Con base en la información disponible en la “Base de Datos de Comercio Exterior” del BCR, incluida en el archivo .RData disponible para esta tarea, para los años 2018-2020. Genera una tabla tal como se mostró en las clases (aún no incluya los nombres ISO de los países). Muestre un head de 10 casos.
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Warning: package 'kableExtra' was built under R version 4.3.3
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
data_comercio_exterior_estandarizada %>%
select("pais","sac","anio","mes","valor_cif") %>%
head(10) %>% kable(caption = "comercio exterior") %>% kable_minimal()| pais | sac | anio | mes | valor_cif |
|---|---|---|---|---|
| Afganistan | 4010390000 | 2017 | 4 | 58.06 |
| Afganistan | 6812999000 | 2017 | 4 | 88.38 |
| Afganistan | 8487900000 | 2017 | 4 | 20.93 |
| Afganistan | 8511800000 | 2017 | 4 | 98.93 |
| Afganistan | 8708930000 | 2017 | 4 | 62.18 |
| Afganistan | 9028200000 | 2017 | 4 | 130.06 |
| Afganistan | 6913100000 | 2017 | 12 | 650.43 |
| Afganistan | 7326209000 | 2017 | 12 | 2.00 |
| Afganistan | 0806200000 | 2018 | 6 | 6448.43 |
| Afganistan | 6104220000 | 2018 | 10 | 3153.37 |
Agregue la información estandarizada de los países (nombres iso de los países y regiones, etc, tal como se vio en clases). Muestre un head de 10 casos.
## Warning: package 'readxl' was built under R version 4.3.3
#Datos
load("C:/Users/DELL/Desktop/METODOSPARA EL ANALISIS ECONOMICO/data_comercio_exterior.RData")
#Pegar nombres paises
nombre_archivo <- "C:/Users/DELL/Desktop/METODOSPARA EL ANALISIS ECONOMICO/IMPORTACIONES/master_paises_iso.xlsx"
nombres_iso_paises <- read_excel(nombre_archivo)## New names:
## • `codigo_pais` -> `codigo_pais...5`
## • `codigo_pais` -> `codigo_pais...6`
## • `` -> `...13`
data_comercio_exterior_estandarizada %>%
left_join(nombres_iso_paises,
by = c("pais" = "nom_pais_esp")) -> data_comercio_exterior_estandar
save(data_comercio_exterior_estandar, file = "C:/Users/DELL/Desktop/METODOSPARA EL ANALISIS ECONOMICO/data_comercio_exterior.RData")
data_comercio_exterior_estandarizada %>% head(10) %>%
kable(caption = "Base de Comercio Exterior 2018 - 2020 estandarizada",
align = "c") %>%
add_footnote(label = "Elaboración propia",
notation = "number") %>% kable_styling()| pais | sac | anio | mes | valor_cif | kilogramos_importaciones | valor_fob | kilogramos_exportaciones | nom_pais_ingles.x | iso_2.x | iso_3.x | codigo_pais…5.x | codigo_pais…6.x | region.x | cod_region.x | sub_region.x | cod_sub_region.x | region_intermedia.x | cod_region_intermedia.x | …13.x | nom_pais_ingles.y | iso_2.y | iso_3.y | codigo_pais…5.y | codigo_pais…6.y | region.y | cod_region.y | sub_region.y | cod_sub_region.y | region_intermedia.y | cod_region_intermedia.y | …13.y | nom_pais_ingles.x.x | iso_2.x.x | iso_3.x.x | codigo_pais…5.x.x | codigo_pais…6.x.x | region.x.x | cod_region.x.x | sub_region.x.x | cod_sub_region.x.x | region_intermedia.x.x | cod_region_intermedia.x.x | …13.x.x | nom_pais_ingles.y.y | iso_2.y.y | iso_3.y.y | codigo_pais…5.y.y | codigo_pais…6.y.y | region.y.y | cod_region.y.y | sub_region.y.y | cod_sub_region.y.y | region_intermedia.y.y | cod_region_intermedia.y.y | …13.y.y | nom_pais_ingles.x.x.x | iso_2.x.x.x | iso_3.x.x.x | codigo_pais…5.x.x.x | codigo_pais…6.x.x.x | region.x.x.x | cod_region.x.x.x | sub_region.x.x.x | cod_sub_region.x.x.x | region_intermedia.x.x.x | cod_region_intermedia.x.x.x | …13.x.x.x | nom_pais_ingles.y.y.y | iso_2.y.y.y | iso_3.y.y.y | codigo_pais…5.y.y.y | codigo_pais…6.y.y.y | region.y.y.y | cod_region.y.y.y | sub_region.y.y.y | cod_sub_region.y.y.y | region_intermedia.y.y.y | cod_region_intermedia.y.y.y | …13.y.y.y |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Afganistan | 4010390000 | 2017 | 4 | 58.06 | 0.92 | 0 | 0 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | 6812999000 | 2017 | 4 | 88.38 | 1.39 | 0 | 0 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | 8487900000 | 2017 | 4 | 20.93 | 0.33 | 0 | 0 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | 8511800000 | 2017 | 4 | 98.93 | 1.56 | 0 | 0 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | 8708930000 | 2017 | 4 | 62.18 | 0.98 | 0 | 0 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | 9028200000 | 2017 | 4 | 130.06 | 2.05 | 0 | 0 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | 6913100000 | 2017 | 12 | 650.43 | 5.49 | 0 | 0 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | 7326209000 | 2017 | 12 | 2.00 | 0.01 | 0 | 0 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | 0806200000 | 2018 | 6 | 6448.43 | 1463.92 | 0 | 0 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 |
| Afganistan | 6104220000 | 2018 | 10 | 3153.37 | 2407.61 | 0 | 0 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 | Afghanistan | AF | AFG | 4 | Asia | 142 | Asia Meridional | 34 | NA | NA | Asia | 142 |
| _Note:__ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 1^Elaboració | propia |
Obtenga un ranking, anual, de los 5 principales socios comerciales de El Salvador, para el periodo 2018-2020. Presente sus resultados en el siguiente formato:
anios_ranking<-2018:2020
data_comercio_exterior_estandar %>%
filter(anio %in% anios_ranking) ->data_ranking
data_ranking %>%
group_by(anio,iso_3) %>%
summarise(total=sum(valor_fob)) %>%
mutate(percent=round(prop.table(total)*100,
2)) %>%
slice_max(n = 5,order_by = total) %>%
as.data.frame() %>%
group_by(anio) %>%
mutate(rank = row_number(),
data=paste(iso_3,"|",percent,sep = "")) %>%
select(anio,data,rank) %>% as.data.frame() -> insumo_reporte## `summarise()` has grouped output by 'anio'. You can override using the
## `.groups` argument.
## anio data rank
## 1 2018 USA|44.07 1
## 2 2018 HND|15.34 2
## 3 2018 GTM|14.36 3
## 4 2018 NIC|6.87 4
## 5 2018 CRI|4.39 5
## 6 2019 USA|41.88 1
## 7 2019 GTM|15.95 2
## 8 2019 HND|15.91 3
## 9 2019 NIC|6.68 4
## 10 2019 CRI|4.5 5
## 11 2020 USA|35.73 1
## 12 2020 GTM|16.9 2
## 13 2020 HND|15.21 3
## 14 2020 NIC|7.65 4
## 15 2020 CRI|5.21 5
library(tidyr)
insumo_reporte %>%
pivot_wider(names_from = rank,
values_from = data)->tabla
print(tabla)## # A tibble: 3 × 6
## anio `1` `2` `3` `4` `5`
## <dbl> <chr> <chr> <chr> <chr> <chr>
## 1 2018 USA|44.07 HND|15.34 GTM|14.36 NIC|6.87 CRI|4.39
## 2 2019 USA|41.88 GTM|15.95 HND|15.91 NIC|6.68 CRI|4.5
## 3 2020 USA|35.73 GTM|16.9 HND|15.21 NIC|7.65 CRI|5.21
library(kableExtra)
tabla %>%
kable(caption = paste("Top",5,"Principales Socios comerciales",
min(anios_ranking),
"-",max(anios_ranking))) %>%
add_footnote(label = "Elaboración propia") | anio | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 2018 | USA|44.07 | HND|15.34 | GTM|14.36 | NIC|6.87 | CRI|4.39 |
| 2019 | USA|41.88 | GTM|15.95 | HND|15.91 | NIC|6.68 | CRI|4.5 |
| 2020 | USA|35.73 | GTM|16.9 | HND|15.21 | NIC|7.65 | CRI|5.21 |
Note: aElaboración propia