nDs24geSBsb25naXR1ZCBkZSBsb3MgdmVjdG9yZXMgc3VnaWVyZW4gcXXDqSB2YXJpYWJsZXMgc29uIG3DoXMgaW5mbHV5ZW50ZXMgZW4gbGEgZGlmZXJlbmNpYWNpw7NuIGVudHJlIGVzdG9zIG1vZGVsb3MuIFBvciBlamVtcGxvLCBzaSB1biB2ZWN0b3IgZXMgbGFyZ28geSBhcHVudGEgaGFjaWEgdW4gZ3J1cG8gZXNwZWPDrWZpY28gZGUgcHVudG9zLCBlc28gaW5kaWNhIHF1ZSBlc2EgdmFyaWFibGUgdGllbmUgdW4gcGFwZWwgaW1wb3J0YW50ZSBlbiBkZWZpbmlyIGxhcyBjYXJhY3RlcsOtc3RpY2FzIGRlwqBlc29zwqBtb2RlbG9zLiANCg0KKipDb250cmlidWNpb25lcyBBQ00qKjogZXN0YSBncsOhZmljYSBwZXJtaXRlIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgY3XDoWxlcyB2YXJpYWJsZXMgc29uIGNsYXZlIHBhcmEgbGEgcHJpbWVyYSBkaW1lbnNpw7NuIGRlbCBhbsOhbGlzaXMsIGxvIHF1ZSBwdWVkZSBndWlhciBmdXR1cmFzIGludmVzdGlnYWNpb25lcyBvIGRlY2lzaW9uZXMgZXN0cmF0w6lnaWNhcyBiYXNhZGFzIGVuIGVzdGFzwqByZWxhY2lvbmVzLg0KDQoqKkJpcGxvdCBjb24gQ29udHJpYnVjaW9uZXMqKjogTGEgZ3LDoWZpY2EgZGUgYmlwbG90IHByb3BvcmNpb25hIHVuYSByZXByZXNlbnRhY2nDs24gdmlzdWFsIGNsYXJhIGRlIGxhcyByZWxhY2lvbmVzIGVudHJlIGRpZmVyZW50ZXMgdmFyaWFibGVzIGNhdGVnw7NyaWNhcywgbW9zdHJhbmRvIGPDs21vIHNlIGFncnVwYW4geSBzZSByZWxhY2lvbmFuIGVudHJlIHPDrSBlbiBsYXMgZG9zIGRpbWVuc2lvbmVzIHByaW5jaXBhbGVzLiBBdW5xdWUgbGFzIGRpbWVuc2lvbmVzIERpbTEgeSBEaW0yIGV4cGxpY2FuIHNvbG8gdW4gNSUgZGUgbGEgdmFyaWFiaWxpZGFkIHRvdGFsLCBwZXJtaXRlbiBpZGVudGlmaWNhciBwYXRyb25lcyBzaWduaWZpY2F0aXZvcyBlbiBsb3MgZGF0b3MuDQoNCkxhcyB2YXJpYWJsZXMgY29sb3IuTkEsIGNvbmRpdGlvbi5OQSB5IG1vZGVsLk5BIGRlc3RhY2FuIHBvciBzdSBhbHRhIGNvbnRyaWJ1Y2nDs24sIGxvIHF1ZSBzdWdpZXJlIHF1ZSBsYSBmYWx0YSBkZSBpbmZvcm1hY2nDs24gc29icmUgZXN0YXMgY2FyYWN0ZXLDrXN0aWNhcyB0aWVuZSB1biBpbXBhY3RvIGNvbnNpZGVyYWJsZSBlbiBlbCBhbsOhbGlzaXMuIEVzdG8gcHVlZGUgaW5kaWNhciBxdWUgZXMgY3J1Y2lhbCBjb25zaWRlcmFyIGVzdG9zIGFzcGVjdG9zIHBhcmEgb2J0ZW5lciB1bmEgY29tcHJlbnNpw7NuIG3DoXMgY29tcGxldGEgZGUgbG9zIGRhdG9zLg0KDQpMYSBwcm94aW1pZGFkIGRlIGxvcyBtb2RlbG9zIGRlIGNvY2hlcyBlbiBlbCBncsOhZmljbyBpbmRpY2Egc2ltaWxpdHVkZXMgZW4gc3VzIGNhcmFjdGVyw61zdGljYXMsIGxvIHF1ZSBwb2Ryw61hIHNlciDDunRpbCBwYXJhIHNlZ21lbnRhciBvIGNsYXNpZmljYXIgbG9zIHZlaMOtY3Vsb3Mgc2Vnw7puIHN1cyBhdHJpYnV0b3MuIEVuIGdlbmVyYWwsIGVsIGJpcGxvdCBlcyB1bmEgaGVycmFtaWVudGEgdmFsaW9zYSBwYXJhIGV4cGxvcmFyIGxhIGVzdHJ1Y3R1cmEgc3VieWFjZW50ZSBkZSBsb3MgZGF0b3MgeSBndWlhciBkZWNpc2lvbmVzIGluZm9ybWFkYXMgYmFzYWRhcyBlbiBsYXMgcmVsYWNpb25lc8Kgb2JzZXJ2YWRhcy4NCg0KIyMjIyBBQ00NCmBgYHtyIEFNQyxmaWcuYWxpZ249J2NlbnRlcid9DQpyb3VuZChNQ0EoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG9bMTo0MTg4LCAtYygxLDIsMyw1LDYsNyw4LDEwKV0sIGdyYXBoID0gRkFMU0UpJGVpZywyKQ0KDQpgYGANCg0KIyMjIyBCaXBsb3QgQUNNDQpgYGB7ciBCaXBsb3RfQUNNLCBmaWcuYWxpZ24gPSAnY2VudGVyJ30NCmRhdG9zIDwtIG11ZXN0cmFbMToyMDAsIC1jKDEsMiwzLDUsNiw3LDgsMTApXQ0KcHJpbnQoZGltKGRhdG9zKSkNCmRhdG9zIDwtIGxhcHBseShkYXRvcywgYXMuZmFjdG9yKQ0KaWYgKGFueShpcy5uYShkYXRvcykpKSB7bGlicmFyeShtaXNzTURBKQ0KZGF0b3MgPC0gaW1wdXRlTUNBKGFzLmRhdGEuZnJhbWUoZGF0b3MpKSRjb21wbGV0ZU9ic30NCmZ2aXpfbWNhX2JpcGxvdChNQ0EoYXMuZGF0YS5mcmFtZShkYXRvcyksIGdyYXBoID0gRkFMU0UpLCByZXBlbCA9IFRSVUUpDQoNCmBgYA0KDQojIyMjIENhbGlkYWQgZGUgUmVwcmVzZW50YWNpw7NuDQpgYGB7ciBDYWxpZGFkX2RlX1JlcHJlc2VudGFjaW9uX0FDTSwgZmlnLmFsaWduID0gJ2NlbnRlcid9DQpmdml6X21jYV92YXIoTUNBKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvWzE6NDE4OCwgLWMoMSwyLDMsNCw3LDgsMTApXSwgZ3JhcGggPSBGQUxTRSksIGNvbC52YXIgPSJjb3MyIiwgZ3JhZGllbnQuY29scyA9IGMoIiMwMEFGQkIiLCAiI0U3QjgwMCIsICIjRkM0RTA3IiksIHJlcGVsID0gVFJVRSkNCk1DQShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1sxOjQxODgsIC1jKDEsMiw0LDcsOCwxMCldLCBncmFwaCA9IEZBTFNFKSR2YXIkY29zMg0KYGBgDQoNCiMjIyMgQ29udHJpYnVjaW9uZXMgQUNNDQpgYGB7ciBDb250cmlidWNpb25lc19BQ00sIGZpZy5hbGlnbiA9ICdjZW50ZXInfQ0KZnZpel9jb250cmliKE1DQShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1sxOjQxODgsIC1jKDEsMiwzLDQsNyw4LDEwKV0sIGdyYXBoID0gRkFMU0UpLCBjaG9pY2UgPSAidmFyIiwgYXhlcyA9IDEsIHRvcCA9IDE1KQ0KZnZpel9jb250cmliKE1DQShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1sxOjQxODgsIC1jKDEsMiwzLDQsNyw4LDEwKV0sIGdyYXBoID0gRkFMU0UpLCBjaG9pY2UgPSAidmFyIiwgYXhlcyA9IDIsIHRvcCA9IDE1KQ0KZnZpel9jb250cmliKE1DQShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1sxOjQxODgsIC1jKDEsMiwzLDQsNyw4LDEwKV0sIGdyYXBoID0gRkFMU0UpLCBjaG9pY2UgPSAidmFyIiwgYXhlcyA9IDMsIHRvcCA9IDE1KQ0KZnZpel9jb250cmliKE1DQShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1sxOjQxODgsIC1jKDEsMiwzLDQsNyw4LDEwKV0sIGdyYXBoID0gRkFMU0UpLCBjaG9pY2UgPSAidmFyIiwgYXhlcyA9IDQsIHRvcCA9IDE1KQ0KZnZpel9jb250cmliKE1DQShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1sxOjQxODgsIC1jKDEsMiwzLDQsNyw4LDEwKV0sIGdyYXBoID0gRkFMU0UpLCBjaG9pY2UgPSAidmFyIiwgYXhlcyA9IDUsIHRvcCA9IDE1KQ0KYGBgDQoNCiMjIyMgQmlwbG90IGNvbiBDb250cmlidWNpb25lcw0KYGBge3IgQmlwbG90X2Nvbl9Db250cmlidWNpb25lc19BQ00sIGZpZy5hbGlnbiA9ICdjZW50ZXInfQ0KZnZpel9tY2FfdmFyKE1DQShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkb1sxOjQxODgsIC1jKDEsMiwzLDQsNyw4LDEwKV0sIGdyYXBoID0gRkFMU0UpLCBjb2wudmFyID0iY29udHJpYiIsIGdyYWRpZW50LmNvbHMgPSBjKCIjMDBBRkJCIiwgIiNFN0I4MDAiLCAiI0ZDNEUwNyIpLCByZXBlbCA9IFRSVUUpDQpgYGANCg0KIyMgKipGYXNlIDQgW0Nvbmdsb21lcmFkb3NdKioNCg0KDQojIyMgKio0LjEuIE9iamV0aXZvcyoqDQpMYSBhZ3J1cGFjacOzbiBqZXLDoXJxdWljYSBvcmdhbml6YSBsb3MgZWxlbWVudG9zIGVuIHVuIMOhcmJvbCBkZSBncnVwb3MgYW5pZGFkb3MsIGNvbm9jaWRvIGNvbW8gZGVuZHJvZ3JhbWEsIHkgcHVlZGUgc2VyIGFnbG9tZXJhdGl2YSAoZGUgYWJham8gaGFjaWEgYXJyaWJhKSBvIGRpdmlzaXZhIChkZSBhcnJpYmEgaGFjaWEgYWJham8pLCBpZGVudGlmaWNhbmRvIHJlbGFjaW9uZXMgamVyw6FycXVpY2FzIGVudHJlIGxvcyBkYXRvcy4gRW4gY29udHJhc3RlLCBsYSBhZ3J1cGFjacOzbiBubyBqZXLDoXJxdWljYSwgY29tbyBlbCBtw6l0b2RvIGstbWVhbnMsIGFncnVwYSBsb3MgZGF0b3MgZW4gdW4gbsO6bWVybyBmaWpvIGRlIGNsw7pzdGVyZXMgcGFyYSBtYXhpbWl6YXIgbyBtaW5pbWl6YXIgY2llcnRvcyBjcml0ZXJpb3PCoGRlwqBldmFsdWFjacOzbg0KDQojIyMgKio0LjIuIEFncnVwYWNpw7NuIEplcsOhcnF1aWNhKiogey50YWJzZXQgLnRhYnNldC1waWxsc30NCkxhIGFncnVwYWNpw7NuIGplcsOhcnF1aWNhIGVzIHVuIG3DqXRvZG8gZGUgYW7DoWxpc2lzIGRlIGRhdG9zIHF1ZSBvcmdhbml6YSBlbGVtZW50b3MgZW4gdW4gw6FyYm9sIGRlIGdydXBvcyBhbmlkYWRvcywgY29ub2NpZG8gY29tbyBkZW5kcm9ncmFtYS4gRXN0ZSBtw6l0b2RvIHB1ZWRlIHNlciBhZ2xvbWVyYXRpdm8gKGRlIGFiYWpvIGhhY2lhIGFycmliYSkgbyBkaXZpc2l2byAoZGUgYXJyaWJhIGhhY2lhIGFiYWpvKS4gRW4gZWwgZW5mb3F1ZSBhZ2xvbWVyYXRpdm8sIGNhZGEgZWxlbWVudG8gY29taWVuemEgZW4gc3UgcHJvcGlvIGdydXBvIHkgc2UgZnVzaW9uYSBjb24gb3Ryb3MgZ3J1cG9zIGJhc8OhbmRvc2UgZW4gbGEgc2ltaWxpdHVkLCBoYXN0YSBxdWUgdG9kb3MgbG9zIGVsZW1lbnRvcyBlc3TDoW4gZW4gdW4gc29sbyBncnVwby4gRW4gZWwgZW5mb3F1ZSBkaXZpc2l2bywgdG9kb3MgbG9zIGVsZW1lbnRvcyBjb21pZW56YW4gZW4gdW4gc29sbyBncnVwbyB5IHNlIGRpdmlkZW4gc3VjZXNpdmFtZW50ZSBlbiBncnVwb3MgbcOhcyBwZXF1ZcOxb3MuDQoNCkVsIGRlbmRyb2dyYW1hIHJlc3VsdGFudGUgZGUgbGEgYWdydXBhY2nDs24gamVyw6FycXVpY2EgcHJvcG9yY2lvbmEgdW5hIHJlcHJlc2VudGFjacOzbiB2aXN1YWwgZGUgbGFzIHJlbGFjaW9uZXMgamVyw6FycXVpY2FzIGVudHJlIGxvcyBkYXRvcy4gQ2FkYSBub2RvIGRlbCDDoXJib2wgcmVwcmVzZW50YSB1biBncnVwbyBkZSBkYXRvcyBzaW1pbGFyZXMsIHkgbG9zIG5vZG9zIHNlIGFncnVwYW4gZW4gbml2ZWxlcyBzdWNlc2l2b3Mgc2Vnw7puIHN1IHNpbWlsaXR1ZC4gRXN0byBwZXJtaXRlIGlkZW50aWZpY2FyIHBhdHJvbmVzIHkgZXN0cnVjdHVyYXMgc3VieWFjZW50ZXMgZW4gbG9zIGRhdG9zLCBmYWNpbGl0YW5kbyBsYSBpbnRlcnByZXRhY2nDs24geSBlbCBhbsOhbGlzaXMuDQoNCkxhIGFncnVwYWNpw7NuIGplcsOhcnF1aWNhIHNlIHV0aWxpemEgZW4gZGl2ZXJzYXMgw6FyZWFzLCBjb21vIGxhIGJpb2xvZ8OtYSBwYXJhIGNsYXNpZmljYXIgZXNwZWNpZXMsIGxhIG1lcmNhZG90ZWNuaWEgcGFyYSBzZWdtZW50YXIgY2xpZW50ZXMgeSBsYSBpbmZvcm3DoXRpY2EgcGFyYSBvcmdhbml6YXIgZ3JhbmRlcyB2b2zDum1lbmVzIGRlIGRhdG9zLiBTdSBjYXBhY2lkYWQgcGFyYSBtYW5lamFyIGRhdG9zIGNvbXBsZWpvcyB5IHByb3BvcmNpb25hciB1bmEgdmlzacOzbiBjbGFyYSBkZSBsYXMgcmVsYWNpb25lcyBqZXLDoXJxdWljYXMgbGEgY29udmllcnRlIGVuIHVuYSBoZXJyYW1pZW50YSB2YWxpb3NhIGVuIGVsIGFuw6FsaXNpc8KgZGXCoGRhdG9zLg0KDQojIyMjIENhbXBvIENsYXNpZmljYWRvcg0KDQpgYGB7ciBDYW1wb19DbGFzaWZpY2Fkb3IsZmlnLmFsaWduPSdjZW50ZXInfQ0KTW9kZWxvc19OaXNzYW5fQ29sb3JfcHJvbWVkaW8gPC0gcmVhZF9leGNlbCgiQzovVXNlcnMvSG9tZS9EZXNrdG9wL0N1cnNvIEdkRCAyMDI0XzEgWzNdL01vZGVsb3NfTmlzc2FuX0NvbG9yX3Byb21lZGlvLnhsc3giKQ0KYGBgDQoNCiMjIyMgQ29uanVudG8gTW9kaWZpY2Fkby4NCkVzdGFzIHRhYmxhcyBvZnJlY2VuIHVuYSBkZXNjcmlwY2nDs24gZ2VuZXJhbCBkZSB1biBjb25qdW50byBkZSBkYXRvcyBxdWUgYW5hbGl6YSBsYXMgY2FyYWN0ZXLDrXN0aWNhcyBkZSBtb2RlbG9zIGRlIE5pc3NhbiBhZ3J1cGFkb3MgcG9yIGNvbG9yLiAgTGEgYWdydXBhY2nDs24gamVyw6FycXVpY2Egbm8gc2UgbXVlc3RyYSBkaXJlY3RhbWVudGUgZW4gZXN0YXMgdGFibGFzLCBwZXJvIGVzIHByb2JhYmxlIHF1ZSBzZSBoYXlhIHVzYWRvIHByZXZpYW1lbnRlIHBhcmEgb2J0ZW5lciBlc3RvcyBkYXRvc8KgeWHCoGFncnVwYWRvcy4NCg0KYGBge3IgQ29uanVudG9fTW9kaWZpY2FkbywgZmlnLmFsaWduID0gJ2NlbnRlcid9DQpoZWFkKGFzLmRhdGEuZnJhbWUoTW9kZWxvc19OaXNzYW5fQ29sb3JfcHJvbWVkaW8pKQ0Kc3RyKGFzLmRhdGEuZnJhbWUoTW9kZWxvc19OaXNzYW5fQ29sb3JfcHJvbWVkaW8pKQ0KYGBgDQoNCiMjIyMgRGlzaW1pbGFyaWRhZA0KTGEgZ3LDoWZpY2EgZGUgZGlzaW1pbGFyaWRhZCBwcm9wb3JjaW9uYSB1bmEgcmVwcmVzZW50YWNpw7NuIGNsYXJhIHkgdmlzdWFsIGRlIGxhcyBkaWZlcmVuY2lhcyBlbnRyZSB2YXJpb3MgY29sb3JlcyBlbiBlbCBjb25qdW50byBkZSBkYXRvcyBhbmFsaXphZG8uIEFsIHV0aWxpemFyIHVuYSBlc2NhbGEgZGUgMCBhIDUsIHBlcm1pdGUgaWRlbnRpZmljYXIgcsOhcGlkYW1lbnRlIGN1w6FsZXMgY29sb3JlcyBzb24gbcOhcyBzaW1pbGFyZXMgZW50cmUgc8OtIHkgY3XDoWxlcyBzb24gc2lnbmlmaWNhdGl2YW1lbnRlIGRpZmVyZW50ZXMuIExvcyBjb2xvcmVzIGNvbiB2YWxvcmVzIGJham9zIGluZGljYW4gYWx0YSBzaW1pbGl0dWQsIGxvIHF1ZSBwdWVkZSBzZXIgw7p0aWwgcGFyYSB0b21hciBkZWNpc2lvbmVzIGVuIGRpc2XDsW8gbyBtYXJrZXRpbmcsIG1pZW50cmFzIHF1ZSBsb3MgY29sb3JlcyBjb24gdmFsb3JlcyBhbHRvcyBzdWdpZXJlbiBkaWZlcmVuY2lhcyBtYXJjYWRhcyBxdWUgcG9kcsOtYW4gaW5mbHVpciBlbiBsYSBwZXJjZXBjacOzbiBvIHByZWZlcmVuY2lhIGRlbCBjb25zdW1pZG9yLg0KDQpFc3RhIG1hdHJpeiBlcyBlc3BlY2lhbG1lbnRlIHZhbGlvc2EgcGFyYSBlbnRlbmRlciByZWxhY2lvbmVzIGNvbXBsZWphcyBlbnRyZSBjYXRlZ29yw61hcywgZmFjaWxpdGFuZG8gbGEgaWRlbnRpZmljYWNpw7NuIGRlIGFncnVwYWNpb25lcyBvIHBhdHJvbmVzIHF1ZSBwdWVkZW4gbm8gc2VyIGV2aWRlbnRlcyBhIHNpbXBsZSB2aXN0YS4gDQpgYGB7ciBEaXNpbWlsYXJpZGFkLCBmaWcuYWxpZ24gPSAnY2VudGVyJ30NCmRhdGFfID0gYXMuZGF0YS5mcmFtZShNb2RlbG9zX05pc3Nhbl9Db2xvcl9wcm9tZWRpbylbLCAtYygxKV0NCnJvd25hbWVzKGRhdGFfKSA9IHVuY2xhc3MoTW9kZWxvc19OaXNzYW5fQ29sb3JfcHJvbWVkaW8kY29sb3IpDQpmdml6X2Rpc3QoZ2V0X2Rpc3QoZGF0YV8sIHN0YW5kID0gVCwgbWV0aG9kID0gImV1Y2xpZGVhbiIpLCBncmFkaWVudCA9IGxpc3QobG93ID0gIiMwMEFGQkIiLCBtaWQgPSAid2hpdGUiLCBoaWdoID0gIiNGQzRFMDciKSkNCmBgYA0KDQojIyMjIE9wdGltaXphY2nDs24gZGUgTW9qZW5hICB7LnRhYnNldCAudGFic2V0LXBpbGxzfQ0KTGEgb3B0aW1pemFjacOzbiBkZSBNb2plbmEgZXMgdW5hIHTDqWNuaWNhIHV0aWxpemFkYSBlbiBlbCBhbsOhbGlzaXMgZGUgYWdydXBhbWllbnRvIGplcsOhcnF1aWNvIHBhcmEgZGV0ZXJtaW5hciBlbCBuw7ptZXJvIMOzcHRpbW8gZGUgY2zDunN0ZXJlcy4gU2UgYmFzYSBlbiBsYSBpZGVudGlmaWNhY2nDs24gZGUgdW4gcHVudG8gZGUgY29ydGUgZW4gZWwgZGVuZHJvZ3JhbWEsIHV0aWxpemFuZG8gdW4gY3JpdGVyaW8gZXN0YWTDrXN0aWNvIHF1ZSBtYXhpbWl6YSBsYSBkaWZlcmVuY2lhIGVudHJlIGxhcyBkaXN0YW5jaWFzIGRlIGxvcyBjbMO6c3RlcmVzIGZ1c2lvbmFkb3MgeSBubyBmdXNpb25hZG9zLCBwZXJtaXRpZW5kbyB1bmEgc2VnbWVudGFjacOzbiBtw6FzIHByZWNpc2EgeSBzaWduaWZpY2F0aXZhwqBkZcKgbG9zwqBkYXRvcw0KDQojIyMjIyBVbmnDs24gU2ltcGxlDQpMYSBncsOhZmljYSBtdWVzdHJhIGVsIHJlc3VsdGFkbyBkZSB1biBhbsOhbGlzaXMgZGUgYWdydXBhbWllbnRvIGplcsOhcnF1aWNvIGFnbG9tZXJhdGl2bywgZXNwZWPDrWZpY2FtZW50ZSB1dGlsaXphbmRvIGVsIG3DqXRvZG8gZGUgdW5pw7NuIHNpbXBsZSAoc2luZ2xlIGxpbmthZ2UpLiAgRWwgb2JqZXRpdm8gZXMgZGV0ZXJtaW5hciBlbCBuw7ptZXJvIMOzcHRpbW8gZGUgZ3J1cG9zICgiY2x1c3RlcnMiKSBlbiB1biBjb25qdW50b8KgZGXCoGRhdG9zLg0KbGEgZ3LDoWZpY2Egc3VnaWVyZSBxdWUgbGEgbWVqb3IgYWdydXBhY2nDs24gZGUgbG9zIGRhdG9zIHNlIGxvZ3JhIGNvbiAzIGdydXBvcywgc2Vnw7puIGVsIGNyaXRlcmlvIGRlIG1pbmltaXphciBsYSBkaXNwZXJzacOzbiBkZW50cm8gZGUgbG9zIGdydXBvcyB1dGlsaXphbmRvIGxhIHVuacOzbiBzaW1wbGUgY29tbyBtw6l0b2RvIGRlwqBhZ3J1cGFtaWVudG8uDQpgYGB7ciBPcHRpbWl6YWNpb25fTW9qZW5hX1NpbXBsZSwgZmlnLmFsaWduID0gJ2NlbnRlcid9DQpoY19zaW5nbGUgPSBoY2x1c3QoZ2V0X2Rpc3QoZGF0YV8sIHN0YW5kID0gVCwgbWV0aG9kID0gImV1Y2xpZGVhbiIpLCBtZXRob2QgPSAic2luZ2xlIikNCg0KbW9qZW5hID0gZnVuY3Rpb24oaGMpew0KICBuX2hkID0gbGVuZ3RoKGhjJGhlaWdodCkNCiAgYWxwX2cgPSAwIDsgYWxwaGEgPSBoYyRoZWlnaHRbbl9oZDoxXQ0KICBmb3IoaSBpbiAxOihuX2hkLTEpKXsNCiAgICBhbHBfZ1tpXSA9IG1lYW4oYWxwaGFbKG5faGQtaSsxKToxXSkrMS4yNSpzZChhbHBoYVsobl9oZC1pKzEpOjFdKQ0KICB9DQogIG5vZyA9IHN1bShhbHBfZzw9IGFscGhhWy1uX2hkXSkgKyAxDQogIHBsb3QoYWxwaGFbLW5faGRdLCBwY2g9MjAsIGNvbD0oYWxwX2c+YWxwaGFbLW5faGRdKSsxLCBtYWluID0gcGFzdGUoIk9wdGltYWwgbnVtYmVyIG9mIGdyb3VwcyA9Iixub2cpLA0KICAgICAgIHlsYWIgPSBleHByZXNzaW9uKGFscGhhW2ddKSwgeGxhYj0iTm9kZXMiKX0NCg0KbW9qZW5hKGhjX3NpbmdsZSkNCmBgYA0KDQojIyMjIyBVbmnDs24gQ29tcGxldGENCkxhIGdyw6FmaWNhIGRlIG9wdGltaXphY2nDs24gcGFyYSBlbCBtw6l0b2RvIGRlIHVuacOzbiBjb21wbGV0YSBwcm9wb3JjaW9uYSB1bmEgcmVwcmVzZW50YWNpw7NuIGNsYXJhIGRlbCBwcm9jZXNvIGRlIGFncnVwYW1pZW50byBqZXLDoXJxdWljbyB5IGF5dWRhIGEgaWRlbnRpZmljYXIgZWwgbsO6bWVybyDDs3B0aW1vIGRlIGdydXBvcyBlbiBlbCBjb25qdW50byBkZSBkYXRvcyBhbmFsaXphZG8uIEFsIG9ic2VydmFyIGPDs21vIHZhcsOtYSBsYSBtw6l0cmljYSDOsTxzdWI+Zzwvc3ViPiBjb24gZWwgbsO6bWVybyBkZSBncnVwb3MsIHNlIHB1ZWRlIGNvbmNsdWlyIHF1ZSBlbCBuw7ptZXJvIMOzcHRpbW8gZGUgYWdydXBhY2lvbmVzIGVzIDQuIEVzdG8gc2UgYmFzYSBlbiBsYSBpZGVudGlmaWNhY2nDs24gZGVsIGNvZG8gZW4gbGEgY3VydmEsIGRvbmRlIGxhIGRpc21pbnVjacOzbiBlbiBsYSBjYWxpZGFkIGRlIGxhIGFncnVwYWNpw7NuIGNvbWllbnphIGEgZXN0YWJpbGl6YXJzZS4NCmBgYHtyIE9wdGltaXphY2lvbl9Nb2plbmFfQ29tcGxldG8sIGZpZy5hbGlnbiA9ICdjZW50ZXInfQ0KaGNfY29tcGxldGUgPSBoY2x1c3QoZ2V0X2Rpc3QoZGF0YV8sIHN0YW5kID0gVCwgbWV0aG9kID0gImV1Y2xpZGVhbiIpLCBtZXRob2QgPSAiY29tcGxldGUiKQ0KDQptb2plbmEgPSBmdW5jdGlvbihoYyl7DQogIG5faGQgPSBsZW5ndGgoaGMkaGVpZ2h0KQ0KICBhbHBfZyA9IDAgOyBhbHBoYSA9IGhjJGhlaWdodFtuX2hkOjFdDQogIGZvcihpIGluIDE6KG5faGQtMSkpew0KICAgIGFscF9nW2ldID0gbWVhbihhbHBoYVsobl9oZC1pKzEpOjFdKSsxLjI1KnNkKGFscGhhWyhuX2hkLWkrMSk6MV0pDQogIH0NCiAgbm9nID0gc3VtKGFscF9nPD0gYWxwaGFbLW5faGRdKSArIDENCiAgcGxvdChhbHBoYVstbl9oZF0sIHBjaD0yMCwgY29sPShhbHBfZz5hbHBoYVstbl9oZF0pKzEsIG1haW4gPSBwYXN0ZSgiT3B0aW1hbCBudW1iZXIgb2YgZ3JvdXBzID0iLG5vZyksDQogICAgICAgeWxhYiA9IGV4cHJlc3Npb24oYWxwaGFbZ10pLCB4bGFiPSJOb2RlcyIpfQ0KDQptb2plbmEoaGNfY29tcGxldGUpDQpgYGANCg0KIyMjIyMgVW5pw7NuIFByb21lZGlvDQpMYSBncsOhZmljYSBkZSBvcHRpbWl6YWNpw7NuIHBhcmEgZWwgbcOpdG9kbyBkZSB1bmnDs24gcHJvbWVkaW8gaW5kaWNhIHF1ZSBlbCBuw7ptZXJvIMOzcHRpbW8gZGUgZ3J1cG9zIGVuIGVsIGNvbmp1bnRvIGRlIGRhdG9zIGFuYWxpemFkbyBlcyA0LiBFc3RvIHNlIGJhc2EgZW4gbGEgb2JzZXJ2YWNpw7NuIGRlIHF1ZSwgZGVzcHXDqXMgZGUgZXN0ZSBwdW50bywgbGEgbWVqb3JhIGVuIGxhIG3DqXRyaWNhIM6xPHN1Yj5nPC9zdWI+IHNlIHZ1ZWx2ZSBtw61uaW1hLCBzdWdpcmllbmRvIHF1ZSBhZ3JlZ2FyIG3DoXMgZ3J1cG9zIG5vIGFwb3J0YSBiZW5lZmljaW9zIHNpZ25pZmljYXRpdm9zIGVuIGxhIGNhbGlkYWQgZGVsIGFncnVwYW1pZW50by4gRW4gcmVzdW1lbiwgYWdydXBhciBsb3MgZGF0b3MgZW4gNCBjbMO6c3RlcmVzIHBlcm1pdGUgdW5hIHJlcHJlc2VudGFjacOzbiBlcXVpbGlicmFkYSB5IGVmZWN0aXZhLCBmYWNpbGl0YW5kbyB1biBhbsOhbGlzaXMgbcOhcyBjbGFybyB5IMO6dGlsIGRlIGxvcyBwYXRyb25lcyBwcmVzZW50ZXPCoGVuwqBsb3PCoGRhdG9zLg0KYGBge3IgT3B0aW1pemFjaW9uX01vamVuYV9Qcm9tZWRpbywgZmlnLmFsaWduID0gJ2NlbnRlcid9DQpoY19hdmVyYWdlID0gaGNsdXN0KGdldF9kaXN0KGRhdGFfLCBzdGFuZCA9IFQsIG1ldGhvZCA9ICJldWNsaWRlYW4iKSwgbWV0aG9kID0gImF2ZXJhZ2UiKQ0KDQptb2plbmEgPSBmdW5jdGlvbihoYyl7DQogIG5faGQgPSBsZW5ndGgoaGMkaGVpZ2h0KQ0KICBhbHBfZyA9IDAgOyBhbHBoYSA9IGhjJGhlaWdodFtuX2hkOjFdDQogIGZvcihpIGluIDE6KG5faGQtMSkpew0KICAgIGFscF9nW2ldID0gbWVhbihhbHBoYVsobl9oZC1pKzEpOjFdKSsxLjI1KnNkKGFscGhhWyhuX2hkLWkrMSk6MV0pDQogIH0NCiAgbm9nID0gc3VtKGFscF9nPD0gYWxwaGFbLW5faGRdKSArIDENCiAgcGxvdChhbHBoYVstbl9oZF0sIHBjaD0yMCwgY29sPShhbHBfZz5hbHBoYVstbl9oZF0pKzEsIG1haW4gPSBwYXN0ZSgiT3B0aW1hbCBudW1iZXIgb2YgZ3JvdXBzID0iLG5vZyksDQogICAgICAgeWxhYiA9IGV4cHJlc3Npb24oYWxwaGFbZ10pLCB4bGFiPSJOb2RlcyIpfQ0KDQptb2plbmEoaGNfYXZlcmFnZSkNCmBgYA0KDQojIyMjIERlbmRvZ3JhbWFzIE9wdGltaXphZG9zIHsudGFic2V0IC50YWJzZXQtcGlsbHN9DQpMb3MgZGVuZHJvZ3JhbWFzIG9wdGltaXphZG9zIHNvbiByZXByZXNlbnRhY2lvbmVzIHZpc3VhbGVzIGRlIGxhIGFncnVwYWNpw7NuIGplcsOhcnF1aWNhIHF1ZSBoYW4gc2lkbyBhanVzdGFkYXMgcGFyYSBtZWpvcmFyIGxhIGNsYXJpZGFkIHkgcHJlY2lzacOzbiBlbiBsYSBpbnRlcnByZXRhY2nDs24gZGUgbGFzIHJlbGFjaW9uZXMgZW50cmUgbG9zIGRhdG9zLiBVdGlsaXphbiB0w6ljbmljYXMgZXN0YWTDrXN0aWNhcyB5IGFsZ29yaXRtb3MgcGFyYSBkZXRlcm1pbmFyIGVsIG7Dum1lcm8gw7NwdGltbyBkZSBjbMO6c3RlcmVzIHkgZWwgcHVudG8gZGUgY29ydGUgYWRlY3VhZG8gZW4gZWwgZGVuZHJvZ3JhbWEsIGZhY2lsaXRhbmRvIHVuYSBzZWdtZW50YWNpw7NuIG3DoXMgc2lnbmlmaWNhdGl2YSB5IHByZWNpc2HCoGRlwqBsb3PCoGRhdG9zDQoNCiMjIyMjIEVubGFjZSBTaW1wbGUNCkVsIGRlbmRyb2dyYW1hIG11ZXN0cmEgdW5hIGplcmFycXXDrWEgZGUgYWdydXBhY2lvbmVzIGRlIGNvbG9yZXMuIExvcyBjb2xvcmVzIGNlcmNhbm9zIGVuIGxhIHBhcnRlIGluZmVyaW9yIGVzdMOhbiBtw6FzIGVzdHJlY2hhbWVudGUgcmVsYWNpb25hZG9zIChtw6FzIHNpbWlsYXJlcykgcXVlIGFxdWVsbG9zIHF1ZSBzZSB1bmVuIGEgbWF5b3JlcyBhbHR1cmFzIGVuIGVsIGRlbmRyb2dyYW1hLiBFbCBtw6l0b2RvIGRlIGVubGFjZSBzaW1wbGUgc2UgY2VudHJhIGVuIGxhIG1lbm9yIGRpc3RhbmNpYSBlbnRyZSBwdW50b3MgZGUgZGlmZXJlbnRlcyBncnVwb3MgcGFyYSByZWFsaXphciBsYXPCoGFncnVwYWNpb25lcy4NCmBgYHtyIERlbmRvZ3JhbWFfRW5sYWNlX1NpbXBsZSwgZmlnLmFsaWduID0gJ2NlbnRlcid9DQpzdXBwcmVzc1dhcm5pbmdzKGZ2aXpfZGVuZChoY19zaW5nbGUsIGsgPSAzLCBjZXggPSAwLjUsIGtfY29sb3JzID0gIm5wZyIsIGNvbG9yX2xhYmVsc19ieV9rID0gVCwgcmVjdCA9IFQpKQ0KYGBgDQoNCiMjIyMjIEVubGFjZSBDb21wbGV0bw0KTGEgY29uY2x1c2nDs24gZGVsIGRlbmRyb2dyYW1hIGRlIGVubGFjZSBjb21wbGV0byBlcyBxdWUgc2UgcHVlZGUgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBsYSBqZXJhcnF1w61hIGRlIHNpbWlsaXR1ZCBlbnRyZSBsb3MgY29sb3JlcyBhbmFsaXphZG9zLiBMb3MgY29sb3JlcyBxdWUgc2UgYWdydXBhbiBhIGFsdHVyYXMgYmFqYXMgZW4gZWwgZGVuZHJvZ3JhbWEgc29uIG3DoXMgc2ltaWxhcmVzIGVudHJlIHPDrSwgbWllbnRyYXMgcXVlIGFxdWVsbG9zIHF1ZSBzZSB1bmVuIGEgbWF5b3JlcyBhbHR1cmFzIHByZXNlbnRhbiB1bmEgbWF5b3IgZGlzaW1pbGl0dWQuIA0KU2Ugb2JzZXJ2YSBxdWUgbG9zIGNvbG9yZXMgY29tbyBDcmltc29uIGUgSW5kaWdvIHNvbiBsb3MgbcOhcyBjZXJjYW5vcywgZm9ybWFuZG8gdW4gZ3J1cG8gY29tcGFjdG8sIG1pZW50cmFzIHF1ZSBvdHJvcyBncnVwb3MgZGUgY29sb3JlcywgY29tbyBsb3MgdG9ub3MgY8OhbGlkb3MgeSBmcsOtb3MsIHNlIHNlcGFyYW4gYSB1bmEgZGlzdGFuY2lhIHNpZ25pZmljYXRpdmEuIEVzdG8gc3VnaWVyZSBxdWUgaGF5IHBhdHJvbmVzIGNsYXJvcyBlbiBsYSByZWxhY2nDs24gZGUgc2ltaWxpdHVkIGVudHJlIGxvcyBjb2xvcmVzLCBsbyBxdWUgcHVlZGUgc2VyIMO6dGlsIHBhcmEgdGFyZWFzIGNvbW8gbGEgc2VnbWVudGFjacOzbiBlbiBkaXNlw7FvIGdyw6FmaWNvLCBhbsOhbGlzaXMgZGUgdGVuZGVuY2lhcyBvIGVzdHVkaW9zIGRlIHBlcmNlcGNpw7NuwqBkZWzCoGNvbG9yLg0KDQpgYGB7ciBEZW5kb2dyYW1hX0VubGFjZV9Db21wbGV0bywgZmlnLmFsaWduID0gJ2NlbnRlcid9DQpmdml6X2RlbmQoaGNfY29tcGxldGUsIGsgPSAzLCBjZXggPSAwLjUsIGtfY29sb3JzID0gIm5wZyIsIGNvbG9yX2xhYmVsc19ieV9rID0gVCwgcmVjdCA9IFQpDQpgYGANCg0KIyMjIyMgRW5sYWNlIFByb21lZGlvDQpFc3RlIGFuw6FsaXNpcyByZXZlbGEgbGEgZXhpc3RlbmNpYSBkZSBhbCBtZW5vcyB0cmVzIGdydXBvcyBwcmluY2lwYWxlczogdW5vIGRlIGNvbG9yZXMgZnLDrW9zLCBvdHJvIGRlIGNvbG9yZXMgY8OhbGlkb3MgeSB1biB0ZXJjZXJvIGNvbiB0b25vcyBpbnRlcm1lZGlvcyBvIG5ldXRyb3MuIExhIGVzdHJ1Y3R1cmEgZGVsIGRlbmRyb2dyYW1hIHBlcm1pdGUgaWRlbnRpZmljYXIgZsOhY2lsbWVudGUgZXN0b3MgcGF0cm9uZXMsIGxvIHF1ZSBwdWVkZSBzZXIgw7p0aWwgcGFyYSBhcGxpY2FjaW9uZXMgZW4gZGlzZcOxbywgbWFya2V0aW5nIG8gZXN0dWRpb3MgcmVsYWNpb25hZG9zIGNvbiBsYSBwZXJjZXBjacOzbiBkZWwgY29sb3IuICBFbCBkZW5kcm9ncmFtYSBwcm9wb3JjaW9uYSB1bmEgcmVwcmVzZW50YWNpw7NuIHZpc3VhbCBlZmVjdGl2YSBkZSBsYSByZWxhY2nDs24gZGUgc2ltaWxpdHVkIGVudHJlIGxvcyBjb2xvcmVzLCBmYWNpbGl0YW5kbyBsYSBpZGVudGlmaWNhY2nDs24gZGUgYWdydXBhY2lvbmVzIHNpZ25pZmljYXRpdmFzIGVuIGVsIGNvbmp1bnRvwqBkZcKgZGF0b3MuDQpgYGB7ciBEZW5kb2dyYW1hX0VubGFjZV9Qcm9tZWRpbywgZmlnLmFsaWduID0gJ2NlbnRlcid9DQpmdml6X2RlbmQoaGNfYXZlcmFnZSwgayA9IDQsIGNleCA9IDAuNSwga19jb2xvcnMgPSAibnBnIiwgY29sb3JfbGFiZWxzX2J5X2sgPSBULCByZWN0ID0gVCkNCmBgYA0KDQoNCiMjIyAqKjQuMy4gQWdydXBhY2nDs24gTm8tSmVyw6FycXVpY2EqKiB7LnRhYnNldCAudGFic2V0LXBpbGxzfQ0KDQpMYSBhZ3J1cGFjacOzbiBubyBqZXLDoXJxdWljYSBlcyB1biBlbmZvcXVlIGRlIGFuw6FsaXNpcyBkZSBkYXRvcyBlbiBlbCBxdWUgbG9zIGRhdG9zIHNlIGFncnVwYW4gZW4gY2zDunN0ZXJlcyBzaW4gdW5hIGVzdHJ1Y3R1cmEgamVyw6FycXVpY2EgcHJlZGVmaW5pZGEuIEEgZGlmZXJlbmNpYSBkZSBsb3MgbcOpdG9kb3MgamVyw6FycXVpY29zLCBkb25kZSBsb3MgZ3J1cG9zIHNlIGZvcm1hbiBkZSBtYW5lcmEgc2VjdWVuY2lhbCB5IHNlIGRpdmlkZW4gbyBmdXNpb25hbiBlbiBuaXZlbGVzIGplcsOhcnF1aWNvcywgZW4gbGEgYWdydXBhY2nDs24gbm8gamVyw6FycXVpY2EgY2FkYSBvYnNlcnZhY2nDs24gc2UgYXNpZ25hIGEgdW4gZ3J1cG8gc2Vnw7puIGNpZXJ0YXMgY2FyYWN0ZXLDrXN0aWNhcyBzaW1pbGFyZXMsIHNpbiB1biBvcmRlbiBvIGVzdHJ1Y3R1cmEgamVyw6FycXVpY2EuIFVuIGVqZW1wbG8gY29tw7puIGRlIGVzdGUgdGlwbyBkZSBhZ3J1cGFjacOzbiBlcyBlbCBhbGdvcml0bW8gSy1tZWFucywgcXVlIGFncnVwYSBsb3MgZGF0b3MgZW4gdW4gbsO6bWVybyBwcmVkZWZpbmlkbyBkZSBjbMO6c3RlcmVzLg0KDQpFbiBlc3RlIHByb2Nlc28sIGVsIG7Dum1lcm8gZGUgY2zDunN0ZXJlcyBkZWJlIHNlciBlc3BlY2lmaWNhZG8gYW50ZXMgZGUgaW5pY2lhciBlbCBhbsOhbGlzaXMuIEVsIGFsZ29yaXRtbyBidXNjYSBkaXZpZGlyIGxvcyBkYXRvcyBkZSBtYW5lcmEgcXVlIGxvcyBlbGVtZW50b3MgZGVudHJvIGRlIGNhZGEgZ3J1cG8gc2VhbiBsbyBtw6FzIHNpbWlsYXJlcyBwb3NpYmxlIGVudHJlIHPDrSwgeSBsbyBtw6FzIGRpZmVyZW50ZXMgcG9zaWJsZSBkZSBsb3MgZWxlbWVudG9zIGRlIG90cm9zIGdydXBvcy4gUGFyYSBlbGxvLCBzZSB1dGlsaXphbiBtZWRpZGFzIGRlIGRpc3RhbmNpYSwgY29tbyBsYSBkaXN0YW5jaWEgZXVjbGlkaWFuYSwgcGFyYSBhc2lnbmFyIGxvcyBwdW50b3MgYSBsb3MgZ3J1cG9zIGJhc8OhbmRvc2UgZW4gc3UgcHJveGltaWRhZCBlbiBlbCBlc3BhY2lvIGRlIGNhcmFjdGVyw61zdGljYXMuIEEgbG8gbGFyZ28gZGUgdmFyaWFzIGl0ZXJhY2lvbmVzLCBlbCBhbGdvcml0bW8gYWp1c3RhIGxhIGFzaWduYWNpw7NuIGRlIGxvcyBwdW50b3MgYSBsb3MgY2zDunN0ZXJlcyBwYXJhIG1pbmltaXphciBsYXMgZGlmZXJlbmNpYXMgaW50ZXJuYXMgZGVudHJvIGRlIGNhZGEgZ3J1cG8uDQoNClVuYSBjYXJhY3RlcsOtc3RpY2EgaW1wb3J0YW50ZSBkZSBsYSBhZ3J1cGFjacOzbiBubyBqZXLDoXJxdWljYSBlcyBxdWUgbm8gaGF5IHVuIMOhcmJvbCBkZSBkZWNpc2lvbmVzIG8gdW4gZW5mb3F1ZSBqZXLDoXJxdWljbyBlbiBsYSBmb3JtYWNpw7NuIGRlIGdydXBvcy4gRW4gY2FtYmlvLCBzZSBidXNjYSB1bmEgc2VnbWVudGFjacOzbiAicGxhbmEiLCBkb25kZSB0b2RvcyBsb3MgY2zDunN0ZXJlcyB0aWVuZW4gZWwgbWlzbW8gbml2ZWwgZGUgaW1wb3J0YW5jaWEgeSBubyBleGlzdGVuIHN1YmdydXBvcyBkZW50cm8gZGUgbG9zIGNsw7pzdGVyZXMuIEVzdG8gaGFjZSBxdWUgbG9zIG3DqXRvZG9zIG5vIGplcsOhcnF1aWNvcyBzZWFuIG3DoXMgYWRlY3VhZG9zIHBhcmEgZ3JhbmRlcyBjb25qdW50b3MgZGUgZGF0b3MsIGRvbmRlIHVuYSBlc3RydWN0dXJhIGplcsOhcnF1aWNhIHNlcsOtYSBkZW1hc2lhZG8gY29tcGxlamEgb8KgcG9jb8KgcHLDoWN0aWNhLg0KDQojIyMjIEstw7NwdGltb3Mgey50YWJzZXQgLnRhYnNldC1waWxsc30NCkxvcyBLLcOzcHRpbW9zIHNvbiBlbCByZXN1bHRhZG8gZGUgdW5hIHNlbGVjY2nDs24gY3VpZGFkb3NhIGRlbCBuw7ptZXJvIGRlIGNsw7pzdGVyZXMgcXVlIG1lam9yIHJlZmxlamFuIGxhIGVzdHJ1Y3R1cmEgc3VieWFjZW50ZSBkZSBsb3MgZGF0b3MsIG1lam9yYW5kbyBsYSBpbnRlcnByZXRhY2nDs24geSB1dGlsaWRhZCBkZSBsb3MgcmVzdWx0YWRvcyBkZcKgbGHCoGFncnVwYWNpw7NuLg0KDQojIyMjIyBFbGJvdw0KTGEgdGFibGEgbXVlc3RyYSBjw7NtbyBzZSBwdWVkZSBlbGVnaXIgZWwgbsO6bWVybyBpZGVhbCBkZSBncnVwb3MgbyBjbMO6c3RlcmVzIGVuIHVuIGFuw6FsaXNpcyBkZSBhZ3J1cGFtaWVudG8uIExhIGlkZWEgZXMgZW5jb250cmFyIHVuIGVxdWlsaWJyaW8gZW50cmUgdGVuZXIgc3VmaWNpZW50ZXMgZ3J1cG9zIHBhcmEgY2FwdHVyYXIgbGEgZGl2ZXJzaWRhZCBkZSBsb3MgZGF0b3MgeSBubyBjcmVhciBkZW1hc2lhZG9zIGdydXBvcyBxdWUgbm8gYXBvcnRlbiBpbmZvcm1hY2nDs24gw7p0aWwuIEF5dWRhIGEgZGVjaWRpciBjdcOhbnRvcyBncnVwb3Mgc2UgZGViZW4gY29uc2lkZXJhciBhbCBhbmFsaXphciBsb3MgZGF0b3MsIGJ1c2NhbmRvIGVsIG7Dum1lcm8gcXVlIG1lam9yIHJlcHJlc2VudGUgbGFzIGRpZmVyZW5jaWFzIHNpbiBjb21wbGljYXIgZGVtYXNpYWRvwqBlbMKgYW7DoWxpc2lzLg0KYGBge3IgV1NTLCBmaWcuYWxpZ24gPSAnY2VudGVyJ30NCmZ2aXpfbmJjbHVzdChkYXRhXywga21lYW5zLCBtZXRob2QgPSAid3NzIikgKyBnZW9tX3ZsaW5lKHhpbnRlcmNlcHQgPSAzLCBsaW5ldHlwZSA9IDIpDQpgYGANCg0KIyMjIyMgU2lsaG91ZXR0ZQ0KTGEgdGFibGEgZGUgc2lsaG91ZXR0ZSBtdWVzdHJhIGPDs21vIHNlIGFncnVwYW4gbG9zIGRhdG9zIHNlZ8O6biBkaWZlcmVudGVzIG7Dum1lcm9zIGRlIGNsw7pzdGVyZXMuIFVuIG1heW9yIGFuY2hvIGRlIHNpbHVldGEgaW5kaWNhIHVuIG1lam9yIGFncnVwYW1pZW50by4gTG9zIHJlc3VsdGFkb3Mgc3VnaWVyZW4gcXVlIGVsIG7Dum1lcm8gw7NwdGltbyBkZSBjbMO6c3RlcmVzIGVzdMOhIGVudHJlIDQgeSA1LCBjb24gdW4gbcOheGltbyBlbiA0LCBsbyBxdWUgaW5kaWNhIHF1ZSBsb3MgZGF0b3Mgc2UgYWdydXBhbiBtZWpvciBjb24gZXNlIG7Dum1lcm8uDQpgYGB7ciBTaWxob3VldHRlLCBmaWcuYWxpZ24gPSAnY2VudGVyJ30NCmZ2aXpfbmJjbHVzdChkYXRhXywga21lYW5zLCBtZXRob2QgPSAic2lsaG91ZXR0ZSIpDQpgYGANCg0KIyMjIyMgR2FwIFN0YXRpc3RpYw0KTGEgZ3LDoWZpY2EgZGVsIGVzdGFkw61zdGljbyBHYXAgc2UgdXRpbGl6YSBwYXJhIGF5dWRhciBhIGRldGVybWluYXIgY3XDoW50b3MgZ3J1cG9zIG8gY2zDunN0ZXJlcyBkZWJlcsOtYW4gZm9ybWFyc2UgZW4gdW4gYW7DoWxpc2lzIGRlIGFncnVwYW1pZW50by4gTGEgaWRlYSBlcyBjb21wYXJhciBsYSBjYWxpZGFkIGRlIGFncnVwYW1pZW50byBkZSBsb3MgZGF0b3MgZGUgZXN0ZSBjb25qdW50byBjb24gbGEgZGUgdW4gY29uanVudG8gZGUgZGF0b3PCoGFsZWF0b3Jpb3MuDQpgYGB7ciBHQVBfU1RBVCwgZmlnLmFsaWduID0gJ2NlbnRlcid9DQpmdml6X25iY2x1c3QoZGF0YV8sIGttZWFucywgbWV0aG9kID0gImdhcF9zdGF0IikNCmBgYA0KDQojIyMjIyBNYWpvcml0eSBSdWxlDQpFc3RhcyBncsOhZmljYXMgYXl1ZGFuIGEgdG9tYXIgZGVjaXNpb25lcyBpbmZvcm1hZGFzIHNvYnJlIGN1w6FudG9zIGdydXBvcyBlc3RhYmxlY2VyIGVuIGVsIGNvbmp1bnRvIGRlIGRhdG9zLCBhc2VndXJhbmRvIGxvZ3JhciB1biBlcXVpbGlicmlvIGVudHJlIHVuYSBidWVuYSByZXByZXNlbnRhY2nDs24geSBsYSBjb21wbGVqaWRhZCBkZWwgbW9kZWxvLg0KYGBge3IgTWFqb3JpdHlfUnVsZSwgZmlnLmFsaWduID0gJ2NlbnRlcid9DQpzdXBwcmVzc1dhcm5pbmdzKE5iQ2x1c3QoZGF0YSA9IGRhdGFfLCBkaXNzID0gTlVMTCwgZGlzdGFuY2UgPSAiZXVjbGlkZWFuIiwgbWluLm5jID0gMiwgbWF4Lm5jID0gMTAsIG1ldGhvZCA9ICJrbWVhbnMiKSRCZXN0Lm5jKQ0KYGBgDQoNCiMjIyMgUmVzdWx0YWRvcyBLLW1lYW5zIHsudGFic2V0IC50YWJzZXQtcGlsbHN9DQpMb3MgcmVzdWx0YWRvcyBkZSBLLW1lYW5zIGRlc2NyaWJlbiBjw7NtbyBzZSBhZ3J1cGFuIGxvcyBkYXRvcywgY3XDoW4gZGlzdGludG9zIHNvbiBsb3MgY2zDunN0ZXJlcyB5IGPDs21vIHNlIGFqdXN0YSBlbCBtb2RlbG8gYSBsb3MgZGF0b3MuIEVzdG8gYXl1ZGEgYSBpbnRlcnByZXRhciBwYXRyb25lcyB5IHJlbGFjaW9uZXMgZGVudHJvIGRlbCBjb25qdW50b8KgZGXCoGRhdG9zLg0KDQojIyMjIyBLLcOzcHRpbW8gW3d3c10NCkVzdGUgYW7DoWxpc2lzIEstw7NwdGltbyBwcm9wb3JjaW9uYSB1bmEgdmlzacOzbiBjbGFyYSBzb2JyZSBjw7NtbyBzZSBhZ3J1cGFuIGxvcyBkYXRvcyB5IHF1w6kgdGFuIGJpZW4gc2Ugc2VwYXJhbiBlc29zIGdydXBvcyBlbnRyZSBzw60uIEVzdG8gZXMgw7p0aWwgcGFyYSBlbnRlbmRlciBwYXRyb25lcyBvIHRlbmRlbmNpYXPCoGVuwqBsb3PCoGRhdG9zLg0KYGBge3IgS19XU1MsIGZpZy5hbGlnbiA9ICdjZW50ZXInfQ0Kc2V0LnNlZWQoNzgwNzI4KQ0KcHJpbnQoa21lYW5zKGRhdGFfLCAzLCBuc3RhcnQgPSAyNSkpDQpgYGANCg0KIyMjIyMgSy3Ds3B0aW1vIFtzaWxdDQpFc3RlIGFuw6FsaXNpcyBwcm9wb3JjaW9uYSB1bmEgdmlzacOzbiBjbGFyYSBzb2JyZSBjw7NtbyBzZSBhZ3J1cGFuIGxvcyBkYXRvcyBlbiBkb3MgY2x1c3RlcnMsIGRlc3RhY2FuZG8gbGFzIGRpZmVyZW5jaWFzIHkgc2ltaWxpdHVkZXMgZGVudHJvIHkgZW50cmUgZXNvcyBncnVwb3MuIEVzdG8gYXl1ZGEgYSBpZGVudGlmaWNhciBwYXRyb25lcyBvIGNvbXBvcnRhbWllbnRvcyBlbiBsb3MgZGF0b3MgcXVlIHNvbsKgc2lnbmlmaWNhdGl2b3MuDQpgYGB7ciBLX1NpbGhvdWV0dGUsIGZpZy5hbGlnbiA9ICdjZW50ZXInfQ0Kc2V0LnNlZWQoNzgwNzI4KQ0KcHJpbnQoa21lYW5zKGRhdGFfLCAyLCBuc3RhcnQgPSAyNSkpDQpgYGANCg0KIyMjIyBHcsOhZmljb3MgSy1tZWFucyB7LnRhYnNldCAudGFic2V0LXBpbGxzfQ0KTG9zIGdyw6FmaWNvcyBLLW1lYW5zIGF5dWRhbiBhIHZhbGlkYXIgdmlzdWFsbWVudGUgbGEgY2FsaWRhZCBkZSBsYSBhZ3J1cGFjacOzbiB5IGEgaW50ZXJwcmV0YXIgY8OzbW8gbG9zIGRhdG9zIHNlIGRpdmlkZW4gZW4gY2zDunN0ZXJlcywgZmFjaWxpdGFuZG8gbGEgY29tcHJlbnNpw7NuIGRlIGxhcyByZWxhY2lvbmVzIHkgcGF0cm9uZXPCoGVuwqBsb3PCoGRhdG9zLg0KDQojIyMjIyBLLcOzcHRpbW8gW3d3c10NCkVuIGVzdGEgZ3LDoWZpY2EgZGUgSy3Ds3B0aW1vIHNlIHZpc3VhbGl6YW4gbG9zIHJlc3VsdGFkb3MgZGUgdW4gYW7DoWxpc2lzIGRlIGFncnVwYWNpw7NuIEstbWVhbnMsIHJlcHJlc2VudGFuZG8gbG9zIGRhdG9zIGRpc3RyaWJ1aWRvcyBlbiB0cmVzIGNsw7pzdGVyZXMsIGNhZGEgdW5vIGlkZW50aWZpY2FkbyBjb24gdW4gY29sb3IgZGlzdGludG8gKGF6dWwsIGFtYXJpbGxvIHkgY2lhbikuICBNdWVzdHJhIGPDs21vIHNlIGRpc3RyaWJ1eWVuIHkgYWdydXBhbiBsb3MgZGF0b3MgZW4gdHJlcyBjbMO6c3RlcmVzIMOzcHRpbW9zLCBwZXJtaXRpZW5kbyB2aXN1YWxpemFyIHNpbWlsaXR1ZGVzIHkgZGlmZXJlbmNpYXMgZW50cmUgZ3J1cG9zLCBhc8OtIGNvbW8gcGF0cm9uZXMgZ2VuZXJhbGVzIGVuIGxhcyBjYXJhY3RlcsOtc3RpY2FzwqBkZcKgbG9zwqBkYXRvcy4NCmBgYHtyIEdfV1NTLCBmaWcuYWxpZ24gPSAnY2VudGVyJ30NCmZ2aXpfY2x1c3RlcihrbWVhbnMoZGF0YV8sIDMsIG5zdGFydCA9IDI1KSwgZGF0YSA9IGRhdGFfLCBwYWxldHRlID0gYygiIzJFOUZERiIsICIjMDBBRkJCIiwgIiNFN0I4MDAiLCAiI0U3QjgwMSIpLCBlbGxpcHNlLnR5cGUgPSAiZXVjbGlkIiwgc3Rhci5wbG90ID0gVFJVRSwgcmVwZWwgPSBUUlVFLCBnZ3RoZW1lID0gdGhlbWVfbWluaW1hbCgpDQopDQpgYGANCg0KIyMjIyMgSy3Ds3B0aW1vIFtzaWxdDQpFc3RhIGdyw6FmaWNhIGRlIEstw7NwdGltbyByZXByZXNlbnRhIGxhIGFncnVwYWNpw7NuIGRlIGRhdG9zIGVuIGRvcyBjbMO6c3RlcmVzICgxIHkgMiksIHByb3llY3RhZG9zIGVuIGRvcyBkaW1lbnNpb25lcyBwcmluY2lwYWxlcyAoRGltMSB5IERpbTIpLCBsYXMgY3VhbGVzIGV4cGxpY2FuIGNvbmp1bnRhbWVudGUgZWwgNzMuNyUgZGUgbGEgdmFyaWFiaWxpZGFkIHRvdGFsIGRlbCBjb25qdW50byBkZSBkYXRvcy4gRXN0byBheXVkYSBhIHZhbGlkYXIgbGEgc2VsZWNjacOzbiBkZSBkb3MgY2zDunN0ZXJlcyBjb21vIHVuYSBvcGNpw7NuIMOzcHRpbWEgc2Vnw7puIGxvcyBwYXRyb25lc8Kgb2JzZXJ2YWRvcy4NCmBgYHtyIEdfU2lsaG91ZXR0ZSwgZmlnLmFsaWduID0gJ2NlbnRlcid9DQpmdml6X2NsdXN0ZXIoa21lYW5zKGRhdGFfLCAyLCBuc3RhcnQgPSAyNSksIGRhdGEgPSBkYXRhXywgcGFsZXR0ZSA9IGMoIiMyRTlGREYiLCAiIzAwQUZCQiIsICIjRTdCODAwIiwgIiNFN0I4MDEiKSwgZWxsaXBzZS50eXBlID0gImV1Y2xpZCIsIHN0YXIucGxvdCA9IFRSVUUsIHJlcGVsID0gVFJVRSwgZ2d0aGVtZSA9IHRoZW1lX21pbmltYWwoKQ0KKQ0KYGBgDQoNCiMjICoqRmFzZSA1IFtBbsOhbGlzaXMgZGUgUmVncmVzacOzbl0qKg0KDQojIyMgKio1LjEuIE9iamV0aXZvcyoqDQoNCkFwbGljYXIgdMOpY25pY2FzIGRlIGFuw6FsaXNpcyBkZSByZWdyZXNpw7NuIHBhcmEgbW9kZWxhciB5IGN1YW50aWZpY2FyIGxhcyByZWxhY2lvbmVzIGVudHJlIHZhcmlhYmxlcywgY29uIGVsIGZpbiBkZSByZWFsaXphciBwcmVkaWNjaW9uZXMsIGlkZW50aWZpY2FyIGluZmx1ZW5jaWFzIHNpZ25pZmljYXRpdmFzIGRlIHZhcmlhYmxlcyBpbmRlcGVuZGllbnRlcyBzb2JyZSBsYSB2YXJpYWJsZSBkZXBlbmRpZW50ZSwgeSBldmFsdWFyIGxhIGNhbGlkYWQgZGVsIGFqdXN0ZSBkZWwgbW9kZWxvLg0KDQojIyMgKio1LjIuIFJlZ3Jlc2nDs24gTGluZWFsIFNpbXBsZSoqIHsudGFic2V0IC50YWJzZXQtcGlsbHN9DQpMYSByZWdyZXNpw7NuIGxpbmVhbCBzaW1wbGUgZXMgdW4gbcOpdG9kbyBlc3RhZMOtc3RpY28gcXVlIHNlIHV0aWxpemEgcGFyYSBtb2RlbGFyIGxhIHJlbGFjacOzbiBlbnRyZSBkb3MgdmFyaWFibGVzOiB1bmEgdmFyaWFibGUgZGVwZW5kaWVudGUgKG8gcmVzcHVlc3RhKSB5IHVuYSB2YXJpYWJsZSBpbmRlcGVuZGllbnRlIChvIHByZWRpY3RvcmEpLiBFc3RhIHJlbGFjacOzbiBzZSBkZXNjcmliZSBtZWRpYW50ZSB1bmEgbMOtbmVhIHJlY3RhIHF1ZSBtZWpvciBhanVzdGEgbG9zIGRhdG9zLCBjb25vY2lkYSBjb21vIGxhIGzDrW5lYSBkZSByZWdyZXNpw7NuLiBMYSByZWdyZXNpw7NuIGxpbmVhbCBzaW1wbGUgZXMgdW5hIGhlcnJhbWllbnRhIHBvZGVyb3NhIHBhcmEgZW50ZW5kZXIgeSBjdWFudGlmaWNhciByZWxhY2lvbmVzIGxpbmVhbGVzIGVudHJlIGRvcyB2YXJpYWJsZXMsIHNpZW5kbyBhbXBsaWFtZW50ZSB1dGlsaXphZGEgZW4gZGl2ZXJzYXMgw6FyZWFzLCBjb21vIGVjb25vbcOtYSwgY2llbmNpYXMgc29jaWFsZXMgeSBtZWRpY2luYS4gUGVybWl0ZSByZWFsaXphciBwcmVkaWNjaW9uZXMsIGV2YWx1YXIgbGEgZGVwZW5kZW5jaWEgZW50cmUgdmFyaWFibGVzIHkgZGV0ZXJtaW5hciBzaSBsYSByZWxhY2nDs24gb2JzZXJ2YWRhIGVzIGVzdGFkw61zdGljYW1lbnRlIHNpZ25pZmljYXRpdmEuIFNpbiBlbWJhcmdvLCBlcyBpbXBvcnRhbnRlIHZlcmlmaWNhciBsYXMgc3Vwb3NpY2lvbmVzIGRlbCBtb2RlbG8gKGNvbW8gbGEgbGluZWFsaWRhZCwgaW5kZXBlbmRlbmNpYSBkZSBlcnJvcmVzLCB5IGhvbW9jZWRhc3RpY2lkYWQpIHBhcmEgZ2FyYW50aXphciBsYSB2YWxpZGV6IGRlwqBsb3PCoHJlc3VsdGFkb3MuDQoNCiMjIyMgUmVzdW1lbiBkZSBhZ2UNCkVzdGUgZ3LDoWZpY28gZXMgdW4gZGlhZ3JhbWEgZGUgY2FqYSB5IGJpZ290ZXMgKGJveHBsb3QpIHF1ZSByZXN1bWUgbGEgZGlzdHJpYnVjacOzbiBkZSBsYSB2YXJpYWJsZSAqKmFnZSoqLiAgRXN0ZSBib3hwbG90IHByb3BvcmNpb25hIHVuIHJlc3VtZW4gdmlzdWFsIGRlbCByYW5nbywgbWVkaWFuYSB5IGRpc3BlcnNpw7NuIGRlIGxhIHZhcmlhYmxlICoqYWdlKiosIG1vc3RyYW5kbyBxdWUgbG9zIGRhdG9zIGVzdMOhbiBkaXN0cmlidWlkb3MgZGUgZm9ybWEgZXF1aWxpYnJhZGEgc2luIHZhbG9yZXMgYXTDrXBpY29zwqBldmlkZW50ZXMuDQpgYGB7ciBSZXN1bWVuX2RlX2FnZSwgZmlnLmFsaWduPSdjZW50ZXInfQ0Kc3VtbWFyeShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRhZ2UpDQpib3hwbG90KE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGFnZSwgbWFpbiA9ICJEaWFncmFtYSBkZSBDYWphIGRlIGFnZSIsIGNvbCA9IGMoIm9yYW5nZSIpKQ0KDQpgYGANCg0KIyMjIyBSZXN1bWVuIGRlIHByaWNlDQpFbCBkaWFncmFtYSBpbmRpY2EgcXVlIGxhIG1heW9yw61hIGRlIGxvcyBwcmVjaW9zIHNlIGNvbmNlbnRyYW4gZW4gdG9ybm8gYSBsYSBtZWRpYW5hLCBwZXJvIGhheSB2YXJpb3MgcHJlY2lvcyBtdWNobyBtw6FzIGFsdG9zIHF1ZSBhZmVjdGFuIGxhIGRpc3RyaWJ1Y2nDs24sIGNvbW8gc2UgcHVlZGUgb2JzZXJ2YXIgcG9yIGxhIHByZXNlbmNpYSBkZcKgbG9zwqBvdXRsaWVycy4NCmBgYHtyIFJlc3VtZW5fZGVfcHJpY2UsIGZpZy5hbGlnbj0nY2VudGVyJ30NCnN1bW1hcnkoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kcHJpY2UpDQpib3hwbG90KE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJHByaWNlLCBtYWluID0gIkRpYWdyYW1hIGRlIENhamEgZGUgcHJpY2UiLCBjb2wgPSBjKCJvcmFuZ2UiKSkNCg0KYGBgDQoNCiMjIyMgRGlhZ3JhbWEgZGUgRGlzcGVyc2lvbiBQcmljZSB2cyBBZ2UuDQpFbCBkaWFncmFtYSBkZSBkaXNwZXJzacOzbiBtdWVzdHJhIGxhIHJlbGFjacOzbiBlbnRyZSBlbCBwcmVjaW8gZGUgbG9zIG1vZGVsb3MgTmlzc2FuIHkgbGEgZWRhZCBkZSBsb3MgIGNvbXByYWRvcmVzIGRlIG1vZGVsb3MgTmlzc2FuLiAgU2Ugb2JzZXJ2YSB1bmEgZnVlcnRlIGNvbmNlbnRyYWNpw7NuIGRlIGRhdG9zIGVuIHByZWNpb3MgYmFqb3MgeSB1bmEgYW1wbGlhIGdhbWEgZGUgZWRhZGVzLCBpbmRpY2FuZG8gcXVlIGxhIG1heW9yw61hIGRlIGxvcyB2ZWjDrWN1bG9zIHNvbiByZWxhdGl2YW1lbnRlIGJhcmF0b3MgeSBhYmFyY2FuIHVuIHJhbmdvIGFtcGxpbyBkZSBlZGFkZXMgZGUgbGFzIHBlcnNvbmFzLiBIYXkgYWxndW5vcyBwdW50b3MgZGlzcGVyc29zIGEgcHJlY2lvcyBtw6FzIGFsdG9zLCBzdWdpcmllbmRvIGxhIGV4aXN0ZW5jaWEgZGUgdmVow61jdWxvcyBtw6FzIGNhcm9zLCBnZW5lcmFsbWVudGVkZSBwZXJzb25hcyBtYXMgasOzdmVuZXMuDQpgYGB7ciBEaWFncmFtYV9kZV9EaXNwZXJzaW9uX1ByaWNlX3ZzX0FnZX0NCnBsb3QoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kcHJpY2UsIE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGFnZSwgbWFpbiA9ICJEaWFncmFtYSBkZSBEaXNwZXJzacOzbiBwcmljZSB2cy4gYWdlIikNCmBgYA0KDQojIyMjIERpYWdyYW1hcyBUb3RhbGVzIGRlIERpc3BlcnNpw7NuDQpMb3MgdG90YWxlcyBkZSBkaXNwZXJzacOzbiBtdWVzdHJhbiB1biBkaWFncmFtYSBkZSBkaXNwZXJzacOzbiBkZSBwYXJlcyBxdWUgdmlzdWFsaXphIGxhcyByZWxhY2lvbmVzIGVudHJlIGN1YXRybyB2YXJpYWJsZXM6IGFnZSwgcHJpY2UsIHBlcmZvcm1hbmNlIHkga20uIENhZGEgcGFuZWwgbXVlc3RyYSBsYSByZWxhY2nDs24gZW50cmUgZG9zIHZhcmlhYmxlcy4gIExvcyBwdW50b3MgcmVwcmVzZW50YW4gbGFzIG9ic2VydmFjaW9uZXMgaW5kaXZpZHVhbGVzLCB5IGxhIGRlbnNpZGFkIGRlIGxvcyBwdW50b3MgaW5kaWNhIGxhIGZyZWN1ZW5jaWEgZGUgb2N1cnJlbmNpYSBlbiBlc2EgcmVnacOzbiBkZWwgZXNwYWNpby4gIE9ic2VydmFtb3MgcXVlIGhheSBtdWNob3MgcHVudG9zIHN1cGVycHVlc3RvcywgbG8gcXVlIGhhY2UgZGlmw61jaWwgdmVyIHRvZGFzIGxhcyByZWxhY2lvbmVzIGluZGl2aWR1YWxlcyBjb24gY2xhcmlkYWQuICBTZSBhcHJlY2lhbiBhbGd1bm9zIHZhbG9yZXMgYXTDrXBpY29zIChvdXRsaWVycykgZW4gYWxndW5hcyBkZSBsYXMgdmFyaWFibGVzLCBwYXJ0aWN1bGFybWVudGUgZW4gcmVsYWNpw7NuIGFsIHByZWNpbyB5IGEgbGEgcGVyZm9ybWFuY2UsIHF1ZSBhcGFyZWNlbiBjb21vIHB1bnRvc8KgYWlzbGFkb3MuDQpgYGB7ciBEaWFncmFtYXNfVG90YWxlc19kZV9EaXNwZXJzacOzbixmaWcuYWxpZ249J2NlbnRlcid9DQpwYWlycyh+YWdlICsgcHJpY2UgKyBwZXJmb3JtYW5jZSArIGttLCBkYXRhID0gTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8pDQoNCmBgYA0KDQojIyMgRm9ybXVsYWNpw7NuIGRlbCBtb2RlbG8gZGUgUkxTIGVudHJlIGxhcyB2YXJpYWJsZXMgZGUgZXN0dWRpby4gey50YWJzZXQgLnRhYnNldC1waWxsc30NCkxhIG5hdmVnYWNpw7NuIGEgdHJhdsOpcyBkZSBsYXMgcGVzdGHDsWFzIG11ZXN0cmEgbG9zIGNvZWZpY2llbnRlcyBkZWwgbW9kZWxvIGRlIHJlZ3Jlc2nDs24gbGluZWFsIHNpbXBsZSwgc3UgcmVzdW1lbiBlc3RhZMOtc3RpY28geSBzdSB0YWJsYSBBTk9WQS4gU2UgbWVuY2lvbmEgZGUgbnVldm8gcXVlIGxhcyB2YXJpYWJsZXMgZGUgaW50ZXLDqXMgc29uOiAqKmFnZSoqICh2YXJpYWJsZSBkZXBlbmRpZW50ZSkgeSAqKnByaWNlKiogKHZhcmlhYmxlIGluZGVwZW5kaWVudGUpLg0KQWwgY29uc2lkZXJhciBsb3MgcmVzdWx0YWRvcyBwcmVzZW50YWRvcyBlbiBsYSBwZXN0YcOxYSBDb2VmaWNpZW50ZXMgZGVsIE1vZGVsbyBSTFMgc2UgcHVlZGUgZXN0YWJsZXIgcXVlIGVsIG1vZGVsbyBkZSByZWdyZXNpw7NuIGxpbmVhbCBzaW1wbGUgcXVlIHJlbGFjaW9uYSBhIGxhcyB2YXJpYWJsZXMgZGUgaW50ZXLDqXMuIFRpZW5lIGxhIGZvcm11bGFjacOzbjoNCg0KJGFnZSA9IDQyLDE3KzEuMTE4ZS03KnByaWNlJA0KDQojIyMjIENvZWZpY2llbnRlcyBkZWwgTW9kZWxvIFJMUw0KRWwgY8OzZGlnbyBhanVzdGEgdW4gbW9kZWxvIGRlIHJlZ3Jlc2nDs24gbGluZWFsIHNpbXBsZSBwYXJhIHByZWRlY2lyIGxhIGVkYWQgKGFnZSkgZW4gZnVuY2nDs24gZGUgc3UgcHJlY2lvIChwcmljZSkuDQpMdWVnbywgb2J0ZW5lbW9zIGxvcyBjb2VmaWNpZW50ZXMgZGVsIG1vZGVsbyAoZWwgaW50ZXJjZXB0byB5IGxhIHBlbmRpZW50ZSkgcXVlIGluZGljYW4gbGEgcmVsYWNpw7NuIG1hdGVtw6F0aWNhIGVudHJlIGVzdGFzwqBkb3PCoHZhcmlhYmxlcy4NCmBgYHtyIENvZWZpY2llbnRlc19kZWxfTW9kZWxvIFJMU30NCm1vZGVsb19STF9TaW1wbGUgPSBsbShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRhZ2V+TW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kcHJpY2UpDQpjb2VmKG1vZGVsb19STF9TaW1wbGUpDQpgYGANCg0KIyMjIyBSZXN1bWVuIEVzdGFkw61zdGljbyBkZWwgTW9kZWxvIFJMUw0KTGEgdGFibGEgc3VnaWVyZSBxdWUgbm8gaGF5IHVuYSByZWxhY2nDs24gc2lnbmlmaWNhdGl2YSBlbnRyZSBlbCBwcmVjaW8geSBsYSBlZGFkIGRlIGxvcyBjb21wcmFkb3JlcyBkZWwgdmVow61jdWxvIGVuIGVzdGUgY29uanVudG8gZGUgZGF0b3MsIGRhZG8gcXVlIGVsIGVmZWN0byBkZWwgcHJlY2lvIGVzIHByw6FjdGljYW1lbnRlIG51bG8geSBubyBlc3RhZMOtc3RpY2FtZW50ZSBzaWduaWZpY2F0aXZvLiBFc3RvIGltcGxpY2EgcXVlIG90cm9zIGZhY3RvcmVzIHBvZHLDrWFuIHNlciBtw6FzIHJlbGV2YW50ZXMgcGFyYSBleHBsaWNhciBsYXMgdmFyaWFjaW9uZXMgZW4gbGEgZWRhZMKgZGVswqB2ZWjDrWN1bG8NCmBgYHtyIFJlc3VtZW5fRXN0YWTDrXN0aWNvX2RlbF9Nb2RlbG9fUkxTfQ0Kc3VtbWFyeShtb2RlbG9fUkxfU2ltcGxlKQ0KYGBgDQoNCiMjIyMgVGFibGEgQU5PVkEgcGFyYSBlbCBNb2RlbG8gUkxTDQpMYSB0YWJsYSBBTk9WQSBpbmRpY2EgcXVlIGVsIG1vZGVsbyBubyBleHBsaWNhIHNpZ25pZmljYXRpdmFtZW50ZSBsYSB2YXJpYWNpw7NuIGVuIGxhIGVkYWQgZGUgbG9zIHZlaMOtY3Vsb3MgZW4gZnVuY2nDs24gZGVsIHByZWNpby4gQ29uIHVuIHZhbG9yIHAgYWx0byB5IHVuIGVzdGFkw61zdGljbyBGIGJham8sIHBvZGVtb3MgY29uY2x1aXIgcXVlIG5vIGhheSB1bmEgcmVsYWNpw7NuIGVzdGFkw61zdGljYW1lbnRlIHNpZ25pZmljYXRpdmEgZW50cmUgZXN0YXMgZG9zIHZhcmlhYmxlcyBlbiBlc3RlIGNvbmp1bnRvwqBkZcKgZGF0b3MuDQpgYGB7ciBUYWJsYV9BTk9WQV9wYXJhX2VsX01vZGVsbyBSTFN9DQphbm92YShtb2RlbG9fUkxfU2ltcGxlKQ0KYGBgDQoNCiMjIyBBbsOhbGlzaXMgZGVsIG1vZGVsbyBSTFMuey50YWJzZXQgLnRhYnNldC1waWxsc30NCkVsIGFuw6FsaXNpcyBkZWwgbW9kZWxvIFJMUyBtdWVzdHJhIHF1ZSBubyBlcyBtdXkgc2lnbmlmaWNhdGl2byB5IGVuIGNvbnNlY3VlbmNpYSBhcG9ydGEgcG9jYSBpbmZvcm1hY2nDs24gcmVsZXZhbnRlIHBhcmEgZXN0aW1hciAqKmFnZSoqIGEgcGFydGlyIGRlICoqcHJpY2UqKi4gRXN0byBkZWJpZG8gYSBxdWUgZWwgaW50ZXJ2YWxvIGRlIGNvbmZpYW56YSBwYXJhIGVsIGNvZWZpY2llbnRlIGRlICoqcHJpY2UqKiBlbiBlbCBtb2RlbG8gUkxTIGluY2x1eWUgYWwgY2VybyB5IHF1ZSBoYXN0YSBpbmNsdXNvIHB1ZWRlIHRvbWFyIHZhbG9yZXMgbmVnYXRpdm9zIGhhY2llbmRvIHF1ZSBubyBzZSByZXByZXNlbnRlIGJpZW4gZWwgbW9kZWxvOg0KDQokLTEuODEzNTQyZS0wNzzOsjE8NC4wNDk5NTBlLTA3JA0KDQojIyMjIEludGVydmFsbyBkZSBDb25maWFuemEgcGFyYSBCMQ0KDQpgYGB7ciBJbnRlcnZhbG9fZGVfQ29uZmlhbnphX3BhcmEgQjEsZmlnLmFsaWduPSdjZW50ZXInfQ0KY29uZmludChtb2RlbG9fUkxfU2ltcGxlLCBsZXZlbCA9IDAuOTUpDQpgYGANCg0KIyMjIyBQcmVkaWNjaW9uZXMgeSBzdXMgSW50ZXJ2YWxvcyBkZSBQcmVkaWNjacOzbg0KYGBge3IgUHJlZGljY2lvbmVzX3lfc3VzX0ludGVydmFsb3NfZGVfUHJlZGljY2nDs24sZmlnLmFsaWduPSdjZW50ZXInfQ0KcHJlZGljdChtb2RlbG9fUkxfU2ltcGxlLCBkYXRhLmZyYW1lKHNlcSgxLDQwMCkpLCBpbnRlcnZhbD0ncHJlZGljdGlvbicsIGxldmVsID0gMC45NSkNCg0KYGBgDQoNCiMjIyMgUHJlZGljY2lvbmVzIHkgc3VzIEludGVydmFsb3MgZGUgQ29uZmlhbnphDQpgYGB7ciBQcmVkaWNjaW9uZXNfeV9zdXNfSW50ZXJ2YWxvc19kZV9Db25maWFuemF9DQpwcmVkaWN0KG1vZGVsb19STF9TaW1wbGUsIGRhdGEuZnJhbWUoc2VxKDEsNDE4OCkpLCBpbnRlcnZhbD0nY29uZmlkZW5jZScsIGxldmVsID0gMC45NSkNCmBgYA0KDQojIyMgKio1LjMuIFJlZ3Jlc2nDs24gTGluZWFsIE3Dumx0aXBsZSoqIHsudGFic2V0IC50YWJzZXQtcGlsbHN9DQpMYSByZWdyZXNpw7NuIGxpbmVhbCBtw7psdGlwbGUgZXMgdW5hIHTDqWNuaWNhIGVzdGFkw61zdGljYSBxdWUgZXh0aWVuZGUgbGEgcmVncmVzacOzbiBsaW5lYWwgcGFyYSBtb2RlbGFyIGxhIHJlbGFjacOzbiBlbnRyZSB1bmEgdmFyaWFibGUgZGVwZW5kaWVudGUgeSBtw7psdGlwbGVzIHZhcmlhYmxlcyBpbmRlcGVuZGllbnRlcy4gRW4gdMOpcm1pbm9zIGdlbmVyYWxlcywgZGVzY3JpYmUgY8OzbW8gbGEgdmFyaWFibGUgZGVwZW5kaWVudGUgY2FtYmlhIGVuIGZ1bmNpw7NuIGRlIHZhcmlhcyB2YXJpYWJsZXMgcHJlZGljdG9yYS4gRWwgYW7DoWxpc2lzIGRlIHJlZ3Jlc2nDs24gbcO6bHRpcGxlIHBlcm1pdGUgZXZhbHVhciBjw7NtbyBsYXMgZGlmZXJlbnRlcyB2YXJpYWJsZXMgaW5kZXBlbmRpZW50ZXMgYWZlY3RhbiBjb25qdW50YW1lbnRlIGEgbGEgdmFyaWFibGUgZGVwZW5kaWVudGUuIENhZGEgY29lZmljaWVudGUgZGUgcmVncmVzacOzbiBzZSBpbnRlcnByZXRhIGNvbW8gZWwgY2FtYmlvIGVzcGVyYWRvIGVuIGxhIHZhcmlhYmxlIGRlcGVuZGllbnRlIHBvciBjYWRhIHVuaWRhZCBkZSBjYW1iaW8gZW4gbGEgdmFyaWFibGUgaW5kZXBlbmRpZW50ZSBjb3JyZXNwb25kaWVudGUsIG1hbnRlbmllbmRvIGxhcyBkZW3DoXMgY29uc3RhbnRlcy4gRXN0byBwZXJtaXRlIGlkZW50aWZpY2FyIHF1w6kgdmFyaWFibGVzIHRpZW5lbiB1biBlZmVjdG8gc2lnbmlmaWNhdGl2byB5IHF1w6kgdGFuIGZ1ZXJ0ZSBlcyBzdSBpbmZsdWVuY2lhIGVuIGVsIHJlc3VsdGFkby4gVGFtYmnDqW4gYXl1ZGEgYSBlbnRlbmRlciBsYXMgcmVsYWNpb25lcyBjb21wbGVqYXMgZW50cmUgbGFzIHZhcmlhYmxlcyB5IGEgY29udHJvbGFyIHBvc2libGVzIGZhY3RvcmVzIGRlIGNvbmZ1c2nDs24uDQoNCkxvcyByZXN1bHRhZG9zIGRlIGxhIHJlZ3Jlc2nDs24gbGluZWFsIG3Dumx0aXBsZSBpbmNsdXllbiBtw6l0cmljYXMgZGUgYWp1c3RlIGNvbW8gZWwgY29lZmljaWVudGUgZGUgZGV0ZXJtaW5hY2nDs24geSBlbCB2YWxvciBhanVzdGFkbyBxdWUgaW5kaWNhbiBxdcOpIHByb3BvcmNpw7NuIGRlIGxhIHZhcmlhYmlsaWRhZCBkZSBsYSB2YXJpYWJsZSBkZXBlbmRpZW50ZSBlcyBleHBsaWNhZGEgcG9yIGVsIG1vZGVsby4gVGFtYmnDqW4gc2UgZXZhbMO6YW4gbGFzIHN1cG9zaWNpb25lcyBkZWwgbW9kZWxvIChsaW5lYWxpZGFkLCBpbmRlcGVuZGVuY2lhIGRlIGVycm9yZXMsIGhvbW9jZWRhc3RpY2lkYWQgeSBub3JtYWxpZGFkKSB5IHBvc2libGVzIHByb2JsZW1hcyBjb21vIGxhIG11bHRpY29saW5lYWxpZGFkIGVudHJlIGxhcyB2YXJpYWJsZXMgaW5kZXBlbmRpZW50ZXMuIEVuIHJlc3VtZW4sIGxhIHJlZ3Jlc2nDs24gbGluZWFsIG3Dumx0aXBsZSBwcm9wb3JjaW9uYSB1biBtYXJjbyByb2J1c3RvIHBhcmEgYW5hbGl6YXIsIHByZWRlY2lyIHkgZXhwbGljYXIgcmVsYWNpb25lcyBjb21wbGVqYXMgZW4gdW4gY29uanVudG8gZGUgZGF0b3MgY29uIG3Dumx0aXBsZXMgZmFjdG9yZXPCoGluZmx1eWVudGVzLg0KDQpMYSBuYXZlZ2FjacOzbiBhIHRyYXbDqXMgZGUgbGFzIHBlc3Rhw7FhcyBtdWVzdHJhIGVsIHJlc8O6bWVuIHkgbGEgdGFibGEgQU5PVkEgZGVsIG1vZGVsbyBkZSByZWdyZXNpw7NuIGxpbmVhbCBtw7psdGlwbGUgdG90YWwgeSBsb3MgY29lZmljaWVudGVzIHRhbnRvIGRlbCBtb2RlbG8gbWVuY2lvbmFkbyBjb21vIGVsIGxvZ3JhZG8gbHVlZ28gZGUgcmVkdWNpcmxvLiBDb24gYmFzZSBlbiBsYSBleHBsb3JhY2nDs24gZGUgbG9zIGRhdG9zIHkgZWwgcmVzw7ptZW4geSBsYSB0YWJsYSBBTk9WQSBkZWwgbW9kZWxvIHRvdGFsIHNlIGZvcm11bGFuIHBhcmEgY29tcGFyYWNpw7NuIGRvcyBtb2RlbG9zIFJMTTogdW5vIHF1ZSBpbmNsdXllIGEgdG9kYXMgbGFzIHZhcmlibGVzIGRlbCBjb25qdW50byBkZSBkYXRvcywgZXhjZXB0byAqKmlkKiogeSAqKm1vZGVsKiogLCB5IGVsIG90cm8gcXVlIGV4Y2x1eWUgdGFtYmllbiBhICoqaWQqKiB5ICoqbW9kZWwqKiBqdW50byBjb24gKipjb25kaXRpb24qKi5TZSBtZW5jaW9uYSBkZSBudWV2byBxdWUgKiphZ2UqKiBlcyBsYSB2YXJpYWJsZSBkZXBlbmRpZW50ZS4NCg0KQWwgY29uc2lkZXJhciBsb3MgcmVzdWx0YWRvcyBwcmVzZW50YWRvcyBlbiBsYSBwZXN0YcOxYSBDb2VmaWNpZW50ZXMgZGVsIE1vZGVsbyBSTE0gVG90YWwgc2UgcHVlZGUgZXN0YWJsZXIgcXVlIGVsIG1vZGVsbyBkZSByZWdyZXNpw7NuIGxpbmVhbCBtw7psdGlwbGUgdG90YWwgcXVlIHJlbGFjaW9uYSBhIGxhcyB2YXJpYWJsZXMgZGUgaW50ZXLDqXMsIGxhcyBjdWFsZXMgc2UgcmVzdW1pcsOhbiBjb21vOiANCg0KJHBlcmZvcm1hbmNlJCwgJGttJCwgJHByaWNlJCwgJGdlbmRlcjEkLCAkY29uZGl0aW9uMiQsICRjb25kaXRpb24zJCwgJGNvbmRpdGlvbjQkLCAkY29uZGl0aW9uNSQsICRjb25kaXRpb242JCwgDQokY29sb3JCbGFjayQsICRjb2xvckJsdWUkLCAkY29sb3JDcmltc29uJCwgJGNvbG9yRnVzY2lhJCwgJGNvbG9yR29sZGVucm9kJCwgJGNvbG9yR3JheSQsICRjb2xvckdyZWVuJCwgDQokY29sb3JJbmRpZ28kLCAkY29sb3JLaGFraSQsICRjb2xvck1hcm9vbiQsICRjb2xvck1hdXYkLCAkY29sb3JPcmFuZ2UkLCAkY29sb3JQaW5rJCwgJGNvbG9yUHVjZSQsIA0KJGNvbG9yUHVycGxlJCwgJGNvbG9yUmVkJCwgJGNvbG9yU2lsdmVyJCwgJGNvbG9yVGVhbCQsICRjb2xvclR1cnF1b2lzZSQsICRjb2xvclZpb2xldCQsICRjb2xvcldoaXRlJCwgDQokY29sb3JZZWxsb3ckDQokYWdlPSA0MSw3LTMuOTMyZS0wNCAqIHBlcmZvcm1hbmNlIC0gNi45NDNlLTA3ICoga20gKyA4Ljc3MGUtMDggKiBwcmljZSArIDEuMjQ5ZS0wMSAqIGdlbmRlcjEgLSAxLjAxMGUrMDAgKiBjb25kaXRpb24yIC0gMy43MjBlKzAwICogY29uZGl0aW9uMyArIDEuMTA1ZSswMCAqIGNvbmRpdGlvbjQgLSAyLjUxNGUtMDEgKiBjb25kaXRpb241ICsgNy4zMTdlLTAxICogY29uZGl0aW9uNiArIDIuODQ0ZSswMCAqIGNvbG9yQmxhY2sgKyAxLjUxNmUrMDAgKiBjb2xvckJsdWUgLSA5LjM3MWUtMDEgKiBjb2xvckNyaW1zb24gLSAzLjUwOWUrMDAgKiBjb2xvckZ1c2NpYSAtIDMuMjk2ZSswMCAqIGNvbG9yR29sZGVucm9kICsgMi4zODBlKzAwICogY29sb3JHcmF5ICsgNS4wOThlLTAxICogY29sb3JHcmVlbiAtIDEuOTEyZSswMCAqIGNvbG9ySW5kaWdvIC0gMS40MDdlKzAwICogY29sb3JLaGFraSAtIDEuNTY2ZSswMCAqIGNvbG9yTWFyb29uIC0gMS45ODFlKzAwICogY29sb3JNYXV2ICsgNC44MjBlLTAxICogY29sb3JPcmFuZ2UgLSAxLjk0N2UrMDAgKiBjb2xvclBpbmsgLSA3LjkzM2UtMDEgKiBjb2xvclB1Y2UgKyAxLjE3OGUrMDAgKiBjb2xvclB1cnBsZSArIDEuNzI1ZSswMCAqIGNvbG9yUmVkICsgMS42MTNlKzAwICogY29sb3JTaWx2ZXIgLSA0LjA4NGUrMDAgKiBjb2xvclRlYWwgLSA3LjkyMGUtMDEgKiBjb2xvclR1cnF1b2lzZSAtIDIuOTIxZSswMCAqIGNvbG9yVmlvbGV0ICsgMS41MTZlKzAwICogY29sb3JXaGl0ZSArIDYuNDQwZS0wMSAqIGNvbG9yWWVsbG93JA0KDQpQb3Igb3RybyBsYWRvLCBsdWVnbyBkZSBhbmFsaXphciBlbCByZXN1bWVuIGVzdGFkw61zdGljbyB5IGxhIHRhYmxhIEFOT1ZBIGRlbCBtb2RlbG8gUkxNIFRvdGFsIChjb21vIHNlIG11ZXN0cmEgZW4gbGEgcGVzdGHDsWEgaG9tw7NuaW1hKSwgc2UgcHVkbyBlc3RhYmxlY2VyLCBjb24gZWwgYXBveW8gZGUgbG9zIHJlc8O6bWVuZXMgZXN0YWTDrXN0aWNvcyBkZSBsYXMgdmFyaWFibGVzIGRlIGVzdHVkaW8sIHF1ZSBwb2TDrWEgdXNhciBleGNsdXNpdmFtZW50ZSBsYSB2YXJpYWJsZSAqKmNvbmRpdGlvbioqIHkgKiptb2RlbCoqLiBFbCBtb2RlbG8gcmVkdWNpZG8gcXVlZGFyw61hIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6DQoNCiRhZ2UgPSAzLjY4NS0zLjE1MDkgKiBjb25kaXRpb24zICsgMTAuNDU0OSAqIG1vZGVsRWxncmFuZCArICA5LjA4MDIgKiBtb2RlbEdsb3JpYSArIDkuMDM4NiAqIG1vZGVsKU1hcmNoIC8gTWljcmEkDQoNCg0KIyMjIyBSZXN1bWVuIFZhcmlhYmxlcyBDdWFudGl0YXRpdmFzDQpMYSB0YWJsYSBtdWVzdHJhIHVuIHJlc3VtZW4gZXN0YWTDrXN0aWNvIGRlIGN1YXRybyB2YXJpYWJsZXMgY3VhbnRpdGF0aXZhcyBkZSB1biBjb25qdW50byBkZSBkYXRvcyBkZSBtb2RlbG9zIE5pc3NhbjogICoqYWdlKiosICoqcGVyZm9ybWFuY2UqKiwgKiprbSoqIHkgKipwcmljZSoqLiAgUGFyYSBjYWRhIHZhcmlhYmxlIHNlIG11ZXN0cmFuIGxvcyBzaWd1aWVudGVzIGVzdGFkw61zdGljb3M6IG3DrW5pbW8sIHByaW1lciBjdWFydGlsLCBtZWRpYW5hLCBtZWRpYSwgdGVyY2VyIGN1YXJ0aWwgeSBtw6F4aW1vLiAgTG9zIHZhbG9yZXMgbnVtw6lyaWNvcyByZXByZXNlbnRhbiBsYXMgbWVkaWRhcyBkZSBjYWRhIGVzdGFkw61zdGljbyBwYXJhwqBjYWRhwqB2YXJpYWJsZS4NCmBgYHtyIFJlc3VtZW5fVmFyaWFibGVzX0N1YW50aXRhdGl2YXMsZmlnLmFsaWduPSdjZW50ZXInfQ0Kc3VtbWFyeShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRhZ2UpDQpzdW1tYXJ5KE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJHBlcmZvcm1hbmNlKQ0Kc3VtbWFyeShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRrbSkNCnN1bW1hcnkoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kcHJpY2UpDQpgYGANCg0KIyMjIyBSZXN1bWVuIFZhcmlhYmxlcyBDdWFsaXRhdGl2YXMNCkVsIHJlc3VtZW4gZGUgdmFyaWFibGVzIGN1YWxpdGF0aXZhcyBtdWVzdHJhIGxhIGRpc3RyaWJ1Y2nDs24gZGUgbGEgdmFyaWFibGUgZ2VuZGVyIGVuIGVsIGNvbmp1bnRvIGRlIGRhdG9zIGRlIG1vZGVsb3MgTmlzc2FuLiBIYXkgMTk5OSBvYnNlcnZhY2lvbmVzIGNvbiBlbCB2YWxvciAwIHkgMjEzMSBjb24gZWwgdmFsb3IgMS4gRXN0byBpbmRpY2EgcXVlIGFwcm94aW1hZGFtZW50ZSBlbCA0OC40JSBkZSBsb3MgZGF0b3MgY29ycmVzcG9uZGUgYWwgZ8OpbmVybyAwIHkgZWwgNTEuNiUgYWwgZ8OpbmVybyAxLiBUYW1iacOpbiBzZSBnZW5lcmEgdW4gZ3LDoWZpY28gZGUgYmFycmFzIHF1ZSB2aXN1YWxpemEgZXN0YcKgZGlzdHJpYnVjacOzbi4NCmBgYHtyIFJlc3VtZW5fVmFyaWFibGVzX0N1YWxpdGF0aXZhcyxmaWcuYWxpZ249J2NlbnRlcid9DQp0YWJsZShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXIpDQpwcm9wLnRhYmxlKHRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGdlbmRlcikpDQpiYXJwbG90KHRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGdlbmRlcikpDQp0YWJsZShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRjb25kaXRpb24pDQpwcm9wLnRhYmxlKHRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGNvbmRpdGlvbikpDQpiYXJwbG90KHRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGNvbmRpdGlvbikpDQpgYGANCg0KIyMjIyBSZXN1bWVuIHkgQU5PVkEgZGVsIE1vZGVsbyBSTE0gVG90YWwNCkVsIEFOT1ZBIHkgbG9zIGNvZWZpY2llbnRlcyBheXVkYW4gYSBldmFsdWFyIGxhIHJlbGFjacOzbiBlbnRyZSBsYXMgdmFyaWFibGVzIGluZGVwZW5kaWVudGVzIHkgbGEgZWRhZCwgbW9zdHJhbmRvIHF1w6kgZmFjdG9yZXMgc29uwqBzaWduaWZpY2F0aXZvcy4NCmBgYHtyIFJlc3VtZW5feV9BTk9WQV9kZWxfTW9kZWxvX1JMTV9Ub3RhbH0NCnN1bW1hcnkobG0oTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kYWdlfk1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJHBlcmZvcm1hbmNlK01vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGttK01vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJHByaWNlK2FzLmZhY3RvcihNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXIpK2FzLmZhY3RvcihNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRjb25kaXRpb24pK2FzLmZhY3RvcihNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRtb2RlbCkrYXMuZmFjdG9yKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGNvbG9yKSkpDQoNCmFub3ZhKGxtKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGFnZX5Nb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRwZXJmb3JtYW5jZStNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRrbStNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRwcmljZSthcy5mYWN0b3IoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kZ2VuZGVyKSthcy5mYWN0b3IoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kY29uZGl0aW9uKSthcy5mYWN0b3IoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kbW9kZWwpK2FzLmZhY3RvcihNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRjb2xvcikpKQ0KYGBgDQoNCiMjIyMgQ29lZmljaWVudGVzIGRlbCBNb2RlbG8gUkxNIFRvdGFsDQpFc3RvcyBzb24gbG9zIGNvZWZpY2llbnRlcyBkZSB1biBtb2RlbG8gZGUgcmVncmVzacOzbiBsaW5lYWwgbcO6bHRpcGxlIChSTE0pLiAgTGEgc2FsaWRhIG11ZXN0cmEgZWwgaW50ZXJjZXB0byB5IGxvcyBjb2VmaWNpZW50ZXMgcGFyYSBkaWZlcmVudGVzIHZhcmlhYmxlcyBwcmVkaWN0b3Jhcy4gIExhcyB2YXJpYWJsZXMgZGUgbW9kZWxvIHNvbiBmYWN0b3JlcyAodmFyaWFibGVzIGNhdGVnw7NyaWNhcykuIExvcyBuw7ptZXJvcyBhIGxhIGRlcmVjaGEgZGUgY2FkYSB2YXJpYWJsZSBzb24gc3VzIGNvZWZpY2llbnRlcyBlc3RpbWFkb3MsIGV4cHJlc2Fkb3MgZW4gbm90YWNpw7NuwqBjaWVudMOtZmljYS4NCmBgYHtyIENvZWZpY2llbnRlcyBkZWwgTW9kZWxvIFJMTSBUb3RhbCxmaWcuYWxpZ249J2NlbnRlcid9DQpjb2VmZmljaWVudHMobG0oTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kYWdlfk1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJHBlcmZvcm1hbmNlK01vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGttK01vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJHByaWNlK2FzLmZhY3RvcihNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXIpK2FzLmZhY3RvcihNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRjb25kaXRpb24pK2FzLmZhY3RvcihNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRjb2xvcikpKQ0KYGBgDQoNCiMjIyMgQ29lZmljaWVudGVzIGRlbCBNb2RlbG8gUkxNIFJlZHVjaWRvDQpFIGVzdGUgYW5hbGlzaXMgc2UgdXRpbGl6YXJvbiBsYXMgdmFyaWFibGVzIHF1ZSB0aWVuZW4gdW5hIGNvb3JyZWxhY2lvbiBwb3NpdGl2YSBtYXMgYWx0YSBwYXJhIGZvcm11bGFyIGVsIG1vZGVsbyBkZSB1bmEgbWFuZXJhIHJlZHVjaWRhLg0KTG9zIGNvZWZpY2llbnRlcyBtdWVzdHJhbiBlbCBlZmVjdG8gZGUgY2FkYSB2YXJpYWJsZSBlbiBlbCBtb2RlbG8gZGUgcmVncmVzacOzbiBsaW5lYWwgbcO6bHRpcGxlLiAgTGEgaW50ZXJzZWNjacOzbiBlcyA0Mi40Ny4gIEVsIGtpbG9tZXRyYWplIChrbSkgdGllbmUgdW4gZWZlY3RvIG5lZ2F0aXZvIG11eSBwZXF1ZcOxbywgYWwgaWd1YWwgcXVlIGVsIHByZWNpbyAocHJpY2UpLiANCmBgYHtyIENvZWZpY2llbnRlc19kZWxfTW9kZWxvX1JMTV9SZWR1Y2lkb30NCmNvZWZmaWNpZW50cyhsbShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRhZ2V+K2FzLmZhY3RvcihNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRtb2RlbCkrYXMuZmFjdG9yKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGNvbmRpdGlvbikpKQ0KYGBgDQoNCiMjIyBBbsOhbGlzaXMgZGVsIG1vZGVsbyBSTE0uey50YWJzZXQgLnRhYnNldC1waWxsc30NCkVsIGFuw6FsaXNpcyBkZWwgbW9kZWxvIGRlIHJlZ3Jlc2nDs24gbGluZWFsIG3Dumx0aXBsZSAoUkxNKSBjb25zaXN0ZSBlbiBleGFtaW5hciBsYSByZWxhY2nDs24gZW50cmUgdW5hIHZhcmlhYmxlIGRlcGVuZGllbnRlIHkgdmFyaWFzIHZhcmlhYmxlcyBpbmRlcGVuZGllbnRlcywgZXZhbHVhbmRvIGVsIGFqdXN0ZSB5IGxhIHZhbGlkZXogZGVsIG1vZGVsbyBlc3RhZMOtc3RpY28gYWp1c3RhZG8uIEVzdGUgYW7DoWxpc2lzIGltcGxpY2EgdmVyaWZpY2FyIGPDs21vIGxhcyB2YXJpYWJsZXMgaW5kZXBlbmRpZW50ZXMgY29udHJpYnV5ZW4gZGUgbWFuZXJhIGluZGl2aWR1YWwgeSBjb25qdW50YSBhIGV4cGxpY2FyIGxhcyB2YXJpYWNpb25lcyBlbiBsYSB2YXJpYWJsZSBkZXBlbmRpZW50ZSwgdXRpbGl6YW5kbyBtw6l0cmljYXMgeSBwcnVlYmFzIGVzdGFkw61zdGljYXMgcGFyYSBpbnRlcnByZXRhciBsYSBlZmVjdGl2aWRhZMKgZGVswqBtb2RlbG8uDQoNCiMjIyMgTWVqb3IgTW9kZWxvIEl0ZXJhZG8gc2Vnw7puIEFJQw0KRWwgQUlDIChDcml0ZXJpbyBkZSBJbmZvcm1hY2nDs24gZGUgQWthaWtlKSBlcyB1bmEgbWVkaWRhIGRlIGxhIGNhbGlkYWQgcmVsYXRpdmEgZGUgbG9zIG1vZGVsb3MgZXN0YWTDrXN0aWNvcyBwYXJhIHVuIGNvbmp1bnRvIGRhZG8gZGUgZGF0b3MuICBVbiBBSUMgbWVub3IgaW5kaWNhIHVuIG1lam9yIGFqdXN0ZS4gIExhIHRhYmxhIG11ZXN0cmEgdHJlcyBpdGVyYWNpb25lcyBkZSB1biBtb2RlbG8gZGUgcmVncmVzacOzbiwgY29uIGVsIHRlcmNlciBtb2RlbG8gKEFJQz0yMjEwMy4xNCkgbW9zdHJhbmRvIGVsIEFJQyBtw6FzIGJham8sIHkgcG9yIGxvIHRhbnRvLCBlbCBtZWpvciBhanVzdGUgc2Vnw7puIGVzdGUgY3JpdGVyaW8uDQoNCmBgYHtyIE1lam9yX01vZGVsb19JdGVyYWRvX3NlZ8O6bl9BSUMsIGZpZy5hbGlnbj0nY2VudGVyJ30NCm1vZGVsb19JdGVyYWRvX1NURVAgPSBzdGVwKGxtKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGFnZX5Nb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRwZXJmb3JtYW5jZStNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRrbStNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRwcmljZSthcy5mYWN0b3IoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kZ2VuZGVyKSthcy5mYWN0b3IoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kY29uZGl0aW9uKSthcy5mYWN0b3IoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kbW9kZWwpK2FzLmZhY3RvcihNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRjb2xvcikpKQ0KY29lZmZpY2llbnRzKG1vZGVsb19JdGVyYWRvX1NURVApDQoNCmBgYA0KDQojIyMjIEJvbmRhZGVzIGRlIEFqdXN0ZSwgU2lnbmlmaWNhbmNpYXMgeSBDcml0ZXJpb3MgZGUgSW5mb3JtYWNpw7NuIENvbXBhcmFkb3MuDQpMYSB0YWJsYSBtdWVzdHJhIGxhcyBib25kYWRlcyBkZSBhanVzdGUsIHNpZ25pZmljYW5jaWFzIHkgY3JpdGVyaW9zIGRlIGluZm9ybWFjacOzbiBjb21wYXJhZG9zIHBhcmEgZGlmZXJlbnRlcyBtb2RlbG9zIGRlIHJlZ3Jlc2nDs24uIEVzdGEgZXZhbMO6YSBjw7NtbyBjYWRhIHZhcmlhYmxlIGFmZWN0YSBhIGxhIHZhcmlhYmxlIGRlcGVuZGllbnRlIHkgcXXDqSB0YW4gc2lnbmlmaWNhdGl2b3Mgc29uIGVzb3MgZWZlY3RvcyBlbsKgdmFyaW9zwqBtb2RlbG9zLg0KYGBge3IgQm9uZGFkZXNfZGVfQWp1c3RlLF9TaWduaWZpY2FuY2lhc195X0NyaXRlcmlvc19kZV9JbmZvcm1hY2nDs24gQ29tcGFyYWRvc30NCm1vZGVsb19STE1fVE9UQUwgPSBsbShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRhZ2V+TW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kcGVyZm9ybWFuY2UrTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8ka20rTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kcHJpY2UrYXMuZmFjdG9yKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGdlbmRlcikrYXMuZmFjdG9yKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGNvbmRpdGlvbikrYXMuZmFjdG9yKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJG1vZGVsKSthcy5mYWN0b3IoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kY29sb3IpKQ0KbW9kZWxvX1JMTV9SRURVQ0lETyA9IGxtKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGFnZX5Nb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRrbStNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRwcmljZSthcy5mYWN0b3IoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kZ2VuZGVyKSthcy5mYWN0b3IoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kY29uZGl0aW9uKSkNCg0Kc3RhcmdhemVyKG1vZGVsb19STE1fVE9UQUwsIG1vZGVsb19STE1fUkVEVUNJRE8sIG1vZGVsb19JdGVyYWRvX1NURVAsIHR5cGUgPSAidGV4dCIsIGRmID0gVFJVRSkNCg0KQUlDKG1vZGVsb19STE1fVE9UQUwsIG1vZGVsb19STE1fUkVEVUNJRE8sIG1vZGVsb19JdGVyYWRvX1NURVApDQoNCkJJQyhtb2RlbG9fUkxNX1RPVEFMLCBtb2RlbG9fUkxNX1JFRFVDSURPLCBtb2RlbG9fSXRlcmFkb19TVEVQKQ0KYGBgDQoNCg0KIyMjICoqNS40LiBSZWdyZXNpw7NuIExvZ8Otc3RpY2EgU2ltcGxlKiogey50YWJzZXQgLnRhYnNldC1waWxsc30NCkVsIG1vZGVsbyBkZSByZWdyZXNpw7NuIGxvZ8Otc3RpY2Egc2ltcGxlIHV0aWxpemEgbGEgZnVuY2nDs24gbG9nw61zdGljYSwgdGFtYmnDqW4gY29ub2NpZGEgY29tbyBmdW5jacOzbiBzaWdtb2lkZSwgcGFyYSB0cmFuc2Zvcm1hciBsYSByZWxhY2nDs24gbGluZWFsIGVudHJlIGxhcyB2YXJpYWJsZXMgZW4gdW5hIGN1cnZhIHF1ZSBwdWVkZSB0b21hciB2YWxvcmVzIGVudHJlIDAgeSAxLiBFc3RhIHRyYW5zZm9ybWFjacOzbiBwZXJtaXRlIGludGVycHJldGFyIGxvcyByZXN1bHRhZG9zIGVuIHTDqXJtaW5vcyBkZSBwcm9iYWJpbGlkYWRlcy4gUG9yIGVqZW1wbG8sIGVuIHVuIGVzdHVkaW8gc29icmUgbGEgcHJvYmFiaWxpZGFkIGRlIHF1ZSB1biBwYWNpZW50ZSB0ZW5nYSB1