# Data Input
price <- c(100, 110, 120, 130, 140, 150, 160, 170, 180, 190)
marketing_cost <- c(20, 25, 22, 30, 35, 40, 42, 45, 50, 55)
stores <- c(50, 52, 55, 58, 60, 62, 65, 67, 70, 72)
income <- c(5000, 5200, 5400, 5600, 5800, 6000, 6200, 6400, 6600, 6800)
sales_volume <- c(200, 220, 210, 230, 240, 250, 260, 270, 280, 290)
print(data)
## function (..., list = character(), package = NULL, lib.loc = NULL,
## verbose = getOption("verbose"), envir = .GlobalEnv, overwrite = TRUE)
## {
## fileExt <- function(x) {
## db <- grepl("\\.[^.]+\\.(gz|bz2|xz)$", x)
## ans <- sub(".*\\.", "", x)
## ans[db] <- sub(".*\\.([^.]+\\.)(gz|bz2|xz)$", "\\1\\2",
## x[db])
## ans
## }
## my_read_table <- function(...) {
## lcc <- Sys.getlocale("LC_COLLATE")
## on.exit(Sys.setlocale("LC_COLLATE", lcc))
## Sys.setlocale("LC_COLLATE", "C")
## read.table(...)
## }
## stopifnot(is.character(list))
## names <- c(as.character(substitute(list(...))[-1L]), list)
## if (!is.null(package)) {
## if (!is.character(package))
## stop("'package' must be a character vector or NULL")
## }
## paths <- find.package(package, lib.loc, verbose = verbose)
## if (is.null(lib.loc))
## paths <- c(path.package(package, TRUE), if (!length(package)) getwd(),
## paths)
## paths <- unique(normalizePath(paths[file.exists(paths)]))
## paths <- paths[dir.exists(file.path(paths, "data"))]
## dataExts <- tools:::.make_file_exts("data")
## if (length(names) == 0L) {
## db <- matrix(character(), nrow = 0L, ncol = 4L)
## for (path in paths) {
## entries <- NULL
## packageName <- if (file_test("-f", file.path(path,
## "DESCRIPTION")))
## basename(path)
## else "."
## if (file_test("-f", INDEX <- file.path(path, "Meta",
## "data.rds"))) {
## entries <- readRDS(INDEX)
## }
## else {
## dataDir <- file.path(path, "data")
## entries <- tools::list_files_with_type(dataDir,
## "data")
## if (length(entries)) {
## entries <- unique(tools::file_path_sans_ext(basename(entries)))
## entries <- cbind(entries, "")
## }
## }
## if (NROW(entries)) {
## if (is.matrix(entries) && ncol(entries) == 2L)
## db <- rbind(db, cbind(packageName, dirname(path),
## entries))
## else warning(gettextf("data index for package %s is invalid and will be ignored",
## sQuote(packageName)), domain = NA, call. = FALSE)
## }
## }
## colnames(db) <- c("Package", "LibPath", "Item", "Title")
## footer <- if (missing(package))
## paste0("Use ", sQuote(paste("data(package =", ".packages(all.available = TRUE))")),
## "\n", "to list the data sets in all *available* packages.")
## else NULL
## y <- list(title = "Data sets", header = NULL, results = db,
## footer = footer)
## class(y) <- "packageIQR"
## return(y)
## }
## paths <- file.path(paths, "data")
## for (name in names) {
## found <- FALSE
## for (p in paths) {
## tmp_env <- if (overwrite)
## envir
## else new.env()
## if (file_test("-f", file.path(p, "Rdata.rds"))) {
## rds <- readRDS(file.path(p, "Rdata.rds"))
## if (name %in% names(rds)) {
## found <- TRUE
## if (verbose)
## message(sprintf("name=%s:\t found in Rdata.rds",
## name), domain = NA)
## thispkg <- sub(".*/([^/]*)/data$", "\\1", p)
## thispkg <- sub("_.