You may want to present a pairwise scatterplot matrix of the multiple variables. Every column of input is plotted against every other column of input.
pairs(mtcars)
crabs <- read.csv("./crabs.csv")
cor(mtcars)
## mpg cyl disp hp drat wt
## mpg 1.0000000 -0.8521620 -0.8475514 -0.7761684 0.68117191 -0.8676594
## cyl -0.8521620 1.0000000 0.9020329 0.8324475 -0.69993811 0.7824958
## disp -0.8475514 0.9020329 1.0000000 0.7909486 -0.71021393 0.8879799
## hp -0.7761684 0.8324475 0.7909486 1.0000000 -0.44875912 0.6587479
## drat 0.6811719 -0.6999381 -0.7102139 -0.4487591 1.00000000 -0.7124406
## wt -0.8676594 0.7824958 0.8879799 0.6587479 -0.71244065 1.0000000
## qsec 0.4186840 -0.5912421 -0.4336979 -0.7082234 0.09120476 -0.1747159
## vs 0.6640389 -0.8108118 -0.7104159 -0.7230967 0.44027846 -0.5549157
## am 0.5998324 -0.5226070 -0.5912270 -0.2432043 0.71271113 -0.6924953
## gear 0.4802848 -0.4926866 -0.5555692 -0.1257043 0.69961013 -0.5832870
## carb -0.5509251 0.5269883 0.3949769 0.7498125 -0.09078980 0.4276059
## qsec vs am gear carb
## mpg 0.41868403 0.6640389 0.59983243 0.4802848 -0.55092507
## cyl -0.59124207 -0.8108118 -0.52260705 -0.4926866 0.52698829
## disp -0.43369788 -0.7104159 -0.59122704 -0.5555692 0.39497686
## hp -0.70822339 -0.7230967 -0.24320426 -0.1257043 0.74981247
## drat 0.09120476 0.4402785 0.71271113 0.6996101 -0.09078980
## wt -0.17471588 -0.5549157 -0.69249526 -0.5832870 0.42760594
## qsec 1.00000000 0.7445354 -0.22986086 -0.2126822 -0.65624923
## vs 0.74453544 1.0000000 0.16834512 0.2060233 -0.56960714
## am -0.22986086 0.1683451 1.00000000 0.7940588 0.05753435
## gear -0.21268223 0.2060233 0.79405876 1.0000000 0.27407284
## carb -0.65624923 -0.5696071 0.05753435 0.2740728 1.00000000
with(crabs, coplot(weight~width | color))
We’ve already touched upon bar plots, box plots, histograms, and density plots. Now, we’ll delve deeper into these and introduce new plotting techniques.
par()
## $xlog
## [1] FALSE
##
## $ylog
## [1] FALSE
##
## $adj
## [1] 0.5
##
## $ann
## [1] TRUE
##
## $ask
## [1] FALSE
##
## $bg
## [1] "white"
##
## $bty
## [1] "o"
##
## $cex
## [1] 1
##
## $cex.axis
## [1] 1
##
## $cex.lab
## [1] 1
##
## $cex.main
## [1] 1.2
##
## $cex.sub
## [1] 1
##
## $cin
## [1] 0.15 0.20
##
## $col
## [1] "black"
##
## $col.axis
## [1] "black"
##
## $col.lab
## [1] "black"
##
## $col.main
## [1] "black"
##
## $col.sub
## [1] "black"
##
## $cra
## [1] 28.8 38.4
##
## $crt
## [1] 0
##
## $csi
## [1] 0.2
##
## $cxy
## [1] 0.02604167 0.06329115
##
## $din
## [1] 6.999999 4.999999
##
## $err
## [1] 0
##
## $family
## [1] ""
##
## $fg
## [1] "black"
##
## $fig
## [1] 0 1 0 1
##
## $fin
## [1] 6.999999 4.999999
##
## $font
## [1] 1
##
## $font.axis
## [1] 1
##
## $font.lab
## [1] 1
##
## $font.main
## [1] 2
##
## $font.sub
## [1] 1
##
## $lab
## [1] 5 5 7
##
## $las
## [1] 0
##
## $lend
## [1] "round"
##
## $lheight
## [1] 1
##
## $ljoin
## [1] "round"
##
## $lmitre
## [1] 10
##
## $lty
## [1] "solid"
##
## $lwd
## [1] 1
##
## $mai
## [1] 1.02 0.82 0.82 0.42
##
## $mar
## [1] 5.1 4.1 4.1 2.1
##
## $mex
## [1] 1
##
## $mfcol
## [1] 1 1
##
## $mfg
## [1] 1 1 1 1
##
## $mfrow
## [1] 1 1
##
## $mgp
## [1] 3 1 0
##
## $mkh
## [1] 0.001
##
## $new
## [1] FALSE
##
## $oma
## [1] 0 0 0 0
##
## $omd
## [1] 0 1 0 1
##
## $omi
## [1] 0 0 0 0
##
## $page
## [1] TRUE
##
## $pch
## [1] 1
##
## $pin
## [1] 5.759999 3.159999
##
## $plt
## [1] 0.1171429 0.9400000 0.2040000 0.8360000
##
## $ps
## [1] 12
##
## $pty
## [1] "m"
##
## $smo
## [1] 1
##
## $srt
## [1] 0
##
## $tck
## [1] NA
##
## $tcl
## [1] -0.5
##
## $usr
## [1] 0 1 0 1
##
## $xaxp
## [1] 0 1 5
##
## $xaxs
## [1] "r"
##
## $xaxt
## [1] "s"
##
## $xpd
## [1] FALSE
##
## $yaxp
## [1] 0 1 5
##
## $yaxs
## [1] "r"
##
## $yaxt
## [1] "s"
##
## $ylbias
## [1] 0.2
par(c("pch"))
