library(readxl)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
district<-read_excel("district.xls")
summary(district$DISTNAME)
## Length Class Mode
## 1207 character character
#No missing variables here
summary(district$DPETSPEP)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 9.90 12.10 12.27 14.20 51.70
summary(district$DPFPASPEP)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 5.800 8.900 9.711 12.500 49.000 5
#NA’s is 5
newone<-district%>%select(DISTNAME,DPETSPEP,DPFPASPEP)
your_variable_here_cleaned<-newone%>% filter(!is.na(DPFPASPEP))
ggplot(your_variable_here_cleaned,aes(DPETSPEP,DPFPASPEP))+geom_point()
How this can be interpreted is that there is money for special
eductation until around 20% then the money tapers off.
cor(your_variable_here_cleaned$DPETSPEP,your_variable_here_cleaned$DPFPASPEP)
## [1] 0.3700234