*$", "", thispkg)
## thispkg <- paste0("package:", thispkg)
## objs <- rds[[name]]
## lazyLoad(file.path(p, "Rdata"), envir = tmp_env,
## filter = function(x) x %in% objs)
## break
## }
## else if (verbose)
## message(sprintf("name=%s:\t NOT found in names() of Rdata.rds, i.e.,\n\t%s\n",
## name, paste(names(rds), collapse = ",")),
## domain = NA)
## }
## files <- list.files(p, full.names = TRUE)
## files <- files[grep(name, files, fixed = TRUE)]
## if (length(files) > 1L) {
## o <- match(fileExt(files), dataExts, nomatch = 100L)
## paths0 <- dirname(files)
## paths0 <- factor(paths0, levels = unique(paths0))
## files <- files[order(paths0, o)]
## }
## if (length(files)) {
## for (file in files) {
## if (verbose)
## message("name=", name, ":\t file= ...", .Platform$file.sep,
## basename(file), "::\t", appendLF = FALSE,
## domain = NA)
## ext <- fileExt(file)
## if (basename(file) != paste0(name, ".", ext))
## found <- FALSE
## else {
## found <- TRUE
## switch(ext, R = , r = {
## library("utils")
## sys.source(file, chdir = TRUE, envir = tmp_env)
## }, RData = , rdata = , rda = load(file, envir = tmp_env),
## TXT = , txt = , tab = , tab.gz = , tab.bz2 = ,
## tab.xz = , txt.gz = , txt.bz2 = , txt.xz = assign(name,
## my_read_table(file, header = TRUE, as.is = FALSE),
## envir = tmp_env), CSV = , csv = , csv.gz = ,
## csv.bz2 = , csv.xz = assign(name, my_read_table(file,
## header = TRUE, sep = ";", as.is = FALSE),
## envir = tmp_env), found <- FALSE)
## }
## if (found)
## break
## }
## if (verbose)
## message(if (!found)
## "*NOT* ", "found", domain = NA)
## }
## if (found)
## break
## }
## if (!found) {
## warning(gettextf("data set %s not found", sQuote(name)),
## domain = NA)
## }
## else if (!overwrite) {
## for (o in ls(envir = tmp_env, all.names = TRUE)) {
## if (exists(o, envir = envir, inherits = FALSE))
## warning(gettextf("an object named %s already exists and will not be overwritten",
## sQuote(o)))
## else assign(o, get(o, envir = tmp_env, inherits = FALSE),
## envir = envir)
## }
## rm(tmp_env)
## }
## }
## invisible(names)
## }
## <bytecode: 0x000001d129720960>
## <environment: namespace:utils>
Membuat Data Frame
data <- data.frame(price, marketing_cost, stores, income, sales_volume)
Model Regresi Linear Berganda
model <- lm(sales_volume ~ price + marketing_cost + stores + income, data = data)
summary(model)
##
## Call:
## lm(formula = sales_volume ~ price + marketing_cost + stores +
## income, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5778 -1.5081 -0.0229 1.4289 4.4748
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 172.6154 83.1662 2.076 0.0832 .
## price 0.5164 0.9521 0.542 0.6071
## marketing_cost 1.9689 0.5688 3.462 0.0134 *
## stores -1.2139 3.4233 -0.355 0.7350
## income NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.059 on 6 degrees of freedom
## Multiple R-squared: 0.9932, Adjusted R-squared: 0.9898
## F-statistic: 291.8 on 3 and 6 DF, p-value: 6.882e-07
Pair Plot
pairs(data, main = "Scatterplot Matrix", pch = 19)

Residual Plot
plot(model$residuals, main="Residual Plot", ylab="Residuals"
, xlab="Fitted Values")
abline(h = 0, col="red", lwd=2)

Data Baru untuk Prediksi
new_data <- data.frame(price=175, marketing_cost=48, stores=68, income=6500)
Prediksi Volume Penjualan
predicted_sales <- predict(model, newdata = new_data)
print(predicted_sales)
## 1
## 274.9569