library(readxl)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
district<-read_excel("district.xls")

summary(district$DISTNAME)
##    Length     Class      Mode 
##      1207 character character

#No missing variables here

summary(district$DPETSPEP)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    9.90   12.10   12.27   14.20   51.70
summary(district$DPFPASPEP)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   0.000   5.800   8.900   9.711  12.500  49.000       5

#NA’s is 5

newone<-district%>%select(DISTNAME,DPETSPEP,DPFPASPEP)
your_variable_here_cleaned<-newone%>% filter(!is.na(DPFPASPEP))
ggplot(your_variable_here_cleaned,aes(DPETSPEP,DPFPASPEP))+geom_point()

How this can be interpreted is that there is money for special eductation until around 20% then the money tapers off.

cor(your_variable_here_cleaned$DPETSPEP,your_variable_here_cleaned$DPFPASPEP)
## [1] 0.3700234