'data.frame': 398 obs. of 30 variables:
$ Sector : chr "Rural" "Urban" "Rural+Urban" "Rural" ...
$ Year : num 2013 2013 2013 2013 2013 ...
$ Month : chr "January" "January" "January" "February" ...
$ Cereals.and.products : num 108 110 108 109 113 ...
$ Meat.and.fish : num 106 109 107 109 113 ...
$ Egg : num 108 113 110 110 117 ...
$ Milk.and.products : num 105 104 104 105 104 ...
$ Oils.and.fats : num 106 103 105 107 104 ...
$ Fruits : num 104 102 103 104 103 ...
$ Vegetables : num 102 103 102 102 105 ...
$ Pulses.and.products : num 106 106 106 106 104 ...
$ Sugar.and.Confectionery : num 107 105 106 106 104 ...
$ Spices : num 103 102 103 103 102 ...
$ Non.alcoholic.beverages : num 105 105 105 105 106 ...
$ Prepared.meals..snacks..sweets.etc.: num 107 108 107 108 109 ...
$ Food.and.beverages : num 106 106 106 106 107 ...
$ Pan..tobacco.and.intoxicants : num 105 105 105 106 106 ...
$ Clothing : num 106 106 106 107 107 ...
$ Footwear : num 106 105 106 106 106 ...
$ Clothing.and.footwear : num 106 106 106 107 106 ...
$ Housing : chr NA "100.3" "100.3" NA ...
$ Fuel.and.light : num 106 105 106 106 106 ...
$ Household.goods.and.services : num 105 105 105 105 105 ...
$ Health : num 104 104 104 104 105 ...
$ Transport.and.communication : num 103 103 103 104 104 ...
$ Recreation.and.amusement : num 103 103 103 104 103 ...
$ Education : num 104 104 104 104 104 ...
$ Personal.care.and.effects : num 105 104 104 105 104 ...
$ Miscellaneous : num 104 104 104 104 104 ...
$ General.index : num 105 104 105 106 105 ...
Sector Year Month Cereals.and.products
Length:398 Min. :2013 Length:398 Min. :107.5
Class :character 1st Qu.:2015 Class :character 1st Qu.:124.7
Mode :character Median :2018 Mode :character Median :136.8
Mean :2018 Mean :139.7
3rd Qu.:2021 3rd Qu.:148.2
Max. :2024 Max. :188.6
NA's :3
Meat.and.fish Egg Milk.and.products Oils.and.fats
Min. :106.3 Min. :102.7 Min. :103.6 Min. :101.1
1st Qu.:131.3 1st Qu.:123.3 1st Qu.:128.8 1st Qu.:111.2
Median :146.5 Median :137.4 Median :141.7 Median :121.1
Mean :160.3 Mean :144.0 Mean :143.0 Mean :134.0
3rd Qu.:198.6 3rd Qu.:168.8 3rd Qu.:156.1 3rd Qu.:159.1
Max. :226.6 Max. :206.1 Max. :183.2 Max. :209.9
NA's :6 NA's :3 NA's :3 NA's :3
Fruits Vegetables Pulses.and.products Sugar.and.Confectionery
Min. :102.3 Min. :101.4 Min. :103.5 Min. : 85.3
1st Qu.:131.1 1st Qu.:136.7 1st Qu.:121.0 1st Qu.:104.0
Median :142.8 Median :155.4 Median :142.6 Median :113.8
Mean :143.2 Mean :159.6 Mean :145.1 Mean :112.0
3rd Qu.:155.6 3rd Qu.:177.6 3rd Qu.:165.3 3rd Qu.:119.8
Max. :186.7 Max. :295.3 Max. :210.1 Max. :131.4
NA's :3 NA's :3 NA's :3 NA's :3
Spices Non.alcoholic.beverages Prepared.meals..snacks..sweets.etc.
