##
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
##
## Adjuntando el paquete: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
library(tidyr)
library(readxl)
load("C:/Users/Favio Andrés/Downloads/data_comercio_exterior.RData")
nombre_archivo <- "C:/Users/Favio Andrés/Downloads/master_paises_iso.xlsx"Con base en la información disponible en la “Base de Datos de Comercio Exterior” del BCR,incluida en el archivo .RData disponible para esta tarea, para los años 2018-2020. Genera una tabla tal como se mostró en las clases (aún no incluya los nombres ISO de los países).Muestre un head de 10 casos.
| pais | sac | anio | mes | valor_cif | kilogramos_importaciones | valor_fob | kilogramos_exportaciones |
|---|---|---|---|---|---|---|---|
| Afganistan | 0806200000 | 2018 | 6 | 6448.43 | 1463.92 | 0 | 0 |
| Afganistan | 6104220000 | 2018 | 10 | 3153.37 | 2407.61 | 0 | 0 |
| Afganistan | 6104620000 | 2018 | 10 | 946.01 | 722.28 | 0 | 0 |
| Afganistan | 6105100000 | 2018 | 10 | 9405.39 | 7181.03 | 0 | 0 |
| Afganistan | 6106100000 | 2018 | 10 | 1353.32 | 1725.55 | 0 | 0 |
| Afganistan | 6405900000 | 2018 | 10 | 2260.03 | 1725.55 | 0 | 0 |
| Afganistan | 8206000000 | 2018 | 10 | 6.56 | 5.02 | 0 | 0 |
| Afganistan | 6404110000 | 2019 | 2 | 7752.13 | 6748.03 | 0 | 0 |
| Afganistan | 6405100000 | 2019 | 2 | 508.03 | 442.24 | 0 | 0 |
| Afganistan | 6405900000 | 2019 | 2 | 12.45 | 10.85 | 0 | 0 |
#EJERCICIO 2 Agregue la información estandarizada de los países (nombres iso de los países y regiones, etc, tal como se vio en clases). Muestre un head de 10 casos.
## New names:
## • `codigo_pais` -> `codigo_pais...5`
## • `codigo_pais` -> `codigo_pais...6`
## • `` -> `...13`
data_comercio_exterior %>%
left_join(nombres_iso_paises,
by = c("pais" = "nom_pais_esp")) -> data_comercio_exterioranios_ranking<-2018:2020
data_comercio_exterior %>%
filter(anio %in% anios_ranking) -> data_ranking
data_ranking <- data_ranking %>%
select(pais,iso_3,iso_2,region,everything())| pais | iso_3 | iso_2 | region | sac | anio | mes | valor_cif | kilogramos_importaciones | valor_fob | kilogramos_exportaciones | nom_pais_ingles | codigo_pais…5 | codigo_pais…6 | cod_region | sub_region | cod_sub_region | region_intermedia | cod_region_intermedia | …13 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Afganistan | AFG | AF | 142 | 0806200000 | 2018 | 6 | 6448.43 | 1463.92 | 0 | 0 | Afghanistan | 4 | Asia | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | AFG | AF | 142 | 6104220000 | 2018 | 10 | 3153.37 | 2407.61 | 0 | 0 | Afghanistan | 4 | Asia | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | AFG | AF | 142 | 6104620000 | 2018 | 10 | 946.01 | 722.28 | 0 | 0 | Afghanistan | 4 | Asia | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | AFG | AF | 142 | 6105100000 | 2018 | 10 | 9405.39 | 7181.03 | 0 | 0 | Afghanistan | 4 | Asia | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | AFG | AF | 142 | 6106100000 | 2018 | 10 | 1353.32 | 1725.55 | 0 | 0 | Afghanistan | 4 | Asia | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | AFG | AF | 142 | 6405900000 | 2018 | 10 | 2260.03 | 1725.55 | 0 | 0 | Afghanistan | 4 | Asia | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | AFG | AF | 142 | 8206000000 | 2018 | 10 | 6.56 | 5.02 | 0 | 0 | Afghanistan | 4 | Asia | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | AFG | AF | 142 | 6404110000 | 2019 | 2 | 7752.13 | 6748.03 | 0 | 0 | Afghanistan | 4 | Asia | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | AFG | AF | 142 | 6405100000 | 2019 | 2 | 508.03 | 442.24 | 0 | 0 | Afghanistan | 4 | Asia | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | AFG | AF | 142 | 6405900000 | 2019 | 2 | 12.45 | 10.85 | 0 | 0 | Afghanistan | 4 | Asia | Asia Meridional | 34 | NA | NA | Asia | 142 |
Obtenga un ranking, anual, de los 5 principales socios comerciales de El Salvador, para el periodo 2018-2020. Presente sus resultados en el siguiente formato:
data_ranking %>%
group_by(anio,iso_3) %>%
summarise(total=sum(valor_fob)) %>% mutate(percent=round(prop.table(total)*100,2)) %>%
slice_max(n = 5,order_by = total) %>%
as.data.frame() %>%
group_by(anio) %>%
mutate(rank = row_number(),
data=paste(iso_3,"|",percent,sep = "")) %>%
select(anio,data,rank) %>% as.data.frame() -> insumo_reporte## `summarise()` has grouped output by 'anio'. You can override using the
## `.groups` argument.
## anio data rank
## 1 2018 USA|44.07 1
## 2 2018 HND|15.34 2
## 3 2018 GTM|14.36 3
## 4 2018 NIC|6.87 4
## 5 2018 CRI|4.39 5
## 6 2019 USA|41.88 1
## 7 2019 GTM|15.95 2
## 8 2019 HND|15.91 3
## 9 2019 NIC|6.68 4
## 10 2019 CRI|4.5 5
## 11 2020 USA|35.73 1
## 12 2020 GTM|16.9 2
## 13 2020 HND|15.21 3
## 14 2020 NIC|7.65 4
## 15 2020 CRI|5.21 5
library(tidyr)
insumo_reporte %>%
pivot_wider(names_from = rank,values_from = data)->tabla
print(tabla)## # A tibble: 3 × 6
## anio `1` `2` `3` `4` `5`
## <dbl> <chr> <chr> <chr> <chr> <chr>
## 1 2018 USA|44.07 HND|15.34 GTM|14.36 NIC|6.87 CRI|4.39
## 2 2019 USA|41.88 GTM|15.95 HND|15.91 NIC|6.68 CRI|4.5
## 3 2020 USA|35.73 GTM|16.9 HND|15.21 NIC|7.65 CRI|5.21
library(kableExtra)
tabla %>%
kable(caption = paste("Top",5,"de Exportaciones periodo",
min(anios_ranking),"-",max(anios_ranking))) %>%
add_footnote(label = "Elaboración propia con base en datos del BCR") | anio | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 2018 | USA|44.07 | HND|15.34 | GTM|14.36 | NIC|6.87 | CRI|4.39 |
| 2019 | USA|41.88 | GTM|15.95 | HND|15.91 | NIC|6.68 | CRI|4.5 |
| 2020 | USA|35.73 | GTM|16.9 | HND|15.21 | NIC|7.65 | CRI|5.21 |
Note: aElaboración propia con base en datos del BCR