library(readxl)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
wd<-getwd()
district<-read_xls("district.xls")
###2) create a new data frame with "DISTNAME", "DPETSPEP" (percent special education) and "DPFPASPEP" (money spent on special education). call the dataframe whatever you want
district_data_frame<-district %>% select( "DISTNAME", "DPETSPEP", "DPFPASPEP")
head(district_data_frame)
## # A tibble: 6 × 3
##   DISTNAME      DPETSPEP DPFPASPEP
##   <chr>            <dbl>     <dbl>
## 1 CAYUGA ISD        14.6      28.9
## 2 ELKHART ISD       12.1       8.8
## 3 FRANKSTON ISD     13.1       8.4
## 4 NECHES ISD        10.5      10.1
## 5 PALESTINE ISD     13.5       6.1
## 6 WESTWOOD ISD      14.5       9.4
###3) give me "summary()" statistics for both DPETSPEP and DFPASPEP. You can summarize them separately if you want.
summary(district$"DPETSPEP")
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    9.90   12.10   12.27   14.20   51.70
summary(district$"DPFPASPEP")
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   0.000   5.800   8.900   9.711  12.500  49.000       5
###4) Which variable has missing values? 

###THE VARIABLE "DPFPASPEP"(MONEY SPENT ON EDUCATION) HAS 5 MISSING VALUES
###5) remove the missing observations. How many are left overall?

###OVERALL THERE ARE ONLY 1201 OBSERVATIONS LEFT OF THE 1207 TOTAL OBSERVATIONS

district_data_frame_cleaned<- district_data_frame %>% filter(DPFPASPEP>0)
summary(district_data_frame_cleaned$"DPFPASPEP")
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.200   5.800   8.900   9.719  12.500  49.000
###6) Create a point graph (hint: ggplot + geom_point()) to compare DPFPASPEP and DPETSPEP. Are they correlated?

###YES, GRAPH SHOWS THERE IS A POSITIVE CORRELATION

compare_two<-district_data_frame_cleaned %>% select(DISTNAME,DPFPASPEP,DPETSPEP)

compare_two<-compare_two %>% filter(DPFPASPEP>0)

ggplot(compare_two,aes(DPFPASPEP,DPETSPEP)) + geom_point()

###7) Do a mathematical check (cor()) of DPFPASPEP and DPETSPEP. What is the result?

cor(district_data_frame_cleaned$"DPETSPEP",district_data_frame_cleaned$"DPFPASPEP")
## [1] 0.371033
###8) How would you interpret these results? (No real right or wrong answer -- just tell me what you see)

###THE CORRELATION SHOWS IT IS POSITIVE, HOWEVER SINCE IT IS IN THE .30'S AND UNDER THE .40-.80 RANGE, I SAY IT WOULD BE CONSIDERED A WEAK CORRELATION.