# Load packages
library(tidyverse)
library(tidyquant)
Ra <- c("NVDA", "SHOP", "TTD") %>%
tq_get(get = "stock.prices",
from = "2024-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 27 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 NVDA 2024-01-31 0.277
## 2 NVDA 2024-02-29 0.286
## 3 NVDA 2024-03-28 0.142
## 4 NVDA 2024-04-30 -0.0438
## 5 NVDA 2024-05-31 0.269
## 6 NVDA 2024-06-28 0.127
## 7 NVDA 2024-07-31 -0.0528
## 8 NVDA 2024-08-30 0.0201
## 9 NVDA 2024-09-24 0.0127
## 10 SHOP 2024-01-31 0.0845
## # ℹ 17 more rows
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2024-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 9 × 2
## date Rb
## <date> <dbl>
## 1 2024-01-31 0.0270
## 2 2024-02-29 0.0612
## 3 2024-03-28 0.0179
## 4 2024-04-30 -0.0441
## 5 2024-05-31 0.0688
## 6 2024-06-28 0.0596
## 7 2024-07-31 -0.00751
## 8 2024-08-30 0.00649
## 9 2024-09-24 0.0204
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 27 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 NVDA 2024-01-31 0.277 0.0270
## 2 NVDA 2024-02-29 0.286 0.0612
## 3 NVDA 2024-03-28 0.142 0.0179
## 4 NVDA 2024-04-30 -0.0438 -0.0441
## 5 NVDA 2024-05-31 0.269 0.0688
## 6 NVDA 2024-06-28 0.127 0.0596
## 7 NVDA 2024-07-31 -0.0528 -0.00751
## 8 NVDA 2024-08-30 0.0201 0.00649
## 9 NVDA 2024-09-24 0.0127 0.0204
## 10 SHOP 2024-01-31 0.0845 0.0270
## # ℹ 17 more rows
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 NVDA 2.10 0.045 0.695 3.02 -0.247 3.08 0.796
## 2 SHOP -0.190 0.0151 0.198 0.0131 0.462 -3.29 0.0041
## 3 TTD 0.514 0.0131 0.170 1.84 -0.752 1.24 0.629
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
All three of my stocks beat the market, with NVIDIA being the best.
RaRb_skewness <- RaRb %>%
tq_performance(Ra = Ra,
Rb = NULL,
performance_fun = skewness)
RaRb_skewness
## # A tibble: 3 × 2
## # Groups: symbol [3]
## symbol skewness.1
## <chr> <dbl>
## 1 NVDA 0.108
## 2 SHOP 0.147
## 3 TTD 0.450
All three of my stocks have a positive skewness with TTD being the highest return this year.