invesment<-c(50,55,60,65,70,75,80,85,90,95)
output<-c(200,220,230,240,260,270,280,300,310,320)
invesment
##  [1] 50 55 60 65 70 75 80 85 90 95
output
##  [1] 200 220 230 240 260 270 280 300 310 320
data <- data.frame(invesment, output)
data
##    invesment output
## 1         50    200
## 2         55    220
## 3         60    230
## 4         65    240
## 5         70    260
## 6         75    270
## 7         80    280
## 8         85    300
## 9         90    310
## 10        95    320
#Regresi Linear
model <- lm(output ~ invesment,data = data)
summary(model)
## 
## Call:
## lm(formula = output ~ invesment, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2727 -2.8636  0.2727  2.7273  3.8182 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 70.54545    5.02802   14.03 6.46e-07 ***
## invesment    2.65455    0.06803   39.02 2.05e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.09 on 8 degrees of freedom
## Multiple R-squared:  0.9948, Adjusted R-squared:  0.9941 
## F-statistic:  1523 on 1 and 8 DF,  p-value: 2.045e-10
plot(data$invesment, data$output,
xlab = "Investmen (Juta Dolar)",
ylab = "Output (Juta Unit)",
main = "Regresi Linear antara Investasi dan Output Industri")
abline(model,col="blue",lwd=2)