Najprej določimo velikost vzorca n
n <- 100
Izberemo vzorec
set.seed(1234)
X <- rnorm(n)
X <- runif(n,-4,4)
Narišimo podatke in porazdelitev
par(mfrow=c(2,2))
plot(X)
bla <- hist(X,col=8)
d <- bla$breaks[2]-bla$breaks[1]
x <- seq(-4,4,length=200)
points(x,dnorm(x)*n*d,col="blue")
lines(x,dnorm(x,mean(X),sd(X))*n*d,col="red")
dn <- density(X)
points(dn$x,dn$y*n*d,col="darkgreen")
# frame() # izpusti en grafični panel
qqnorm(X)
qqline(X,col="red")
boxplot(X,horizontal=TRUE)
rug(X)
Zdi se, da so za ekstremne vrednosti kvantili vzorca večji od kvantilov teoretične (normalne) porazdelitve.
quantile(X)
## 0% 25% 50% 75% 100%
## -3.9737414 -1.7546140 0.1158871 1.9222368 3.9176791
p <- c(0.01,0.02,0.025)
(qsample <- quantile(X,p))
## 1% 2% 2.5%
## -3.873329 -3.796015 -3.779774
(qnormal <- qnorm(p)) ## dodaten oklepaj za izpis
## [1] -2.326348 -2.053749 -1.959964
qsample > qnormal
## 1% 2% 2.5%
## FALSE FALSE FALSE
gtour <- function(X,hip=dnorm) {
n <- length(X)
par(mfrow=c(2,2))
plot(X)
bla <- hist(X,col=8)
d <- bla$breaks[2]-bla$breaks[1]
x <- seq(min(X),max(X),length=200)
points(x,hip(x)*n*d,col="blue")
lines(x,dnorm(x,mean(X),sd(X))*n*d,col="red")
dn <- density(X)
points(dn$x,dn$y*n*d,col="darkgreen")
# frame() # izpusti en grafični panel
qqnorm(X)
qqline(X,col="red")
boxplot(X,horizontal=TRUE)
rug(X)
}
Preizkus
gtour(rnorm(2015))
gtour(runif(400),hip=dunif)