bmEgZW5mZXJtZWRhZCBlbiBmdW5jacOzbiBkZSBzdSBlZGFkLCBsYSByZWdyZXNpw7NuIGxvZ8Otc3RpY2Egc2ltcGxlIHB1ZWRlIGF5dWRhciBhIGRldGVybWluYXIgY8OzbW8gY2FtYmlhIGVzdGEgcHJvYmFiaWxpZGFkIGNvbiBsYSBlZGFkIGRlbCBwYWNpZW50ZS4NCg0KQWRlbcOhcywgbGEgcmVncmVzacOzbiBsb2fDrXN0aWNhIHNpbXBsZSBwcm9wb3JjaW9uYSBjb2VmaWNpZW50ZXMgcXVlIGluZGljYW4gbGEgZGlyZWNjacOzbiB5IGxhIG1hZ25pdHVkIGRlIGxhIHJlbGFjacOzbiBlbnRyZSBsYSB2YXJpYWJsZSBpbmRlcGVuZGllbnRlIHkgbGEgcHJvYmFiaWxpZGFkIGRlbCBldmVudG8uIEVzdG9zIGNvZWZpY2llbnRlcyBzZSBpbnRlcnByZXRhbiBlbiB0w6lybWlub3MgZGUgb2RkcyByYXRpb3MsIHF1ZSByZXByZXNlbnRhbiBlbCBjYW1iaW8gZW4gbGFzIHByb2JhYmlsaWRhZGVzIGRlIG9jdXJyZW5jaWEgZGVsIGV2ZW50byBwb3IgY2FkYSB1bmlkYWQgZGUgY2FtYmlvIGVuIGxhIHZhcmlhYmxlIGluZGVwZW5kaWVudGUuIEVzdGEgdMOpY25pY2EgZXMgYW1wbGlhbWVudGUgdXRpbGl6YWRhIGVuIGNhbXBvcyBjb21vIGxhIG1lZGljaW5hLCBsYXMgY2llbmNpYXMgc29jaWFsZXMgeSBsYSBlY29ub23DrWEgcGFyYSB0b21hciBkZWNpc2lvbmVzIGluZm9ybWFkYXMgYmFzYWRhc8KgZW7CoGRhdG9zLg0KDQojIyMgUmVzdW1lbiBlc3RhZMOtc3RpY28gZGUgbGFzIHZhcmlhYmxlcyBkZSBlc3R1ZGlvLiB7LnRhYnNldCAudGFic2V0LXBpbGxzfQ0KDQojIyMjIFJlc3VtZW4geSBCb3hwbG90IGRlIGFnZQ0KZWwgYm94cGxvdCBpbmRpY2EgcXVlIGxhIGVkYWQgc2UgZGlzdHJpYnV5ZSBkZSBtYW5lcmEgcmVsYXRpdmFtZW50ZSBzaW3DqXRyaWNhLCBjb24gdW5hIG1lZGlhbmEgZGUgNDAgYcOxb3MsIHkgbGEgbWF5b3LDrWEgZGUgbGFzIGVkYWRlcyBzZSBlbmN1ZW50cmFuIGVudHJlIGxvcyAzMMKgecKgbG9zwqA1NcKgYcOxb3MuDQpgYGB7ciBlc3VtZW4geSBCb3hwbG90IGRlIGFnZSxmaWcuYWxpZ249J2NlbnRlcid9DQpzdW1tYXJ5KE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGFnZSkNCmJveHBsb3QoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kYWdlLCBtYWluID0gIkRpYWdyYW1hIGRlIENhamEgZGUgYWdlIiwgY29sID0gYygib3JhbmdlIikpDQoNCmBgYA0KDQojIyMjIEhpc3RvZ3JhbWEgZGUgYWdlLg0KRWwgaGlzdG9ncmFtYSBtdWVzdHJhIGxhIGRpc3RyaWJ1Y2nDs24gZGUgbGEgZWRhZCAoYWdlKSBlbiB1biBjb25qdW50byBkZSBkYXRvcy4gIEVsIGVqZSBob3Jpem9udGFsIHJlcHJlc2VudGEgbGFzIGVkYWRlcywgYWdydXBhZGFzIGVuIGludGVydmFsb3MgKGJpbnMpLCB5IGVsIGVqZSB2ZXJ0aWNhbCByZXByZXNlbnRhIGxhIGZyZWN1ZW5jaWEsIG8gbsO6bWVybyBkZSBvYnNlcnZhY2lvbmVzLCBxdWUgY2FlbiBkZW50cm8gZGUgY2FkYSBpbnRlcnZhbG8gZGUgZWRhZC4NCg0KT2JzZXJ2YW1vcyBxdWUgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgZWRhZGVzIGVzIGFwcm94aW1hZGFtZW50ZSBzaW3DqXRyaWNhLCBjb24gdW5hIGNvbmNlbnRyYWNpw7NuIGRlIGRhdG9zIGVudHJlIGxvcyAyMCB5IGxvcyA2MCBhw7Fvcy4gIEhheSB1biBwaWNvIGFscmVkZWRvciBkZSBsb3MgNDUgYcOxb3MsIGluZGljYW5kbyBxdWUgZXNlIHJhbmdvIGRlIGVkYWQgZXMgZWwgbcOhcyBmcmVjdWVudGUgZW4gZXN0ZSBjb25qdW50byBkZSBkYXRvcy4gTGEgZGlzdHJpYnVjacOzbiBkaXNtaW51eWUgZ3JhZHVhbG1lbnRlIGVuIGFtYm9zIGV4dHJlbW9zLCBpbmRpY2FuZG8gcXVlIGhheSBtZW5vcyBwZXJzb25hcyBjb24gZWRhZGVzIG1lbm9yZXMgZGUgMjAgYcOxb3MgbyBtYXlvcmVzIGRlIDYwIGHDsW9zLg0KDQoNCmBgYHtyIEhpc3RvZ3JhbWEgZGUgYWdlLGZpZy5hbGlnbj0nY2VudGVyJ30NCnN1bW1hcnkoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kYWdlKQ0KaGlzdChNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRhZ2UsIG1haW4gPSAiSGlzdG9ncmFtYSBkZSBDaGFuY2Ugb2YgQWRtaXQiLCBjb2wgPSBjKCJnb2xkIikpDQoNCmBgYA0KDQojIyMjIFJlc3VtZW4geSBEaWFncmFtYSBkZSBCYXJyYXMgZGUgZ2VuZGVyDQpMYSBncsOhZmljYSBkZSBiYXJyYXMgbXVlc3RyYSBsYSBkaXN0cmlidWNpw7NuIGRlbCBnw6luZXJvIGVuIGVsIGNvbmp1bnRvIGRlIGRhdG9zLiAgRWwgZWplIHggcmVwcmVzZW50YSBlbCBnw6luZXJvIChjb2RpZmljYWRvIGNvbW8gMCB5IDEsIDAgcGFyYSBtdWplcmVzIHkgMSBwYXJhIGhvbWJyZXMpLiBFbCBlamUgeSByZXByZXNlbnRhIGxhIGZyZWN1ZW5jaWEgbyBjb250ZW8gZGUgY2FkYSBnw6luZXJvLg0KDQpTZSBvYnNlcnZhIHF1ZSBoYXkgYXByb3hpbWFkYW1lbnRlIDIwMDAgb2JzZXJ2YWNpb25lcyBkZWwgZ8OpbmVybyAwIHkgIDIxMzEgZGVsIGfDqW5lcm8gMS4gIEVzdG8gaW5kaWNhIHF1ZSBlbCBnw6luZXJvIDEgKGhvbWJyZXMpIGVzdMOhIGxpZ2VyYW1lbnRlIHNvYnJlcnJlcHJlc2VudGFkbyBlbiBlbCBjb25qdW50byBkZSBkYXRvcyBlbiBjb21wYXJhY2nDs24gY29uIGVsIGfDqW5lcm8gMCAobXVqZXJlcykuICBMYSBkaWZlcmVuY2lhIG5vIGVzIG11eSBncmFuZGUsIHBlcm8gZXMgcGVyY2VwdGlibGUuDQoNCmBgYHtyIFJlc3VtZW4geSBEaWFncmFtYSBkZSBCYXJyYXMgZGUgZ2VuZGVyLGZpZy5hbGlnbj0nY2VudGVyJ30NCnRhYmxlKE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGdlbmRlcikNCnByb3AudGFibGUodGFibGUoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kZ2VuZGVyKSkNCmJhcnBsb3QodGFibGUoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kZ2VuZGVyKSkNCmBgYA0KDQojIyMjIFJlc3VtZW4geSBEaWFncmFtYSBkZSBDYWphcyBDb25qdW50bw0KRWwgZ3LDoWZpY28gZGUgY2FqYSBtdWVzdHJhIGxhIGRpc3RyaWJ1Y2nDs24gZGUgbGEgZWRhZCBzZWfDum4gZWwgZ8OpbmVyby4gIEhheSBkb3MgY2FqYXMsIHVuYSBwYXJhIGNhZGEgZ8OpbmVyby4NCg0KTGEgY2FqYSBtw6FzIGdyYW5kZSAobmFyYW5qYSkgcmVwcmVzZW50YSB1bmEgZGlzdHJpYnVjacOzbiBkZSBlZGFkZXMgc2lnbmlmaWNhdGl2YW1lbnRlIG1heW9yIGNvbiB1bmEgbWVkaWFuYSBhbHJlZGVkb3IgZGUgNDAgYcOxb3MuIExhIGNhamEgbXVlc3RyYSB1bmEgZGlzcGVyc2nDs24gY29uc2lkZXJhYmxlLCBjb24gdmFsb3JlcyBhdMOtcGljb3MgKHB1bnRvcyBwb3IgZW5jaW1hIHkgcG9yIGRlYmFqbyBkZSBsYSBjYWphKS4gIExhIGzDrW5lYSBob3Jpem9udGFsIGRlbnRybyBkZSBsYSBjYWphIGVzIGxhIG1lZGlhbmEuIExhcyBsw61uZWFzIHZlcnRpY2FsZXMgcXVlIHNlIGV4dGllbmRlbiBkZXNkZSBsYSBjYWphIHJlcHJlc2VudGFuIGVsIHJhbmdvIGludGVyY3VhcnRpbCAoSVFSKSwgcXVlIGFiYXJjYSBkZXNkZSBlbCBwcmltZXIgY3VhcnRpbCAoMjUlKSBoYXN0YSBlbCB0ZXJjZXIgY3VhcnRpbCAoNzUlKS4NCmBgYHtyIFJlc3VtZW5feV9EaWFncmFtYV9kZV9DYWphc19Db25qdW50byxmaWcuYWxpZ249J2NlbnRlcid9DQp0YXBwbHkoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kYWdlLCBNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXIsIG1lYW4pDQp0YXBwbHkoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kYWdlLCBNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXIsIG1lZGlhbikNCmJveHBsb3QoTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kYWdlLCBNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXIsIG1haW4gPSAiQm94cGxvdCBDb25qdW50bzogYWdlIC0gZ2VuZGVyIiwgY29sID0gYygib3JhbmdlIiwgImdvbGQiKSkNCg0KYGBgDQoNCiMjIyBGb3JtdWxhY2nDs24gZGVsIG1vZGVsbyBkZSBSTG9nUyBlbnRyZSBsYXMgdmFyaWFibGVzIGRlIGVzdHVkaW8uIHsudGFic2V0IC50YWJzZXQtcGlsbHN9DQpMYSBmb3JtdWxhY2nDs24gZGVsIG1vZGVsbyBkZSByZWdyZXNpw7NuIGxvZ8Otc3RpY2Egc2ltcGxlIChSTG9nUykgZGVzY3JpYmUgbGEgcmVsYWNpw7NuIGVudHJlIHVuYSB2YXJpYWJsZSBkZXBlbmRpZW50ZSAoY29uIHZhbG9yZXMgMCB5IDEpIHkgdW5hIHZhcmlhYmxlIGluZGVwZW5kaWVudGUuIEVuIGVzdGUgbW9kZWxvLCBsYSBwcm9iYWJpbGlkYWQgZGUgcXVlIGxhIHZhcmlhYmxlIGRlcGVuZGllbnRlIHRvbWUgZWwgdmFsb3IgMSBzZSBleHByZXNhIGNvbW8gdW5hIGZ1bmNpw7NuIGRlIGxhIHZhcmlhYmxlwqBpbmRlcGVuZGllbnRlLg0KDQojIyMjIENvZWZpY2llbnRlcyBkZWwgTW9kZWxvIFJMb2dTDQpFc3RhIHRhYmxhIG11ZXN0cmEgbG9zIGNvZWZpY2llbnRlcyBkZSB1biBtb2RlbG8gZGUgcmVncmVzacOzbiwgZXNwZWPDrWZpY2FtZW50ZSBlbCBpbnRlcmNlcHRvIHkgZWwgY29lZmljaWVudGUgcGFyYSBsYSB2YXJpYWJsZSAqKmFnZSoqLiAgTG9zIHZhbG9yZXMgbnVtw6lyaWNvcyBzb24gbG9zIGVzdGltYWRvcmVzIGRlIGVzdG9zIGNvZWZpY2llbnRlcy4gRXN0b3MgY29lZmljaWVudGVzIGF5dWRhbiBhIGhhY2VyIHByZWRpY2Npb25lcyB5IGVudGVuZGVyIG1lam9yIGPDs21vIGluZmx1eWVuIGxhcyB2YXJpYWJsZXMgZW4gZWwgcmVzdWx0YWRvwqBkZWzCoG1vZGVsby4NCmBgYHtyIENvZWZpY2llbnRlc19kZWxfTW9kZWxvX1JMb2dTLGZpZy5hbGlnbj0nY2VudGVyJ30NCm1vZGVsb19STG9nX1NpbXBsZSA9IGdsbShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXJ+TW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kYWdlLCBmYW1pbHkgPSAiYmlub21pYWwiLCBkYXRhID0gZGF0YS5mcmFtZShNb2RlbG9zX05pc3Nhbl9EZXB1cmFkbyRnZW5kZXIsIE1vZGVsb3NfTmlzc2FuX0RlcHVyYWRvJGFnZSkpDQpjb2VmKG1vZGVsb19STG9nX1NpbXBsZSkNCmBgYA0KDQojIyMjIFJlc3VtZW4gRXN0YWTDrXN0aWNvIGRlbCBNb2RlbG8gUkxvZ1MNCkVsIHJlc3VtZW4gZXN0YWTDrXN0aWNvIGRlbCBtb2RlbG8gUkxvZ1MgcHJvcG9yY2lvbmEgdW5hIGJhc2UgcGFyYSBlbnRlbmRlciB5IG1lam9yYXIgZWwgYW7DoWxpc2lzwqBlbsKgZWzCoGZ1dHVyby4NCmBgYHtyIFJlc3VtZW5fRXN0YWRpc3RpY29fZGVsX01vZGVsb19STG9nUywgZmlnLmFsaWduPSdjZW50ZXInfQ0Kc3VtbWFyeShtb2RlbG9fUkxvZ19TaW1wbGUpDQpgYGANCg0KIyMjIEFuw6FsaXNpcyBkZWwgbW9kZWxvIFJMb2dTLiB7LnRhYnNldCAudGFic2V0LXBpbGxzfQ0KRWwgYW7DoWxpc2lzIGRlbCBtb2RlbG8gZGUgcmVncmVzacOzbiBsb2fDrXN0aWNhIHNpbXBsZSAoUkxvZ1MpIGVuIHVuIGNvbmp1bnRvIGRlIGRhdG9zIGV4YW1pbmEgY8OzbW8gdW5hIHZhcmlhYmxlIGluZGVwZW5kaWVudGUgYWZlY3RhIGxhIHByb2JhYmlsaWRhZCBkZSBvY3VycmVuY2lhIGRlIHVuIGV2ZW50byByZXByZXNlbnRhZG8gcG9yIHVuYSB2YXJpYWJsZSBkZXBlbmRpZW50ZSBnZW5kZXIgKHF1ZSB0b21hIHZhbG9yZXMgMCBvIDEpLiBFc3RlIGFuw6FsaXNpcyBzZSBjZW50cmEgZW4gZW50ZW5kZXIgZSBpbnRlcnByZXRhciBsYSByZWxhY2nDs24gZXN0YWTDrXN0aWNhIGVudHJlIGxhcyB2YXJpYWJsZXMgeSBlbiBldmFsdWFyIGVsIGRlc2VtcGXDsW8gZGVsIG1vZGVsbyBwYXJhIHByZWRlY2lyIGNvcnJlY3RhbWVudGUgbGFzIGNhdGVnb3LDrWFzIGRlIGxhIHZhcmlhYmxlIGRlcGVuZGllbnRlLiBFbCBhbsOhbGlzaXMgZGVsIG1vZGVsbyBSTG9nUyBwZXJtaXRlIG5vIHNvbG8gaWRlbnRpZmljYXIgc2kgZXhpc3RlIHVuYSByZWxhY2nDs24gc2lnbmlmaWNhdGl2YSBlbnRyZSBsYXMgdmFyaWFibGVzLCBzaW5vIHRhbWJpw6luIGV2YWx1YXIgcXXDqSB0YW4gYmllbiBlbCBtb2RlbG8gZGVzY3JpYmUgeSBwcmVkaWNlIGxvcyByZXN1bHRhZG9zIGVuIGVsIGNvbmp1bnRvwqBkZcKgZGF0b3MuDQoNCiMjIyMgVmFyaWFibGUgUHJlZGljdG9yYSBpZ3VhbCBhIENlcm8NCkVsIGhlY2hvIGRlIHF1ZSBlbCBjb2VmaWNpZW50ZSBwYXJhICoqYWdlKiogZXN0w6kgY2VyY2EgZGUgY2VybyB5IHN1IHZhbG9yIGV4cG9uZW5jaWFsIGVzdMOpIGNlcmNhIGRlIHVubyBzdWdpZXJlIHF1ZSBlc3RhIHZhcmlhYmxlIHRpZW5lIHVuIGVmZWN0byBtdXkgZMOpYmlsIHNvYnJlIGxhIHZhcmlhYmxlIGRlIHJlc3B1ZXN0YSBlbiBlc3RlIG1vZGVsby4gTGEgdmFyaWFibGUgcHJlZGljdG9yYSBpZ3VhbCBhIGNlcm8gcGVybWl0ZSBmYWNpbGl0YXIgaW50ZXJwcmV0YWNpb25lcyB5IGNvbXBhcmFjaW9uZXMgZGVudHJvIGRlbCBhbsOhbGlzaXMgZXN0YWTDrXN0aWNvwqBvwqBwcmVkaWN0aXZvLg0KYGBge3IgVmFyaWFibGVfUHJlZGljdG9yYV9pZ3VhbF9hX0Nlcm8sIGZpZy5hbGlnbj0nY2VudGVyJ30NCmNvZWYobW9kZWxvX1JMb2dfU2ltcGxlKQ0Kcm91bmQoZXhwKGNvZWYobW9kZWxvX1JMb2dfU2ltcGxlKSksNikNCg0KYGBgDQoNCiMjIyMgUHJvYmFiaWxpZGFkZXMgRXN0aW1hZGFzDQpMYXMgcHJvYmFiaWxpZGFkZXMgZXN0aW1hZGFzIGVuIHVuIGNvbmp1bnRvIGRlIGRhdG9zLCBvYnRlbmlkYXMgYSB0cmF2w6lzIGRlIG1vZGVsb3MgY29tbyBsYSByZWdyZXNpw7NuIGxvZ8Otc3RpY2EsIHNpcnZlbiBwYXJhIGN1YW50aWZpY2FyIGxhIHByb2JhYmlsaWRhZCBkZSBxdWUgb2N1cnJhIHVuIGRldGVybWluYWRvIGV2ZW50byAocG9yIGVqZW1wbG8sIMOpeGl0by9mYWxsbywgYWNlcHRhY2nDs24vcmVjaGF6bywgbyBjb21wcmEvbm8gY29tcHJhKSBlbiBmdW5jacOzbiBkZSBsYXMgdmFyaWFibGVzIGluZGVwZW5kaWVudGVzLiBFc3RhcyBwcm9iYWJpbGlkYWRlcyBwZXJtaXRlbiB0b21hciBkZWNpc2lvbmVzIGJhc2FkYXMgZW4gbG9zIHJlc3VsdGFkb3MgcHJldmlzdG9zLCB5YSBxdWUgb2ZyZWNlbiB1bmEgcmVwcmVzZW50YWNpw7NuIGNvbnRpbnVhIGRlIGxhIHByb2JhYmlsaWRhZCBkZWwgZXZlbnRvIGVuIGx1Z2FyIGRlIHVuYSBjbGFzaWZpY2FjacOzbsKgYmluYXJpYcKgZmlqYS4NCmBgYHtyIFByb2JhYmlsaWRhZGVzX0VzdGltYWRhcyxmaWcuYWxpZ249J2NlbnRlcid9DQpwcmVkaWN0KG1vZGVsb19STG9nX1NpbXBsZSwgZGF0YS5mcmFtZShzZXEoMSwgNDAwKSksIHR5cGUgPSAicmVzcG9uc2UiKQ0KYGBgDQoNCiMjIyMgR3LDoWZpY2EgZGVsIE1vZGVsbyBSTG9nUw0KTGEgZ3LDoWZpY2EgbXVlc3RyYSBsYSByZWxhY2nDs24gZW50cmUgbGEgZWRhZCAoYWdlKSB5IGVsIGfDqW5lcm8gKGdlbmRlcikgc2Vnw7puIHVuIG1vZGVsbyBkZSByZWdyZXNpw7NuIGxvZ8Otc3RpY2EgKFJMb2dTKS4gTGEgbMOtbmVhIGhvcml6b250YWwgYWxyZWRlZG9yIGRlIDAuNSBpbmRpY2EgcXVlLCBzZWfDum4gZXN0ZSBtb2RlbG8sIGxhIHByb2JhYmlsaWRhZCBkZSBwZXJ0ZW5lY2VyIGEgY2FkYSBnw6luZXJvIGVzIGFwcm94aW1hZGFtZW50ZSBsYSBtaXNtYSBwYXJhIHRvZGFzwqBsYXPCoGVkYWRlcy4NCmBgYHtyIEdyw6FmaWNhX2RlbF9Nb2RlbG9fUkxvZ1N9DQpnZW5kZXIgPC0gTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kZ2VuZGVyDQphZ2UgPC0gTW9kZWxvc19OaXNzYW5fRGVwdXJhZG8kYWdlDQpkYXRhUGxvdCA8LSBkYXRhLmZyYW1lKGFnZSwgZ2VuZGVyKQ0KcGxvdChnZW5kZXJ+YWdlLCBkYXRhID0gZGF0YVBsb3QsIG1haW4gPSAiTW9kZWxvIFJMb2dTOiBhZ2UgLSBnZW5kZXIiLCB4bGFiID0gImFnZSIsIHlsYWIgPSAiZ2VuZGVyID0gMCB8IGdlbmRlciA9IDEiLCBjb2wgPSAiZ29sZCIsIHBjaCA9ICJJIikNCmN1cnZlKHByZWRpY3QoZ2xtKGdlbmRlcn5hZ2UsIGZhbWlseSA9ICJiaW5vbWlhbCIsIGRhdGEgPSBkYXRhUGxvdCksIGRhdGEuZnJhbWUoYWdlID0geCksIHR5cGUgPSAicmVzcG9uc2UiKSwgY29sID0gIm9yYW5nZSIsIGx3ZCA9IDMsIGFkZCA9IFRSVUUpDQoNCmBgYA0KDQoNCiMjICoqNi4gQ29uY2x1c2lvbmVzKioNCg0KQ29tcGxlbWVudGFyaWFtZW50ZSBhIGxvcyBhbsOhbGlzaXMgcXVlIGZ1ZXJvbiBleHB1ZXN0b3MgZW4gbGFzIHNlY2Npb25lcyBkZSBlc3R1ZGlvIGVzIGltcG9ydGFudGUgaGFjZXIgdW5hIG1lbmNpw7NuIGdsb2JhbCBzb2JyZSBlbCBwcm9ibGVtYSBjb25zaWRlcmFkbyBhIGxhIGx1eiBkZSBsbyBvYnRlbmlkby4NCg0KQ29tbyBzZSBtZW5jaW9uYSBlbiBlbCB0cmFiYWpvIGhlY2hvIGVuIGVsIGN1cnNvIGRlIEdlc3Rpw7NuIGRlIERhdG9zIChxdWUgcHVlZGUgc2VyIGNvbnN1bHRhZG8gdGVtcG9yYWxtZW50ZSBhIHRyYXbDqXMgZGU6IGh0dHBzOi8vcnB1YnMuY29tL2h1Z29fY2hpY2FHMy8xMjIxODkyKSwgTGFzIHBlcnNvbmFzIG1heW9yZXMgdGllbmRlbiBhIHRlbmVyIGNhcnJvcyBjb24gdW4gcHJlY2lvIG3DoXMgZWxldmFkbywgbG8gcXVlIG5vcyBpbmRpY2EgcXVlIGVzdGFzIHBlcnNvbmFzLCBhIGxvIGxhcmdvIGRlIGxvcyBhw7FvcywgaGFuIGFjdW11bGFkbyB1biBjYXBpdGFsIGxvIHN1ZmljaWVudGVtZW50ZSByb2J1c3RvIHBhcmEgY29uc2VndWlyIHVuIG1vZGVsbyBkZSBhdXRvIGNvc3Rvc28uIEFkZW3DoXMsIHNlIGNvbnN0YXRhLCBkZXNkZSBsYSBwZXJzcGVjdGl2YSBkZSBlc3R1ZGlvIG11bHRpdmFyaWFibGUsIHF1ZSwgcG9yIGxvIG1lbm9zIGRlc2NyaXB0aXZhbWVudGUsIHVuYSB2YXJpYWJsZSBjbGFzaWZpY2Fkb3JhIGNhdGVnw7NyaWNhIGNvbW8gZWwgc2V4byByZXN1bHRhIHNpZ25pZmljYXRpdmEgYWwgZXN0dWRpYXIgdG9kbyBlbCBjb25qdW50byBkZSBkYXRvcy4gVW4gZWplbXBsbyBkZSBlbGxvIGVzIHF1ZSBsb3MgdmFsb3JlcyBhdMOtcGljb3MsIG8gcXVlIHNlIHNhbGVuIGRlbCBwcm9tZWRpbywgc29uIGVuIHN1IG1heW9yw61hIGhvbWJyZXMsIHkgcG9kZW1vcyBkaWZlcmVuY2lhciBlbCBjb21wb3J0YW1pZW50byBtYXNjdWxpbm8gZW4gZGlmZXJlbnRlcyBlc3BhY2lvcy4gUG9kZW1vcyBoYWNlciB1bmEgaW5mZXJlbmNpYSBlbiBsYSBxdWUgcG9kZW1vcyBkZWNpciBxdWUgdW5hIHBlcnNvbmEgZGUgZ2VuZXJvIG1hc2N1bGlubyBtYXlvciBhIDUwIGHDsW9zIHB1ZWRlIHRlbmVyIHVuIGF1dG8gY29zdG9zby4gRXN0byBlcyB2aXNpYmxlIGVuOiBEaWFncmFtYSBDb25qdW50byBkZSBEaXNwZXJzacOzbiwgRGlzdHJpYnVjacOzbiB5IENvcnJlbGFjacOzbltnZW5kZXJdDQoNCkFzaW1pc21vLCBsYSBmYXNlIGRlIGNvcnJlc3BvbmRlbmNpYXMgcmV2ZWxhIHBhdHJvbmVzIGNsYXJvcyBlbnRyZSBsb3MgbW9kZWxvcyBkZSBhdXRvcyBOaXNzYW4geSBzdSByZWxhY2nDs24gY29uIHVuYSBjbGFzaWZpY2FjacOzbiBlc3BlY8OtZmljYS4gTW9kZWxvcyBjb21vICJNYXJjaCIsICJKdWtlIiB5ICJBbHRpbWEiIHBhcmVjZW4gdGVuZXIgdW5hIHBhcnRpY2lwYWNpw7NuIHNpZ25pZmljYXRpdmEsIGxvIHF1ZSBwb2Ryw61hIGluZGljYXIgcXVlIHNvbiBjbGF2ZSBwYXJhIGxhcyBtw6l0cmljYXMgZXZhbHVhZGFzLiBMYSBpbmZvcm1hY2nDs24gZGUgcHJvYmFiaWxpZGFkZXMgeSBlbCBncsOhZmljbyBjb21wbGVtZW50YW4gZXN0ZSBhbsOhbGlzaXMgYWwgcmVzYWx0YXIgbW9kZWxvcyBjb24gbWF5b3IgYWZpbmlkYWQgaGFjaWEgY2llcnRhcyBjYXRlZ29yw61hcy4gTGEgZmFzZSBkZSBjb3JyZXNwb25kZW5jaWFzIGVuIGVzdGUgYW7DoWxpc2lzIGhhIGlkZW50aWZpY2FkbyBwYXRyb25lcyBjbGFyb3MgZW50cmUgbG9zIG1vZGVsb3MgZGUgYXV0b3MgTmlzc2FuLCBzdXMgY2FyYWN0ZXLDrXN0aWNhcyB5IGNhdGVnb3LDrWFzIGFzb2NpYWRhcy4gTGFzIGRpbWVuc2lvbmVzIGNsYXZlIChEaW0xIHkgRGltMikgZXhwbGljYW4gcGF0cm9uZXMgaW1wb3J0YW50ZXMgZW4gbGFzIHByZWZlcmVuY2lhcyBkZWwgbWVyY2FkbyBvIGNhcmFjdGVyw61zdGljYXMgZGUgbG9zIGF1dG9zIHF1ZSBhZmVjdGFuIHN1IGNsYXNpZmljYWNpw7NuLiBBZGVtw6FzOg0KLUxhcyB2YXJpYWJsZXMgbW9kZWwsIGNvbmRpdGlvbiB5IGNvbG9yIHRpZW5lbiB1biBpbXBhY3RvIGRvbWluYW50ZSBlbiBsYSBvcmdhbml6YWNpw7NuIGRlIGxvcyBkYXRvcywgbG8gcXVlIHN1Z2llcmUgcXVlIGVzdGFzIHNvbiBsYXMgcHJpbmNpcGFsZXMgY2FyYWN0ZXLDrXN0aWNhcyBxdWUgaW5mbHV5ZW4gZW4gbGFzIHZlbnRhcyBvIGNsYXNpZmljYWNpb25lcyBkZSBsb3MgdmVow61jdWxvcy4NCi1Mb3MgbW9kZWxvcyB5IGNvbG9yZXMgZXNwZWPDrWZpY29zIHBvZHLDrWFuIHJlcHJlc2VudGFyIHNlZ21lbnRvcyBkZSBtZXJjYWRvIHF1ZSBtZXJlY2VuIGF0ZW5jacOzbiBlc3RyYXTDqWdpY2EgZW4gdMOpcm1pbm9zIGRlIGNvbWVyY2lhbGl6YWNpw7NuLg0KDQpBZGljaW9uYWxtZW50ZSwgZWwgYW7DoWxpc2lzIGRlIGNvbmdsb21lcmFkb3MgbW9zdHLDsyBxdWUgZWZlY3RpdmFtZW50ZSBleGlzdMOtYW4gZW4gZWwgY29uanVudG8gZGUgZGF0b3MgcmVnaXN0cm9zIHNpZ25pZmljYXRpdmFtZW50ZSBob21vZ8OpbmVvcyBlbnRyZSBzw60geSBhIHN1IHZleiBzZSBwYXJhZG9zIGRlIG90cm9zLiBFbiBlc3RlIHNlbnRpZG8sIGxvcyBtw6l0b2RvcyBkZSBhZ2xvbWVyYWNpw7NuIGplcsOhcnF1aWNvcyB5IG5vLWplcsOhcnF1aWNvcyBheXVkYXJvbiBhIGNvbXByZW5kZXIgY8OzbW8gZXN0YWJhbiBkaXNwdWVzdG9zIGVzb3MgZ3J1cG9zIHkgbG9zIHZhbG9yZXMgZXh0cmHDsW9zIHBvciByZWV2YWx1YXIuIEFzw60sIHV0aWxpemFuZG8gbGEgdmFyaWFibGUgY2xhc2lmaWNhZG9yYSBkZSBudWVzdHJvIGNvbmp1bnRvIGRlIGRhdG9zIGxsYW1hZGEgKipjb2xvcioqLiBMYSBhZ3J1cGFjacOzbiBqZXLDoXJxdWljYSBub3MgaW5kaWNhIHF1ZSB0YW4gY2VyY2FuYSBlcyBsYSByZWxhY2lvbiBkZSBjYWRhIHVuYSBkZSBsb3MgcmVnaXN0cm9zIHkgZXN0YSBub3MgbXVlc3RyYSBsb3MgZ3J1cG9zIHF1ZSBzZSBkZWJlbiBoYWNlciBkZXBlbmRpZW5kbyBkZWwgZW5sYWNlIHF1ZSBzZSB1dGlsaWNlLg0KDQpDb21wbGVtZW50YXJpYW1lbnRlLCBFbCBtb2RlbG8gZGUgcmVncmVzacOzbiBsaW5lYWwgc2ltcGxlIG5vIGVzIGFkZWN1YWRvIHBhcmEgZXN0aW1hciBsYSBlZGFkIGRlbCB2ZWjDrWN1bG8gZW4gZnVuY2nDs24gZGVsIHByZWNpbywgeWEgcXVlIG5vIGVzIGVzdGFkw61zdGljYW1lbnRlIHNpZ25pZmljYXRpdm8geSBlbCBpbnRlcnZhbG8gZGUgY29uZmlhbnphIGluY2x1eWUgZWwgY2Vyby4NCkVsIG1vZGVsbyBtw7psdGlwbGUgb2ZyZWNlIHVuYSBwZXJzcGVjdGl2YSBtw6FzIHJpY2EsIGRlc3RhY2FuZG8gbGEgaW1wb3J0YW5jaWEgZGUgbGFzIHZhcmlhYmxlcyBjYXRlZ8OzcmljYXMgY29tbyAqKmNvbmRpdGlvbioqLiBBIHBlc2FyIGRlIGVsbG8sIGxvcyBhanVzdGVzIG9idGVuaWRvcyBtdWVzdHJhbiBxdWUgbGEgcmVsYWNpw7NuIGVudHJlIGxhcyB2YXJpYWJsZXMgYW5hbGl6YWRhcyB5IGxhIGVkYWQgc2lndWUgc2llbmRvIGxpbWl0YWRhLCBzdWdpcmllbmRvIHF1ZSBvdHJvcyBmYWN0b3JlcyBubyBjb25zaWRlcmFkb3MgcG9kcsOtYW4gc2VyIG3DoXMgcmVsZXZhbnRlcyBwYXJhIHByZWRlY2lyIGxhIGVkYWQgZGUgbG9zIGR1ZcOxb3MgZGUgbG9zIHZlaMOtY3Vsb3MuDQoNClBvciDDumx0aW1vLCBlcyBpbXBvcnRhbnRlIHJlc2FsdGFyIGVsIGFzcGVjdG8gdMOpY25pY28gcmVsYWNpb25hZG8gY29uIGVsIHByb2Nlc2FtaWVudG8gZXN0YWTDrXN0aWNvIGhlY2hvIGVuIGVzdGUgZXN0dWRpbyBhIG5pdmVsIGRlIHJvYnVzdGV6LCBlZmljaWVuY2lhIGUgaW50ZWdyYWNpw7NuIHF1ZSBSLCBSU3R1ZGlvIHkgUk1hcmtkb3duIG9mcmVjZW4gYWwgdXN1YXJpbyBwYXJhIHF1ZSBlc3RlIHNlIHB1ZWRhIGVuZm9jYXIgZW4gw6lsIHNpbiBwYXNhciBtYXlvcmVzIGluY29udmVuaWVudGVzIGNvbiBlbCBzb3BvcnRlIGRvY3VtZW50YWwgcGFyYSBwcmVzZW50YXJsby4NCg0KIyMgKio3LiBCaWJsaW9ncmFmw61hKioNCkFsZMOhcywgSi4sICYgVXJpZWwsIEUuICgyMDE3KS4gaHR0cHM6Ly9kcml2ZS5nb29nbGUuY29tL2ZpbGUvZC8xSGo5cE5PUzdtY3daVk51Nk80cmlkZjZlby1oZTA4WjMvdmlldz91c3A9c2hhcmluZyAoMm5kIGVkLikuIEFMRkFDRU5UQVVSTy4NCg0KaHR0cHM6Ly9kcml2ZS5nb29nbGUuY29tL2ZpbGUvZC8xWGNBR3AxeHJDZ1dCLVp2UW9KTFBOV3puSWNPQ1NIZ2svdmlldz91c3A9c2hhcmluZw0KIA0KRXN0dWRpbyBkZSBBbsOhbGlzaXMgTXVsdGl2YXJpYWRvIGNvbiBiYXNlIGVuIHVuIGNvbmp1bnRvIGRlIGRhdG9zIGRlIGFzcGlyYW50ZXMgZXh0cmFuamVyb3MgcGFyYSBzZXIgYWRtaXRpZG9zIGVuIGVzdHVkaW9zIHN1cGVyaW9yZXMgZW4gRUUuVVUuIA0KaHR0cHM6Ly9nbGlicmVyb3NsLmdpdGh1Yi5pby9BcHBsaWVkLVN0YXRpc3RpY3MtRlVMTC8jW0Nvbmdsb21lcmFkb3NdDQoNCkVzdHVkaW8gZGUgQW7DoWxpc2lzIGRlIFJlZ3Jlc2nDs24gY29uIGJhc2UgZW4gdW4gY29uanVudG8gZGUgZGF0b3MgZGUgYXNwaXJhbnRlcyBleHRyYW5qZXJvcyBwYXJhIHNlciBhZG1pdGlkb3MgZW4gZXN0dWRpb3Mgc3VwZXJpb3JlcyBlbiBFRS5VVS4NCmh0dHBzOi8vcnB1YnMuY29tL2dsaWJyZXJvc2wvQXBwbGllZC1TdGF0aXN0aWNzLUZVTEwgDQoNCkZ1ZW50ZSBkZWwgY29uanVudG8gZGUgZGF0b3M6IGh0dHBzOi8vd3d3LmthZ2dsZS5jb20vZGF0YXNldHMvbWFyaXVzMjMwMy9uaXNzYW4tYWxsLW1vZGVscy1wcmljZS1wcmVkaWN0aW9uLWRhdGFzZXQgDQoNCg==