library(readxl)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
district<-read_excel("district.xls")
newdata<-district %>% select(DISTNAME,DPETSPEP,DPFPASPEP)
summary(newdata$DISTNAME)
## Length Class Mode
## 1207 character character
summary(newdata$DPETSPEP)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 9.90 12.10 12.27 14.20 51.70
summary(newdata$DPFPASPEP)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 5.800 8.900 9.711 12.500 49.000 5
Variables with missing numbers in DPFPASPEP
newdataclean<-newdata %>% filter(!is.na(DPFPASPEP))
1202 left overall
ggplot(newdataclean,aes(DPFPASPEP,DPETSPEP))+geom_point()
Starts with small correlations and decreases in higher percent special
education.
cor(newdataclean$DPFPASPEP,newdataclean$DPETSPEP)
## [1] 0.3700234