## [1] 1
attach(crabs)
plot(weight,width)
plot(weight,width,pch=33) #0-25,33-127
plot(weight,width,col=31)
plot(weight,width,col="#F12123")
plot(weight,width,col="#F12123",col.axis="Blue")
plot(weight,width,col="#F12123",col.axis="Blue",col.lab="#F41234")
plot(weight,width,col="#F12123",col.axis="Blue",col.lab="#F41234",font=2)
plot(weight,width,lab=c(5,10,24),las=2)
A single plot in R is known as a figure and comprises a plot region surrounded by margins.
par(mar=c(0,0,0,0))
plot(weight,width,lab=c(5,10,24),las=2)
par(mfrow=c(1,2))
plot(weight,width,lab=c(5,10,24),las=2)
plot(crab,sat,lab=c(5,10,24),las=2)
While base R functions are sufficient for basic plotting, sometimes we need additional packages for data manipulation.
# Install required packages if not already installed
library(dplyr)
library(reshape2)
# Sample Data
categories <- data.frame(
Category = c("Apples", "Bananas", "Cherries", "Dates"),
Count = c(50, 30, 15, 5)
)
# Bar Plot
barplot(categories$Count, names.arg = categories$Category,
col = "skyblue", main = "Frequency of Fruit Categories",
xlab = "Fruit", ylab = "Count")
If the category names are long or overlapping, you can adjust the las parameter to change the orientation of axis labels. #### You can specify colors directly or use built-in color palettes.
cls <- c("#4E79A7", "#F28E2B", "#E15759", "#76B7B2")
barplot(categories$Count, names.arg = categories$Category,
col = cls, main = "Frequency of Fruit Categories",
xlab = "Fruit", ylab = "Count", las = 2)
Control the width of bars and the spacing between them to improve readability.
barplot(categories$Count, names.arg = categories$Category,
col = cls, main = "Frequency of Fruit Categories",
xlab = "Fruit", ylab = "Count", width = c(1:4))
#### Adjusting Bar Spacing Control spacing with the space argument.
barplot(categories$Count, names.arg = categories$Category,
col = cls, main = "Frequency of Fruit Categories",
xlab = "Fruit", ylab = "Count",space = c(0.5, 1, 1.5))
#### Horizontal Bar Plots Flip the orientation for better label
readability.
barplot(categories$Count, names.arg = categories$Category,
col = cls, main = "Frequency of Fruit Categories",
xlab = "Fruit", ylab = "Count",space = c(0.5, 1, 1.5),horiz=TRUE)
Save your customized plots to files for reports and presentations.
png(filename = "barplot_custom.png", width = 800, height = 600)
barplot(categories$Count, names.arg = categories$Category,
col = cls, main = "Frequency of Fruit Categories",
xlab = "Fruit", ylab = "Count",space = c(0.5, 1, 1.5),horiz=TRUE)
dev.off() #In rconsole
## png
## 2
Likewise you can also save in pdf.
###Exercise
crabs
dataset, create a bar plot showing the
frequency of each spine.counts <- table(crabs$spine)
barplot(counts, col = cls[-1], main = "Frequency of Iris Species",
xlab = "Species", ylab = "Count")
barplot(counts, col = cls[-1], main = "Customized Bar Width and Spacing",
xlab = "Species", ylab = "Count", width = 0.5, space = 1.5)