# Load packages
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyquant)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## ── Attaching core tidyquant packages ──────────────────────── tidyquant 1.0.8 ──
## ✔ PerformanceAnalytics 2.0.4 ✔ TTR 0.24.4
## ✔ quantmod 0.4.26 ✔ xts 0.14.0── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date() masks base::as.Date()
## ✖ zoo::as.Date.numeric() masks base::as.Date.numeric()
## ✖ dplyr::filter() masks stats::filter()
## ✖ xts::first() masks dplyr::first()
## ✖ dplyr::lag() masks stats::lag()
## ✖ xts::last() masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ quantmod::summary() masks base::summary()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Ra <- c("AAPL", "MSFT", "GOOG") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 99 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 AAPL 2022-01-31 -0.0397
## 2 AAPL 2022-02-28 -0.0541
## 3 AAPL 2022-03-31 0.0575
## 4 AAPL 2022-04-29 -0.0971
## 5 AAPL 2022-05-31 -0.0545
## 6 AAPL 2022-06-30 -0.0814
## 7 AAPL 2022-07-29 0.189
## 8 AAPL 2022-08-31 -0.0312
## 9 AAPL 2022-09-30 -0.121
## 10 AAPL 2022-10-31 0.110
## # ℹ 89 more rows
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 33 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## # ℹ 23 more rows
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 99 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 AAPL 2022-01-31 -0.0397 -0.101
## 2 AAPL 2022-02-28 -0.0541 -0.0343
## 3 AAPL 2022-03-31 0.0575 0.0341
## 4 AAPL 2022-04-29 -0.0971 -0.133
## 5 AAPL 2022-05-31 -0.0545 -0.0205
## 6 AAPL 2022-06-30 -0.0814 -0.0871
## 7 AAPL 2022-07-29 0.189 0.123
## 8 AAPL 2022-08-31 -0.0312 -0.0464
## 9 AAPL 2022-09-30 -0.121 -0.105
## 10 AAPL 2022-10-31 0.110 0.0390
## # ℹ 89 more rows
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 0.0451 0.0043 0.0529 1.02 0.992 1.41 0.840
## 2 MSFT 0.063 0.006 0.0742 0.825 0.750 0.543 0.806
## 3 GOOG 0.0014 0.0016 0.0191 0.916 0.982 0.674 0.756
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
Two of my stocks are positively skewed with AAPL at 0.277 and MSFT at 0.104.
RaRb_skewness <- RaRb %>%
tq_performance(Ra = Ra,
Rb = NULL,
performance_fun = skewness)
RaRb_skewness
## # A tibble: 3 × 2
## # Groups: symbol [3]
## symbol skewness.1
## <chr> <dbl>
## 1 AAPL 0.277
## 2 MSFT 0.104
## 3 GOOG -0.208