Nomor 1
x <- c(12,14,16,18,20,22)
y <- c(2.5,3,3.5,4.5,5,5.5)
y <- matrix(y, ncol = 1)
X<- cbind(1,x)
y
## [,1]
## [1,] 2.5
## [2,] 3.0
## [3,] 3.5
## [4,] 4.5
## [5,] 5.0
## [6,] 5.5
## x
## [1,] 1 12
## [2,] 1 14
## [3,] 1 16
## [4,] 1 18
## [5,] 1 20
## [6,] 1 22
## x
## 6 102
## x 102 1804
##Cari X transpose kali y
Xty <- t(X) %*% y
Xty
## [,1]
## 24
## x 430
##Cari invers XtX
XtX_inv <- solve(XtX)
XtX_inv
## x
## 4.2952381 -0.24285714
## x -0.2428571 0.01428571
beta <- XtX_inv %*% Xty
beta
## [,1]
## -1.3428571
## x 0.3142857
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## -1.3429 0.3143
Step 2
# Hitung Residual Sum Of Squaresnya
y_pred <- X %*% beta
RSS <- sum((y - y_pred)^2)
RSS
## [1] 0.08571429
# Hitung Estimasi Varins sigma^2
n <- length(y)
sigma2 <- RSS/(n-2)
# Hitung Varian dan kesalahan standar dari Beta 1
var_beta1 <- sigma2 * XtX_inv[2,2]
var_beta1
## [1] 0.0003061224
se_beta1 <- sqrt(var_beta1)
se_beta1
## [1] 0.01749636
#Hitung selang kepercayaan 95% untuk Beta 1 pakai uji t
alpha <- 0.05
t_alpha <- qt(1-alpha/2, n-2)
t_alpha
## [1] 2.776445
CI_beta1 <- c(beta[2] - t_alpha * se_beta1, beta[2] + t_alpha * se_beta1)
CI_beta1
## [1] 0.2657080 0.3628634
Soal Nomor 2
x <- c(100,150,200,250,300)
y <- c(3.2,4.1,5,5.8,6.5)
y <- matrix(y, ncol = 1)
X<- cbind(1,x)
y
## [,1]
## [1,] 3.2
## [2,] 4.1
## [3,] 5.0
## [4,] 5.8
## [5,] 6.5
## x
## [1,] 1 100
## [2,] 1 150
## [3,] 1 200
## [4,] 1 250
## [5,] 1 300
## x
## 5 1000
## x 1000 225000
##Cari X transpose kali y
Xty <- t(X) %*% y
Xty
## [,1]
## 24.6
## x 5335.0
##Cari invers XtX
XtX_inv <- solve(XtX)
XtX_inv
## x
## 1.800 -8e-03
## x -0.008 4e-05
beta <- XtX_inv %*% Xty
beta
## [,1]
## 1.6000
## x 0.0166
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 1.6000 0.0166
Step 2
# Hitung Residual Sum Of Squaresnya
y_pred <- X %*% beta
RSS <- sum((y - y_pred)^2)
RSS
## [1] 0.019
# Hitung Estimasi Varins sigma^2
n <- length(y)
sigma2 <- RSS/(n-2)
# Hitung Varian dan kesalahan standar dari Beta 1
var_beta1 <- sigma2 * XtX_inv[2,2]
var_beta1
## [1] 2.533333e-07
se_beta1 <- sqrt(var_beta1)
se_beta1
## [1] 0.0005033223
#Hitung selang kepercayaan 95% untuk Beta 1 pakai uji t
alpha <- 0.05
t_alpha <- qt(1-alpha/2, n-2)
t_alpha
## [1] 3.182446
CI_beta1 <- c(beta[2] - t_alpha * se_beta1, beta[2] + t_alpha * se_beta1)
CI_beta1
## [1] 0.0149982 0.0182018
Nomor 3
x <- c(5,10,15,20,25,30)
y <- c(20,25,30,35,40,45)
y <- matrix(y, ncol = 1)
X<- cbind(1,x)
y
## [,1]
## [1,] 20
## [2,] 25
## [3,] 30
## [4,] 35
## [5,] 40
## [6,] 45
## x
## [1,] 1 5
## [2,] 1 10
## [3,] 1 15
## [4,] 1 20
## [5,] 1 25
## [6,] 1 30
## x
## 6 105
## x 105 2275
##Cari X transpose kali y
Xty <- t(X) %*% y
Xty
## [,1]
## 195
## x 3850
##Cari invers XtX
XtX_inv <- solve(XtX)
XtX_inv
## x
## 0.8666667 -0.040000000
## x -0.0400000 0.002285714
beta <- XtX_inv %*% Xty
beta
