# Load packages
library(tidyverse)
library(tidyquant)
Ra <- c("TM", "SBUX", "AEO") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 99 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 TM 2022-01-31 0.0653
## 2 TM 2022-02-28 -0.0781
## 3 TM 2022-03-31 -0.0148
## 4 TM 2022-04-29 -0.0513
## 5 TM 2022-05-31 -0.0271
## 6 TM 2022-06-30 -0.0733
## 7 TM 2022-07-29 0.0546
## 8 TM 2022-08-31 -0.0813
## 9 TM 2022-09-30 -0.128
## 10 TM 2022-10-31 0.0654
## # ℹ 89 more rows
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 33 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## # ℹ 23 more rows
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 99 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 TM 2022-01-31 0.0653 -0.101
## 2 TM 2022-02-28 -0.0781 -0.0343
## 3 TM 2022-03-31 -0.0148 0.0341
## 4 TM 2022-04-29 -0.0513 -0.133
## 5 TM 2022-05-31 -0.0271 -0.0205
## 6 TM 2022-06-30 -0.0733 -0.0871
## 7 TM 2022-07-29 0.0546 0.123
## 8 TM 2022-08-31 -0.0813 -0.0464
## 9 TM 2022-09-30 -0.128 -0.105
## 10 TM 2022-10-31 0.0654 0.0390
## # ℹ 89 more rows
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 TM -0.0577 -0.0021 -0.0253 0.648 0.0055 0.528 0.541
## 2 SBUX -0.0848 -0.0036 -0.0421 0.598 0.967 0.0272 0.457
## 3 AEO -0.100 -0.0005 -0.0061 0.911 1.09 0.816 0.414
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
None of the stocks I chose beat the market in 2022.
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = NULL,
performance_fun = skewness)
RaRb_capm
## # A tibble: 3 × 2
## # Groups: symbol [3]
## symbol skewness.1
## <chr> <dbl>
## 1 TM 0.706
## 2 SBUX 0.386
## 3 AEO 0.589
All of the stocks I chose have positively skewed distribution of returns