filter(flights, month== 1, day== 1)
## # A tibble: 842 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ℹ 832 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
filter(flights, month== 1 & day== 1)
## # A tibble: 842 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ℹ 832 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
filter(flights, month== 1 | day== 1)
## # A tibble: 37,198 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ℹ 37,188 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
filter(flights, month %in% c(11,12))
## # A tibble: 55,403 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 11 1 5 2359 6 352 345
## 2 2013 11 1 35 2250 105 123 2356
## 3 2013 11 1 455 500 -5 641 651
## 4 2013 11 1 539 545 -6 856 827
## 5 2013 11 1 542 545 -3 831 855
## 6 2013 11 1 549 600 -11 912 923
## 7 2013 11 1 550 600 -10 705 659
## 8 2013 11 1 554 600 -6 659 701
## 9 2013 11 1 554 600 -6 826 827
## 10 2013 11 1 554 600 -6 749 751
## # ℹ 55,393 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
#arrange rows
arrange(flights, desc(month),desc(day))
## # A tibble: 336,776 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 12 31 13 2359 14 439 437
## 2 2013 12 31 18 2359 19 449 444
## 3 2013 12 31 26 2245 101 129 2353
## 4 2013 12 31 459 500 -1 655 651
## 5 2013 12 31 514 515 -1 814 812
## 6 2013 12 31 549 551 -2 925 900
## 7 2013 12 31 550 600 -10 725 745
## 8 2013 12 31 552 600 -8 811 826
## 9 2013 12 31 553 600 -7 741 754
## 10 2013 12 31 554 550 4 1024 1027
## # ℹ 336,766 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
#select columns
select(flights, year:dep_time)
## # A tibble: 336,776 × 4
## year month day dep_time
## <int> <int> <int> <int>
## 1 2013 1 1 517
## 2 2013 1 1 533
## 3 2013 1 1 542
## 4 2013 1 1 544
## 5 2013 1 1 554
## 6 2013 1 1 554
## 7 2013 1 1 555
## 8 2013 1 1 557
## 9 2013 1 1 557
## 10 2013 1 1 558
## # ℹ 336,766 more rows
select(flights, year, month, day, dep_time)
## # A tibble: 336,776 × 4
## year month day dep_time
## <int> <int> <int> <int>
## 1 2013 1 1 517
## 2 2013 1 1 533
## 3 2013 1 1 542
## 4 2013 1 1 544
## 5 2013 1 1 554
## 6 2013 1 1 554
## 7 2013 1 1 555
## 8 2013 1 1 557
## 9 2013 1 1 557
## 10 2013 1 1 558
## # ℹ 336,766 more rows
select(flights, year, month, day, dep_time, dep_delay)
## # A tibble: 336,776 × 5
## year month day dep_time dep_delay
## <int> <int> <int> <int> <dbl>
## 1 2013 1 1 517 2
## 2 2013 1 1 533 4
## 3 2013 1 1 542 2
## 4 2013 1 1 544 -1
## 5 2013 1 1 554 -6
## 6 2013 1 1 554 -4
## 7 2013 1 1 555 -5
## 8 2013 1 1 557 -3
## 9 2013 1 1 557 -3
## 10 2013 1 1 558 -2
## # ℹ 336,766 more rows
select(flights, year, month, day, starts_with("dep"))
## # A tibble: 336,776 × 5
## year month day dep_time dep_delay
## <int> <int> <int> <int> <dbl>
## 1 2013 1 1 517 2
## 2 2013 1 1 533 4
## 3 2013 1 1 542 2
## 4 2013 1 1 544 -1
## 5 2013 1 1 554 -6
## 6 2013 1 1 554 -4
## 7 2013 1 1 555 -5
## 8 2013 1 1 557 -3
## 9 2013 1 1 557 -3
## 10 2013 1 1 558 -2
## # ℹ 336,766 more rows
select(flights, year, month, day, contains("time"))
