USStates <- read.csv("C:/Users/casey/Downloads/USStates.csv")
df1 <- mutate(USStates, covprev = cases/Pop2019)
model1 <- lm(percent_fully_vax ~ covprev + BidenVote2020 + Region, df1)
summary(model1)
##
## Call:
## lm(formula = percent_fully_vax ~ covprev + BidenVote2020 + Region,
## data = df1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.0124 -2.3351 -0.2495 2.3418 6.5088
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 35.77747 5.19810 6.883 1.70e-08 ***
## covprev -56.59033 24.42426 -2.317 0.025222 *
## BidenVote2020 0.42749 0.07042 6.070 2.66e-07 ***
## RegionNE 4.91261 1.76371 2.785 0.007857 **
## RegionS -5.18318 1.41423 -3.665 0.000662 ***
## RegionW -1.71578 1.47282 -1.165 0.250311
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.592 on 44 degrees of freedom
## Multiple R-squared: 0.8432, Adjusted R-squared: 0.8254
## F-statistic: 47.34 on 5 and 44 DF, p-value: < 2.2e-16
plot(model1, 1:2)

