library(readxl)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
district<-read_excel("district.xls")
newdata <- district[,c("DISTNAME","DPETSPEP","DPFPASPEP")]
summary(newdata$DPETSPEP)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    9.90   12.10   12.27   14.20   51.70
summary(newdata$DPFPASPEP)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   0.000   5.800   8.900   9.711  12.500  49.000       5
# The variable with missing values is "DPFPASPEP"
# It has 5 NA'S

newdata_clean<-na.omit(newdata)

summary(newdata_clean$DPFPASPEP)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   5.800   8.900   9.711  12.500  49.000
#newdata_clean. = 1202 obs. are left over
ggplot(newdata_clean,aes(x=DPFPASPEP,y=DPETSPEP)) + geom_point() 

#The graph shows a weak correlation
cor(newdata_clean$DPFPASPEP,newdata_clean$DPETSPEP)
## [1] 0.3700234
#My interpretation of the results is that is had a moderate positive correlations between both variables. 
#Both variables are increasing but the relationship is not strong.