## # A tibble: 336,776 × 9
## year month day dep_time sched_dep_time arr_time sched_arr_time air_time
## <int> <int> <int> <int> <int> <int> <int> <dbl>
## 1 2013 1 1 517 515 830 819 227
## 2 2013 1 1 533 529 850 830 227
## 3 2013 1 1 542 540 923 850 160
## 4 2013 1 1 544 545 1004 1022 183
## 5 2013 1 1 554 600 812 837 116
## 6 2013 1 1 554 558 740 728 150
## 7 2013 1 1 555 600 913 854 158
## 8 2013 1 1 557 600 709 723 53
## 9 2013 1 1 557 600 838 846 140
## 10 2013 1 1 558 600 753 745 138
## # ℹ 336,766 more rows
## # ℹ 1 more variable: time_hour <dttm>
select(flights, year, month, day, ends_with("time"))
## # A tibble: 336,776 × 8
## year month day dep_time sched_dep_time arr_time sched_arr_time air_time
## <int> <int> <int> <int> <int> <int> <int> <dbl>
## 1 2013 1 1 517 515 830 819 227
## 2 2013 1 1 533 529 850 830 227
## 3 2013 1 1 542 540 923 850 160
## 4 2013 1 1 544 545 1004 1022 183
## 5 2013 1 1 554 600 812 837 116
## 6 2013 1 1 554 558 740 728 150
## 7 2013 1 1 555 600 913 854 158
## 8 2013 1 1 557 600 709 723 53
## 9 2013 1 1 557 600 838 846 140
## 10 2013 1 1 558 600 753 745 138
## # ℹ 336,766 more rows
select(flights, year, month, day, contains("time"))
## # A tibble: 336,776 × 9
## year month day dep_time sched_dep_time arr_time sched_arr_time air_time
## <int> <int> <int> <int> <int> <int> <int> <dbl>
## 1 2013 1 1 517 515 830 819 227
## 2 2013 1 1 533 529 850 830 227
## 3 2013 1 1 542 540 923 850 160
## 4 2013 1 1 544 545 1004 1022 183
## 5 2013 1 1 554 600 812 837 116
## 6 2013 1 1 554 558 740 728 150
## 7 2013 1 1 555 600 913 854 158
## 8 2013 1 1 557 600 709 723 53
## 9 2013 1 1 557 600 838 846 140
## 10 2013 1 1 558 600 753 745 138
## # ℹ 336,766 more rows
## # ℹ 1 more variable: time_hour <dttm>
#Add columns
mutate(flights,
gain = dep_delay,- arr_delay) %>%
#select(year, month, day, and gain)
select(year: day, gain)
## # A tibble: 336,776 × 4
## year month day gain
## <int> <int> <int> <dbl>
## 1 2013 1 1 2
## 2 2013 1 1 4
## 3 2013 1 1 2
## 4 2013 1 1 -1
## 5 2013 1 1 -6
## 6 2013 1 1 -4
## 7 2013 1 1 -5
## 8 2013 1 1 -3
## 9 2013 1 1 -3
## 10 2013 1 1 -2
## # ℹ 336,766 more rows
#just keep gain
mutate(flights,
gain = dep_delay,- arr_delay) %>%
#select(year, month, day, and gain)
select(gain)
## # A tibble: 336,776 × 1
## gain
## <dbl>
## 1 2
## 2 4
## 3 2
## 4 -1
## 5 -6
## 6 -4
## 7 -5
## 8 -3
## 9 -3
## 10 -2
## # ℹ 336,766 more rows
#alternative using transmute()
mutate(flights,
gain = dep_delay,- arr_delay)
## # A tibble: 336,776 × 21
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ℹ 336,766 more rows
## # ℹ 13 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, gain <dbl>, `-arr_delay` <dbl>
#lag()
select(flights, dep_time)%>%
mutate(dep_time_lag1=lag(dep_time))