Min. :101.8 Min. :104.8 Min. :106.7
1st Qu.:129.7 1st Qu.:120.7 1st Qu.:132.7
Median :140.2 Median :130.2 Median :151.8
Mean :150.7 Mean :136.8 Mean :152.3
3rd Qu.:165.5 3rd Qu.:156.3 3rd Qu.:171.2
Max. :249.8 Max. :182.3 Max. :204.0
NA's :3 NA's :3 NA's :6
Food.and.beverages Pan..tobacco.and.intoxicants Clothing
Min. :105.5 Min. :105.1 Min. :105.9
1st Qu.:130.3 1st Qu.:132.4 1st Qu.:126.8
Median :139.6 Median :157.9 Median :144.8
Mean :145.7 Mean :158.6 Mean :145.7
3rd Qu.:163.9 3rd Qu.:190.8 3rd Qu.:159.8
Max. :199.4 Max. :209.5 Max. :195.4
NA's :3 NA's :6 NA's :6
Footwear Clothing.and.footwear Housing Fuel.and.light
Min. :105.0 Min. :105.8 Length:398 Min. :105.4
1st Qu.:121.6 1st Qu.:126.1 Class :character 1st Qu.:118.2
Median :135.6 Median :143.2 Mode :character Median :136.4
Mean :138.9 Mean :144.7 Mean :139.5
3rd Qu.:150.4 3rd Qu.:158.3 3rd Qu.:156.9
Max. :190.9 Max. :194.8 Max. :187.4
NA's :6 NA's :6 NA's :3
Household.goods.and.services Health Transport.and.communication
Min. :104.8 Min. :104.0 Min. :103.2
1st Qu.:122.0 1st Qu.:119.6 1st Qu.:112.0
Median :137.3 Median :136.2 Median :121.1
Mean :139.4 Mean :141.8 Mean :129.8
3rd Qu.:154.4 3rd Qu.:163.2 3rd Qu.:150.4
Max. :183.3 Max. :193.8 Max. :172.2
NA's :6 NA's :3 NA's :6
Recreation.and.amusement Education Personal.care.and.effects
Min. :102.9 Min. :103.5 Min. :102.1
1st Qu.:118.1 1st Qu.:125.7 1st Qu.:113.3
Median :132.4 Median :143.8 Median :129.6
Mean :136.5 Mean :143.8 Mean :136.9
3rd Qu.:155.1 3rd Qu.:161.8 3rd Qu.:158.9
Max. :177.4 Max. :186.0 Max. :190.1
NA's :6 NA's :6 NA's :6
Miscellaneous General.index
Min. :103.7 Min. :104.0
1st Qu.:117.2 1st Qu.:124.2
Median :132.2 Median :138.6
Mean :137.1 Mean :142.6
3rd Qu.:156.8 3rd Qu.:160.8
Max. :183.8 Max. :188.2
NA's :6 NA's :6
---
title: "CPI Data Analysis"
output:
flexdashboard::flex_dashboard:
orientation: rows
vertical_layout: scroll
theme: journal
social: menu
source_code: embed
---
```{r setup, include=FALSE}
library(flexdashboard)
library(ggplot2)
library(dplyr)
library(shiny)
data <- read.csv("datafile.csv")
data$Year <- as.numeric(data$Year)
```
## Dataset Description {.tabset}
### About the dataset
```{r}
str(data)
```
### Summary of the Dataset
```{r}
summary(data)
```
## Univariat Analysis {.tabset}
```{r}
```
### Education CPI for Rural and Urban (2023)
```{r}
data$Year <- as.numeric(data$Year)
data$Education <- as.numeric(data$Education)
data$Health <- as.numeric(data$Health)
data$Vegetables <- as.numeric(data$Vegetables)
data$General.index <- as.numeric(data$General.index)
filtered_data_2023 <- data %>%
filter(Year == 2023 & Sector %in% c("Rural", "Urban"))
ggplot(filtered_data_2023, aes(x = Education, fill = Sector)) +
geom_histogram(binwidth = 5, alpha = 0.7, position = 'dodge') +
ggtitle(" Education CPI for Rural and Urban (2023)") +
xlab("CPI for Education") +
ylab("Count") +
theme_minimal()
```
### Year-over-Year Inflation Percentage
```{r}
inflation_data <- data %>%
group_by(Year) %>%
summarise(Average_CPI = mean(General.index, na.rm = TRUE)) %>%
mutate(Percentage_Increase = (Average_CPI - lag(Average_CPI)) / lag(Average_CPI) * 100)
ggplot(inflation_data, aes(x = Year, y = Percentage_Increase)) +
geom_line(color = "blue") +
ggtitle("Year-over-Year Inflation Percentage") +
xlab("Year") +
ylab("Inflation Percentage")
```
### CPI Growth Across Sectors
```{r}
sector_growth <- data %>%
group_by(Year, Sector) %>%
summarise(Average_CPI = mean(General.index, na.rm = TRUE)) %>%
arrange(Year)
ggplot(sector_growth, aes(x = Year, y = Average_CPI, color = Sector)) +
geom_line() +
ggtitle("CPI Growth Across Sectors") +
xlab("Year") +
ylab("CPI Index")
```
### Vegetable CPI: Rural vs Urban Comparison
```{r}
veg_data <- data %>%
filter(Sector %in% c("Rural", "Urban")) %>%
group_by(Year, Sector) %>%
summarise(Average_Vegetable_CPI = mean(Vegetables, na.rm = TRUE))
ggplot(veg_data, aes(x = Year, y = Average_Vegetable_CPI, color = Sector)) +
geom_line() +
ggtitle("Vegetable CPI: Rural vs Urban Comparison") +
xlab("Year") +
ylab("Vegetable CPI")
```
### Education CPI: Rural vs Urban Comparison
```{r}
edu_data <- data %>%
filter(Sector %in% c("Rural", "Urban")) %>%
group_by(Year, Sector) %>%
summarise(Average_Education_CPI = mean(Education, na.rm = TRUE))
ggplot(edu_data, aes(x = Year, y = Average_Education_CPI, color = Sector)) +
geom_line() +
ggtitle("Education CPI: Rural vs Urban Comparison") +
xlab("Year") +
ylab("Education CPI")
```
### Box Plot of CPI Growth: Rural vs Urban
```{r}
ggplot(data, aes(x = Sector, y = General.index, fill = Sector)) +
geom_boxplot() +
ggtitle("Box Plot of CPI Growth: Rural vs Urban") +
xlab("Sector") +
ylab("CPI Index")
```
### Education CPI vs Health CPI (2023)
```{r}
# Scatter Plot for Education CPI vs Health CPI
ggplot(filtered_data_2023, aes(x = Education, y = Health, color = Sector)) +
geom_point(size = 3, alpha = 0.7) +
ggtitle(" Education CPI vs Health CPI (2023)") +
xlab("CPI for Education") +
ylab("CPI for Health") +
theme_minimal() +
theme(legend.position = "top")
```