Import Data

ikea <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-03/ikea.csv')
## New names:
## Rows: 3694 Columns: 14
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (7): name, category, old_price, link, other_colors, short_description, d... dbl
## (6): ...1, item_id, price, depth, height, width lgl (1): sellable_online
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
skimr::skim(ikea)
Data summary
Name ikea
Number of rows 3694
Number of columns 14
_______________________
Column type frequency:
character 7
logical 1
numeric 6
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
name 0 1 3 27 0 607 0
category 0 1 4 36 0 17 0
old_price 0 1 4 13 0 365 0
link 0 1 52 163 0 2962 0
other_colors 0 1 2 3 0 2 0
short_description 0 1 3 63 0 1706 0
designer 0 1 3 1261 0 381 0

Variable type: logical

skim_variable n_missing complete_rate mean count
sellable_online 0 1 0.99 TRU: 3666, FAL: 28

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
…1 0 1.00 1846.50 1066.51 0 923.25 1846.5 2769.75 3693 ▇▇▇▇▇
item_id 0 1.00 48632396.79 28887094.10 58487 20390574.00 49288078.0 70403572.75 99932615 ▇▇▇▇▇
price 0 1.00 1078.21 1374.65 3 180.90 544.7 1429.50 9585 ▇▁▁▁▁
depth 1463 0.60 54.38 29.96 1 38.00 47.0 60.00 257 ▇▃▁▁▁
height 988 0.73 101.68 61.10 1 67.00 83.0 124.00 700 ▇▂▁▁▁
width 589 0.84 104.47 71.13 1 60.00 80.0 140.00 420 ▇▅▂▁▁
data <- ikea %>%
   select(-old_price, -link,) %>%
    na.omit() %>%

mutate(price = log(price))

Explore Data

category

data %>%
    ggplot(aes(category, price)) +
    geom_point()

other colors

data %>%
    ggplot(aes(y = price, x = other_colors)) +
    geom_point()

product height

data %>%
    ggplot(aes(price, height)) +
    geom_point()

product depth

data %>%
    ggplot(aes(price, depth)) +
    geom_point()

product width

data %>%
    ggplot(aes(price, width)) +
    geom_point()