## # A tibble: 336,776 × 2
## dep_time dep_time_lag1
## <int> <int>
## 1 517 NA
## 2 533 517
## 3 542 533
## 4 544 542
## 5 554 544
## 6 554 554
## 7 555 554
## 8 557 555
## 9 557 557
## 10 558 557
## # ℹ 336,766 more rows
#cumsum()
select(flights, minute) %>%
mutate(minute_cumsum = (minute))
## # A tibble: 336,776 × 2
## minute minute_cumsum
## <dbl> <dbl>
## 1 15 15
## 2 29 29
## 3 40 40
## 4 45 45
## 5 0 0
## 6 58 58
## 7 0 0
## 8 0 0
## 9 0 0
## 10 0 0
## # ℹ 336,766 more rows
#summarize by group
Collapsing Data to a Single Row
flights
## # A tibble: 336,776 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ℹ 336,766 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
#average departure delay
summarise(flights,mean(dep_delay, na.rm= TRUE))
## # A tibble: 1 × 1
## `mean(dep_delay, na.rm = TRUE)`
## <dbl>
## 1 12.6
Summarise by group
flights %>%
#Group by airlines
group_by(carrier) %>%
#Calculate average departure delay
summarise(delay= mean(dep_delay, na.rm= TRUE))
## # A tibble: 16 × 2
## carrier delay
## <chr> <dbl>
## 1 9E 16.7
## 2 AA 8.59
## 3 AS 5.80
## 4 B6 13.0
## 5 DL 9.26
## 6 EV 20.0
## 7 F9 20.2
## 8 FL 18.7
## 9 HA 4.90
## 10 MQ 10.6
## 11 OO 12.6
## 12 UA 12.1
## 13 US 3.78
## 14 VX 12.9
## 15 WN 17.7
## 16 YV 19.0
#sort it
flights %>% arrange(dep_delay)
## # A tibble: 336,776 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 12 7 2040 2123 -43 40 2352
## 2 2013 2 3 2022 2055 -33 2240 2338
## 3 2013 11 10 1408 1440 -32 1549 1559
## 4 2013 1 11 1900 1930 -30 2233 2243
## 5 2013 1 29 1703 1730 -27 1947 1957
## 6 2013 8 9 729 755 -26 1002 955
## 7 2013 10 23 1907 1932 -25 2143 2143
## 8 2013 3 30 2030 2055 -25 2213 2250
## 9 2013 3 2 1431 1455 -24 1601 1631
## 10 2013 5 5 934 958 -24 1225 1309
## # ℹ 336,766 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
Delays increase with distance up to ~750 miles and then decrease
flights %>%
group_by(dest)%>%
summarise(count= n(),
dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE))%>%
#plot
ggplot(mapping=aes(x = dist,y = delay))
geom_point(aes(size = count),alpha=0.3)
## mapping: size = ~count
## geom_point: na.rm = FALSE
## stat_identity: na.rm = FALSE
## position_identity
geom_smooth(se = FALSE)
## geom_smooth: na.rm = FALSE, orientation = NA, se = FALSE
## stat_smooth: na.rm = FALSE, orientation = NA, se = FALSE
## position_identity
Missing Values
flights %>%
#removing missing values
filter(!is.na(dep_delay))
## # A tibble: 328,521 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ℹ 328,511 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
grouping multiple videos
flights %>%
group_by(year, month, day) %>%
summarise(count= n()) %>%
ungroup()
## `summarise()` has grouped output by 'year', 'month'. You can override using the
## `.groups` argument.
## # A tibble: 365 × 4
## year month day count
## <int> <int> <int> <int>
## 1 2013 1 1 842
## 2 2013 1 2 943
## 3 2013 1 3 914
## 4 2013 1 4 915
## 5 2013 1 5 720
## 6 2013 1 6 832
## 7 2013 1 7 933
## 8 2013 1 8 899
## 9 2013 1 9 902
## 10 2013 1 10 932
## # ℹ 355 more rows