## [,1]
## 15
## x 1
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 15 1
Step 2
y_pred <- X %*% beta
RSS <- sum((y - y_pred)^2)
RSS
## [1] 1.729183e-27
# Hitung Estimasi Varins sigma^2
n <- length(y)
sigma2 <- RSS/(n-2)
# Hitung Varian dan kesalahan standar dari Beta 1
var_beta1 <- sigma2 * XtX_inv[2,2]
var_beta1
## [1] 9.881046e-31
se_beta1 <- sqrt(var_beta1)
se_beta1
## [1] 9.940345e-16
#Hitung selang kepercayaan 95% untuk Beta 1 pakai uji t
alpha <- 0.05
t_alpha <- qt(1-alpha/2, n-2)
t_alpha
## [1] 2.776445
CI_beta1 <- c(beta[2] - t_alpha * se_beta1, beta[2] + t_alpha * se_beta1)
CI_beta1
## [1] 1 1
## [1] 2.759882e-15
Nomor 4
x <- c(20,25,30,35,40,45,50)
y <- c(1.5,2,2.5,3,3.5,4,4.5)
y <- matrix(y, ncol = 1)
X<- cbind(1,x)
y
## [,1]
## [1,] 1.5
## [2,] 2.0
## [3,] 2.5
## [4,] 3.0
## [5,] 3.5
## [6,] 4.0
## [7,] 4.5
## x
## [1,] 1 20
## [2,] 1 25
## [3,] 1 30
## [4,] 1 35
## [5,] 1 40
## [6,] 1 45
## [7,] 1 50
## x
## 7 245
## x 245 9275
##Cari X transpose kali y
Xty <- t(X) %*% y
Xty
## [,1]
## 21
## x 805
##Cari invers XtX
XtX_inv <- solve(XtX)
XtX_inv
## x
## 1.892857 -0.050000000
## x -0.050000 0.001428571
beta <- XtX_inv %*% Xty
beta
## [,1]
## -0.5
## x 0.1
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## -0.5 0.1
Step 2
y_pred <- X %*% beta
RSS <- sum((y - y_pred)^2)
RSS
## [1] 1.203013e-28
# Hitung Estimasi Varins sigma^2
n <- length(y)
sigma2 <- RSS/(n-2)
# Hitung Varian dan kesalahan standar dari Beta 1
var_beta1 <- sigma2 * XtX_inv[2,2]
var_beta1
## [1] 3.43718e-32
se_beta1 <- sqrt(var_beta1)
se_beta1
## [1] 1.853963e-16
#Hitung selang kepercayaan 95% untuk Beta 1 pakai uji t
alpha <- 0.05
t_alpha <- qt(1-alpha/2, n-2)
t_alpha
## [1] 2.570582
CI_beta1 <- c(beta[2] - t_alpha * se_beta1, beta[2] + t_alpha * se_beta1)
CI_beta1
## [1] 0.1 0.1
Nomor 5
x <- c(3,4,5,6,7,8)
y <- c(10,12,15,18,20,22)
y <- matrix(y, ncol = 1)
X<- cbind(1,x)
y
## [,1]
## [1,] 10
## [2,] 12
## [3,] 15
## [4,] 18
## [5,] 20
## [6,] 22
## x
## [1,] 1 3
## [2,] 1 4
## [3,] 1 5
## [4,] 1 6
## [5,] 1 7
## [6,] 1 8
## x
## 6 33
## x 33 199
##Cari X transpose kali y
Xty <- t(X) %*% y
Xty
## [,1]
## 97
## x 577
##Cari invers XtX
XtX_inv <- solve(XtX)
XtX_inv
## x
## 1.8952381 -0.31428571
## x -0.3142857 0.05714286
beta <- XtX_inv %*% Xty
beta
## [,1]
## 2.495238
## x 2.485714
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 2.495 2.486
Step 2
y_pred <- X %*% beta
RSS <- sum((y - y_pred)^2)
RSS
## [1] 0.7047619
# Hitung Estimasi Varins sigma^2
n <- length(y)
sigma2 <- RSS/(n-2)
# Hitung Varian dan kesalahan standar dari Beta 1
var_beta1 <- sigma2 * XtX_inv[2,2]
var_beta1
## [1] 0.01006803
se_beta1 <- sqrt(var_beta1)
se_beta1
## [1] 0.1003396
#Hitung selang kepercayaan 95% untuk Beta 1 pakai uji t
alpha <- 0.05
t_alpha <- qt(1-alpha/2, n-2)
t_alpha
## [1] 2.776445
CI_beta1 <- c(beta[2] - t_alpha * se_beta1, beta[2] + t_alpha * se_beta1)
CI_beta1
## [1] 2.207127 2.764302
Nomor 6
x <- c(50,75,100,125,150,175)
y <- c(4.5,5,5.5,6,6.5,7)
y <- matrix(y, ncol = 1)
X<- cbind(1,x)
y
## [,1]
## [1,] 4.5
## [2,] 5.0
## [3,] 5.5
## [4,] 6.0
## [5,] 6.5
## [6,] 7.0
## x
## [1,] 1 50
## [2,] 1 75
## [3,] 1 100
## [4,] 1 125
## [5,] 1 150
## [6,] 1 175
## x
## 6 675
## x 675 86875
##Cari X transpose kali y
Xty <- t(X) %*% y
Xty
## [,1]
## 34.5
## x 4100.0
##Cari invers XtX
XtX_inv <- solve(XtX)
XtX_inv
## x
## 1.32380952 -1.028571e-02
## x -0.01028571 9.142857e-05
beta <- XtX_inv %*% Xty
beta
## [,1]
## 3.50
## x 0.02
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 3.50 0.02
Step 2
y_pred <- X %*% beta
RSS <- sum((y - y_pred)^2)
RSS
## [1] 1.561945e-28
# Hitung Estimasi Varins sigma^2
n <- length(y)
sigma2 <- RSS/(n-2)
# Hitung Varian dan kesalahan standar dari Beta 1
var_beta1 <- sigma2 * XtX_inv[2,2]
var_beta1
## [1] 3.570159e-33
se_beta1 <- sqrt(var_beta1)
se_beta1
## [1] 5.975081e-17
#Hitung selang kepercayaan 95% untuk Beta 1 pakai uji t
alpha <- 0.05
t_alpha <- qt(1-alpha/2, n-2)
t_alpha
## [1] 2.776445
CI_beta1 <- c(beta[2] - t_alpha * se_beta1, beta[2] + t_alpha * se_beta1)
CI_beta1
## [1] 0.02 0.02
Nomor 7
x <- c(200,250,300,350,400)
y <- c(150,175,200,225,250)
y <- matrix(y, ncol = 1)
X<- cbind(1,x)
y
## [,1]
## [1,] 150
## [2,] 175
## [3,] 200
## [4,] 225
## [5,] 250
## x
## [1,] 1 200
## [2,] 1 250
## [3,] 1 300
## [4,] 1 350
## [5,] 1 400
## x
## 5 1500
## x 1500 475000
##Cari X transpose kali y
Xty <- t(X) %*% y
Xty
## [,1]
## 1000
## x 312500
##Cari invers XtX
XtX_inv <- solve(XtX)
XtX_inv
## x
## 3.800 -0.01200
## x -0.012 0.00004
beta <- XtX_inv %*% Xty
beta
## [,1]
## 50.0
## x 0.5
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 50.0 0.5
Step 2
y_pred <- X %*% beta
RSS <- sum((y - y_pred)^2)
RSS
## [1] 7.867909e-25
# Hitung Estimasi Varins sigma^2
n <- length(y)
sigma2 <- RSS/(n-2)
# Hitung Varian dan kesalahan standar dari Beta 1
var_beta1 <- sigma2 * XtX_inv[2,2]
var_beta1
## [1] 1.049055e-29
se_beta1 <- sqrt(var_beta1)
se_beta1
## [1] 3.238911e-15
#Hitung selang kepercayaan 95% untuk Beta 1 pakai uji t
alpha <- 0.05
t_alpha <- qt(1-alpha/2, n-2)
t_alpha
## [1] 3.182446
CI_beta1 <- c(beta[2] - t_alpha * se_beta1, beta[2] + t_alpha * se_beta1)
CI_beta1
## [1] 0.5 0.5
Nomor 8
x <- c(5,10,15,20,25,30)
y <- c(60,70,75,85,90,95)
y <- matrix(y, ncol = 1)
X<- cbind(1,x)
y
## [,1]
## [1,] 60
## [2,] 70
## [3,] 75
## [4,] 85
## [5,] 90
## [6,] 95
## x
## [1,] 1 5
## [2,] 1 10
## [3,] 1 15
## [4,] 1 20
## [5,] 1 25
## [6,] 1 30
## x
## 6 105
## x 105 2275
##Cari X transpose kali y
Xty <- t(X) %*% y
Xty
## [,1]
## 475
## x 8925
##Cari invers XtX
XtX_inv <- solve(XtX)
XtX_inv
## x
## 0.8666667 -0.040000000
## x -0.0400000 0.002285714
beta <- XtX_inv %*% Xty
beta
## [,1]
## 54.66667
## x 1.40000
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 54.67 1.40
Step 2
y_pred <- X %*% beta
RSS <- sum((y - y_pred)^2)
RSS
## [1] 13.33333
# Hitung Estimasi Varins sigma^2
n <- length(y)
sigma2 <- RSS/(n-2)
# Hitung Varian dan kesalahan standar dari Beta 1
var_beta1 <- sigma2 * XtX_inv[2,2]
var_beta1
## [1] 0.007619048
se_beta1 <- sqrt(var_beta1)
se_beta1
## [1] 0.08728716
#Hitung selang kepercayaan 95% untuk Beta 1 pakai uji t
alpha <- 0.05
t_alpha <- qt(1-alpha/2, n-2)
t_alpha
## [1] 2.776445
CI_beta1 <- c(beta[2] - t_alpha * se_beta1, beta[2] + t_alpha * se_beta1)
CI_beta1
## [1] 1.157652 1.642348
Nomor 9
x <- c(50,100,150,200,250)
y <- c(1.5,2,2.5,3,3.5)
y <- matrix(y, ncol = 1)
X<- cbind(1,x)
y
## [,1]
## [1,] 1.5
## [2,] 2.0
## [3,] 2.5
## [4,] 3.0
## [5,] 3.5
## x
## [1,] 1 50
## [2,] 1 100
## [3,] 1 150
## [4,] 1 200
## [5,] 1 250
## x
## 5 750
## x 750 137500
##Cari X transpose kali y
Xty <- t(X) %*% y
Xty
## [,1]
## 12.5
## x 2125.0
##Cari invers XtX
XtX_inv <- solve(XtX)
XtX_inv
## x
## 1.100 -6e-03
## x -0.006 4e-05
beta <- XtX_inv %*% Xty
beta
## [,1]
## 1.00
## x 0.01
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 1.00 0.01
Step 2
y_pred <- X %*% beta
RSS <- sum((y - y_pred)^2)
RSS
## [1] 3.599178e-30
# Hitung Estimasi Varins sigma^2
n <- length(y)
sigma2 <- RSS/(n-2)
# Hitung Varian dan kesalahan standar dari Beta 1
var_beta1 <- sigma2 * XtX_inv[2,2]
var_beta1
## [1] 4.798904e-35
se_beta1 <- sqrt(var_beta1)
se_beta1
## [1] 6.927412e-18
#Hitung selang kepercayaan 95% untuk Beta 1 pakai uji t
alpha <- 0.05
t_alpha <- qt(1-alpha/2, n-2)
t_alpha
## [1] 3.182446
CI_beta1 <- c(beta[2] - t_alpha * se_beta1, beta[2] + t_alpha * se_beta1)
CI_beta1
## [1] 0.01 0.01
Nomor 10
x <- c(100,150,200,250,300,350)
y <- c(2,2.5,3,3.5,4,4.5)
y <- matrix(y, ncol = 1)
X<- cbind(1,x)
y
## [,1]
## [1,] 2.0
## [2,] 2.5
## [3,] 3.0
## [4,] 3.5
## [5,] 4.0
## [6,] 4.5
## x
## [1,] 1 100
## [2,] 1 150
## [3,] 1 200
## [4,] 1 250
## [5,] 1 300
## [6,] 1 350
## x
## 6 1350
## x 1350 347500
##Cari X transpose kali y
Xty <- t(X) %*% y
Xty
## [,1]
## 19.5
## x 4825.0
##Cari invers XtX
XtX_inv <- solve(XtX)
XtX_inv
## x
## 1.323809524 -5.142857e-03
## x -0.005142857 2.285714e-05
beta <- XtX_inv %*% Xty
beta
## [,1]
## 1.00
## x 0.01
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 1.00 0.01
Step 2
y_pred <- X %*% beta
RSS <- sum((y - y_pred)^2)
RSS
## [1] 1.774937e-29
# Hitung Estimasi Varins sigma^2
n <- length(y)
sigma2 <- RSS/(n-2)
# Hitung Varian dan kesalahan standar dari Beta 1
var_beta1 <- sigma2 * XtX_inv[2,2]
var_beta1
## [1] 1.01425e-34
se_beta1 <- sqrt(var_beta1)
se_beta1
## [1] 1.0071e-17
#Hitung selang kepercayaan 95% untuk Beta 1 pakai uji t
alpha <- 0.05
t_alpha <- qt(1-alpha/2, n-2)
t_alpha
## [1] 2.776445
CI_beta1 <- c(beta[2] - t_alpha * se_beta1, beta[2] + t_alpha * se_beta1)
CI_beta1
## [1] 0.01 0.01