title

# Step 1: Prepare data
data_binarized_tbl <- data %>%
    select(-item_id, -short_description,-1) %>%
    binarize

data_binarized_tbl %>% glimpse()
## Rows: 1,899
## Columns: 82
## $ name__ALGOT                                      <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__BEKANT                                     <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__BESTÅ                                      <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `name__BILLY_/_OXBERG`                           <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__BRIMNES                                    <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__BROR                                       <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__EKET                                       <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__GRÖNLID                                    <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__HAVSTA                                     <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__HAVSTEN                                    <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__HEMNES                                     <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__IVAR                                       <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__JONAXEL                                    <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__KALLAX                                     <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__LIDHULT                                    <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__LIXHULT                                    <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__NORDLI                                     <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__PAX                                        <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__PLATSA                                     <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `name__STUVA_/_FRITIDS`                          <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__TROFAST                                    <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__VALLENTUNA                                 <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ name__VIMLE                                      <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `name__-OTHER`                                   <dbl> 1, 1, 1, 1, 1, 1, 1, …
## $ category__Bar_furniture                          <dbl> 1, 1, 1, 1, 1, 1, 1, …
## $ category__Beds                                   <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `category__Bookcases_&_shelving_units`           <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `category__Cabinets_&_cupboards`                 <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ category__Chairs                                 <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `category__Chests_of_drawers_&_drawer_units`     <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `category__Children's_furniture`                 <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ category__Nursery_furniture                      <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ category__Outdoor_furniture                      <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `category__Sideboards,_buffets_&_console_tables` <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `category__Sofas_&_armchairs`                    <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `category__Tables_&_desks`                       <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `category__TV_&_media_furniture`                 <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ category__Wardrobes                              <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `category__-OTHER`                               <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `price__-Inf_5.68697535633982`                   <dbl> 1, 1, 0, 1, 1, 1, 0, …
## $ price__5.68697535633982_6.52209279817015         <dbl> 0, 0, 1, 0, 0, 0, 1, …
## $ price__6.52209279817015_7.37085996851068         <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ price__7.37085996851068_Inf                      <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ sellable_online__1                               <dbl> 1, 1, 1, 1, 1, 1, 1, …
## $ `sellable_online__-OTHER`                        <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ other_colors__No                                 <dbl> 0, 1, 1, 1, 1, 1, 1, …
## $ other_colors__Yes                                <dbl> 1, 0, 0, 0, 0, 0, 0, …
## $ designer__Andreas_Fredriksson                    <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ designer__Carina_Bengs                           <dbl> 0, 0, 1, 0, 0, 0, 1, …
## $ designer__Carl_Öjerstam                          <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ designer__Ebba_Strandmark                        <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ designer__Ehlén_Johansson                        <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `designer__Ehlén_Johansson/IKEA_of_Sweden`       <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ designer__Eva_Lilja_Löwenhielm                   <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ designer__Francis_Cayouette                      <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ designer__Gillis_Lundgren                        <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ designer__Henrik_Preutz                          <dbl> 1, 0, 0, 0, 0, 0, 0, …
## $ designer__IKEA_of_Sweden                         <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `designer__IKEA_of_Sweden/Ehlén_Johansson`       <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `designer__IKEA_of_Sweden/Jon_Karlsson`          <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ designer__Johan_Kroon                            <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ designer__Jon_Karlsson                           <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `designer__Jon_Karlsson/IKEA_of_Sweden`          <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `designer__K_Hagberg/M_Hagberg`                  <dbl> 0, 0, 0, 1, 1, 1, 0, …
## $ designer__Mia_Lagerman                           <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ designer__Nike_Karlsson                          <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ designer__Ola_Wihlborg                           <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ designer__Studio_Copenhagen                      <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ designer__Tord_Björklund                         <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `designer__-OTHER`                               <dbl> 0, 1, 0, 0, 0, 0, 0, …
## $ `depth__-Inf_40`                                 <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ depth__40_47                                     <dbl> 0, 0, 1, 1, 1, 1, 1, …
## $ depth__47_60                                     <dbl> 1, 1, 0, 0, 0, 0, 0, …
## $ depth__60_Inf                                    <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `height__-Inf_71`                                <dbl> 0, 1, 0, 0, 0, 0, 0, …
## $ height__71_92                                    <dbl> 0, 0, 1, 0, 0, 0, 0, …
## $ height__92_171                                   <dbl> 1, 0, 0, 1, 1, 1, 1, …
## $ height__171_Inf                                  <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ `width__-Inf_60`                                 <dbl> 1, 0, 1, 1, 1, 1, 1, …
## $ width__60_93                                     <dbl> 0, 1, 0, 0, 0, 0, 0, …
## $ width__93_161.5                                  <dbl> 0, 0, 0, 0, 0, 0, 0, …
## $ width__161.5_Inf                                 <dbl> 0, 0, 0, 0, 0, 0, 0, …
# Step 2: Correlate
data_corr_tbl <- data_binarized_tbl %>%
    correlate(price__7.37085996851068_Inf)

data_corr_tbl
## # A tibble: 82 × 3
##    feature  bin                               correlation
##    <fct>    <chr>                                   <dbl>
##  1 price    7.37085996851068_Inf                    1    
##  2 width    161.5_Inf                               0.579
##  3 depth    60_Inf                                  0.447
##  4 category Sofas_&_armchairs                       0.379
##  5 width    -Inf_60                                -0.374
##  6 price    -Inf_5.68697535633982                  -0.336
##  7 price    6.52209279817015_7.37085996851068      -0.333
##  8 price    5.68697535633982_6.52209279817015      -0.331
##  9 name     PAX                                     0.302
## 10 category Wardrobes                               0.279
## # ℹ 72 more rows
#Step 3: Plot
data_corr_tbl %>%
    plot_correlation_funnel()
## Warning: ggrepel: 58 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps