Multilevel models Probl

m0 <- lmer(probl~1+(1|v2.idmen/id), data=alldat)
print(icc(m0, by_group = TRUE))
## # ICC by Group
## 
## Group       |   ICC
## -------------------
## id:v2.idmen | 0.041
## v2.idmen    | 0.277
m1 <- lmer(probl~relevel(cluster, ref="compagnonnage")+factor(wave)+length+(1|v2.idmen/id), data=alldat)
m1b <- lmer(probl~relevel(cluster, ref="compagnonnage")+factor(wave)+factor(wave)*length+(1|v2.idmen/id), data=alldat)
m1c <- lmer(probl~relevel(cluster,ref="compagnonnage")+relevel(cluster,ref="compagnonnage")*sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
m2 <- lmer(probl~relevel(cluster, ref="compagnonnage")+sex+factor(wave)+length+enf+educ+activ+(1|v2.idmen/id), data=alldat)
fm1 <- plm(probl~relevel(cluster, ref="compagnonnage")+sex+factor(wave), index="id", model="within", data=alldat)
fm2 <- plm(probl~relevel(cluster, ref="compagnonnage")+sex+factor(wave)+length+educ+enf+activ, index="id", model="within", data=alldat)

htmlreg(list("Multilevel 0"=m0, "Multilevel 1"=m1, "Multilevel 1b"=m1b,"Multilevel 1c"=m1c, "Multilevel 2"=m2, "Fixed-Effect 1"=fm1, "Fixed-Effect 2"=fm2))
Statistical models
  Multilevel 0 Multilevel 1 Multilevel 1b Multilevel 1c Multilevel 2 Fixed-Effect 1 Fixed-Effect 2
(Intercept) 1.60*** 0.91*** 0.67** 1.02*** 0.57*    
  (0.07) (0.19) (0.21) (0.20) (0.27)    
relevel(cluster, ref = “compagnonnage”)parallele   0.80*** 0.78*** 0.99*** 0.77*** 0.55*** 0.51**
    (0.14) (0.14) (0.19) (0.15) (0.16) (0.16)
relevel(cluster, ref = “compagnonnage”)association   0.80*** 0.76*** 0.87*** 0.75*** 0.54** 0.46**
    (0.16) (0.16) (0.21) (0.16) (0.18) (0.18)
relevel(cluster, ref = “compagnonnage”)cocon   0.38** 0.35** 0.33* 0.33** 0.34* 0.28*
    (0.12) (0.12) (0.16) (0.13) (0.13) (0.14)
relevel(cluster, ref = “compagnonnage”)bastion   0.18 0.14 0.30 0.13 0.23 0.17
    (0.13) (0.13) (0.17) (0.13) (0.15) (0.15)
factor(wave)2   1.32*** 1.73*** 1.32*** 1.31*** 1.30*** 1.32***
    (0.09) (0.19) (0.09) (0.09) (0.09) (0.10)
factor(wave)3   1.23*** 1.61*** 1.23*** 1.24*** 1.23*** 1.28***
    (0.09) (0.19) (0.09) (0.10) (0.09) (0.10)
length   -0.03*** -0.01 -0.03*** -0.02***    
    (0.01) (0.01) (0.01) (0.01)    
factor(wave)2:length     -0.02*        
      (0.01)        
factor(wave)3:length     -0.02*        
      (0.01)        
sexh       -0.23 -0.42***    
        (0.15) (0.10)    
relevel(cluster, ref = “compagnonnage”)parallele:sexh       -0.38      
        (0.24)      
relevel(cluster, ref = “compagnonnage”)association:sexh       -0.15      
        (0.27)      
relevel(cluster, ref = “compagnonnage”)cocon:sexh       0.09      
        (0.21)      
relevel(cluster, ref = “compagnonnage”)bastion:sexh       -0.24      
        (0.22)      
enfenfants_oui         0.48*   0.14
          (0.20)   (0.30)
educprof_school         0.02   -0.12
          (0.11)   (0.15)
educuniversity         0.11   -0.37
          (0.14)   (0.26)
activ25-75%         0.07   0.03
          (0.12)   (0.14)
activ>=80%         0.21   0.39**
          (0.12)   (0.14)
AIC 8713.47 8459.58 8471.88 8457.61 8360.45    
BIC 8735.99 8521.51 8545.06 8547.68 8455.92    
Log Likelihood -4352.74 -4218.79 -4222.94 -4212.80 -4163.22    
Num. obs. 2058 2058 2058 2058 2030 2058 2030
Num. groups: id:v2.idmen 686 686 686 686 686    
Num. groups: v2.idmen 343 343 343 343 343    
Var: id:v2.idmen (Intercept) 0.19 0.36 0.36 0.30 0.33    
Var: v2.idmen (Intercept) 1.28 1.03 1.04 1.06 1.06    
Var: Residual 3.15 2.65 2.64 2.66 2.65    
R2           0.16 0.16
Adj. R2           -0.26 -0.27
***p < 0.001; **p < 0.01; *p < 0.05

Multilevel models satisf

m0 <- lmer(satisf~1+(1|v2.idmen/id), data=alldat)
print(icc(m0, by_group = TRUE))
## # ICC by Group
## 
## Group       |   ICC
## -------------------
## id:v2.idmen | 0.088
## v2.idmen    | 0.310
m0g <- glmer(satisf~1+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa"))
print(icc(m0g, by_group = TRUE))
## # ICC by Group
## 
## Group       |   ICC
## -------------------
## id:v2.idmen | 0.061
## v2.idmen    | 0.438
m1 <- lmer(satisf~relevel(cluster, ref="compagnonnage")+factor(wave)+length+(1|v2.idmen/id), data=alldat)
m1b <- lmer(satisf~relevel(cluster, ref="compagnonnage")+factor(wave)+factor(wave)*length+(1|v2.idmen/id), data=alldat)
m1c <- lmer(satisf~relevel(cluster,ref="compagnonnage")+relevel(cluster,ref="compagnonnage")*sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
m2 <- lmer(satisf~relevel(cluster, ref="compagnonnage")+sex+factor(wave)+length+educ+enf+activ+(1|v2.idmen/id), data=alldat)

m1g <- glmer(satisf~relevel(cluster, ref="compagnonnage")+factor(wave)+length+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa", 
                                                                  optCtrl = list(maxfun=100000)))
m2g <- glmer(satisf~relevel(cluster, ref="compagnonnage")+sex+factor(wave)+length+educ+enf+activ+(1|v2.idmen/id), 
             data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa", 
                                                                  optCtrl = list(maxfun=100000)))
fm1 <- plm(satisf~relevel(cluster, ref="compagnonnage")+sex+factor(wave), index="id", model="within", data=alldat)
fm2 <- plm(satisf~relevel(cluster, ref="compagnonnage")+sex+factor(wave)+length+educ+enf+activ, index="id", model="within", data=alldat)

htmlreg(list("Multilevel 0"=m0, "Multilevel 1"=m1, "Multilevel 1b"=m1b,"Multilevel 1c"=m1c, "Multilevel 2"=m2, "Fixed-Effect 1"=fm1, "Fixed-Effect 2"=fm2, "Logistic 0"=m0g, "Logistic 1"=m1g, "Logistic 2"=m2g))
Statistical models
  Multilevel 0 Multilevel 1 Multilevel 1b Multilevel 1c Multilevel 2 Fixed-Effect 1 Fixed-Effect 2 Logistic 0 Logistic 1 Logistic 2
(Intercept) 0.52*** 0.43*** 0.40*** 0.45*** 0.37***     0.10 -0.48 -0.87*
  (0.02) (0.05) (0.05) (0.05) (0.07)     (0.11) (0.29) (0.41)
relevel(cluster, ref = “compagnonnage”)parallele   0.10** 0.10** 0.13** 0.11** 0.05 0.05   0.67** 0.69**
    (0.04) (0.04) (0.05) (0.04) (0.04) (0.04)   (0.22) (0.22)
relevel(cluster, ref = “compagnonnage”)association   0.13*** 0.13*** 0.09 0.13** 0.06 0.05   0.88*** 0.83***
    (0.04) (0.04) (0.05) (0.04) (0.04) (0.04)   (0.24) (0.24)
relevel(cluster, ref = “compagnonnage”)cocon   0.09** 0.09** 0.07 0.08** 0.08* 0.07*   0.59** 0.52**
    (0.03) (0.03) (0.04) (0.03) (0.03) (0.03)   (0.19) (0.19)
relevel(cluster, ref = “compagnonnage”)bastion   0.07* 0.07* 0.10* 0.07* 0.10** 0.09*   0.44* 0.40*
    (0.03) (0.03) (0.04) (0.03) (0.03) (0.04)   (0.20) (0.20)
factor(wave)2   0.05* 0.13** 0.05* 0.04 0.04 0.04   0.30* 0.28*
    (0.02) (0.05) (0.02) (0.02) (0.02) (0.02)   (0.14) (0.14)
factor(wave)3   0.06** 0.09 0.06** 0.06** 0.06** 0.06*   0.39** 0.39**
    (0.02) (0.05) (0.02) (0.02) (0.02) (0.02)   (0.14) (0.15)
length   -0.00 0.00 -0.00 -0.00       -0.00 -0.00
    (0.00) (0.00) (0.00) (0.00)       (0.01) (0.01)
factor(wave)2:length     -0.00*              
      (0.00)              
factor(wave)3:length     -0.00              
      (0.00)              
sexh       -0.04 -0.05*         -0.34*
        (0.04) (0.02)         (0.15)
relevel(cluster, ref = “compagnonnage”)parallele:sexh       -0.05            
        (0.06)            
relevel(cluster, ref = “compagnonnage”)association:sexh       0.08            
        (0.06)            
relevel(cluster, ref = “compagnonnage”)cocon:sexh       0.05            
        (0.05)            
relevel(cluster, ref = “compagnonnage”)bastion:sexh       -0.06            
        (0.05)            
educprof_school         -0.03   -0.04     -0.20
          (0.03)   (0.04)     (0.16)
educuniversity         -0.01   -0.09     -0.08
          (0.04)   (0.06)     (0.21)
enfenfants_oui         0.09   0.09     0.54
          (0.05)   (0.07)     (0.31)
activ25-75%         0.02   0.00     0.16
          (0.03)   (0.03)     (0.18)
activ>=80%         0.04   0.05     0.25
          (0.03)   (0.03)     (0.18)
AIC 2598.46 2632.86 2653.81 2652.24 2632.87     2504.63 2495.16 2465.31
BIC 2620.97 2694.78 2726.99 2742.31 2728.33     2521.52 2551.45 2555.17
Log Likelihood -1295.23 -1305.43 -1313.90 -1310.12 -1299.43     -1249.32 -1237.58 -1216.66
Num. obs. 2057 2057 2057 2057 2030 2057 2030 2057 2057 2030
Num. groups: id:v2.idmen 686 686 686 686 686     686 686 686
Num. groups: v2.idmen 343 343 343 343 343     343 343 343
Var: id:v2.idmen (Intercept) 0.02 0.02 0.02 0.02 0.02     0.40 0.43 0.39
Var: v2.idmen (Intercept) 0.08 0.07 0.07 0.07 0.07     2.88 2.70 2.68
Var: Residual 0.15 0.15 0.15 0.15 0.15          
R2           0.01 0.01      
Adj. R2           -0.49 -0.50      
***p < 0.001; **p < 0.01; *p < 0.05

Multilevel models sep

m0 <- lmer(sep~1+(1|v2.idmen/id), data=alldat)
print(icc(m0, by_group = TRUE))
## # ICC by Group
## 
## Group       |   ICC
## -------------------
## id:v2.idmen | 0.163
## v2.idmen    | 0.309
m0g <- glmer(sep~1+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa"))
print(icc(m0g, by_group = TRUE))
## # ICC by Group
## 
## Group       |   ICC
## -------------------
## id:v2.idmen | 0.169
## v2.idmen    | 0.483
m1 <- lmer(sep~relevel(cluster, ref="compagnonnage")+factor(wave)+length+(1|v2.idmen/id), data=alldat)
m1b <- lmer(sep~relevel(cluster, ref="compagnonnage")+factor(wave)+factor(wave)*length+(1|v2.idmen/id), data=alldat)
m1c <- lmer(sep~relevel(cluster, ref="compagnonnage")+relevel(cluster, ref="compagnonnage")*sex+factor(wave)+length+(1|v2.idmen/id), data=alldat)
m2 <- lmer(sep~relevel(cluster, ref="compagnonnage")+sex+factor(wave)+length+educ+enf+activ+(1|v2.idmen/id),data=alldat)


m1g <- glmer(sep~relevel(cluster, ref="compagnonnage")+factor(wave)+length+(1|v2.idmen/id), data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa", 
                                                                  optCtrl = list(maxfun=100000)))
m2g <- glmer(sep~relevel(cluster, ref="compagnonnage")+sex+factor(wave)+length+educ+enf+activ+(1|v2.idmen/id), 
             data=alldat, family=binomial, control = glmerControl(optimizer = "bobyqa", 
                                                                  optCtrl = list(maxfun=100000)))
fm1 <- plm(sep~relevel(cluster, ref="compagnonnage")+sex+factor(wave), index="id", model="within", data=alldat)
fm2 <- plm(sep~relevel(cluster, ref="compagnonnage")+sex+factor(wave)+length+educ+enf+activ, index="id", model="within", data=alldat)

htmlreg(list("Multilevel 0"=m0, "Multilevel 1"=m1, "Multilevel 1b"=m1b,"Multilevel 1c"=m1c, "Multilevel 2"=m2, "Fixed-Effect 1"=fm1, "Fixed-Effect 2"=fm2, "Logistic 0"=m0g, "Logistic 1"=m1g, "Logistic 2"=m2g))
Statistical models
  Multilevel 0 Multilevel 1 Multilevel 1b Multilevel 1c Multilevel 2 Fixed-Effect 1 Fixed-Effect 2 Logistic 0 Logistic 1 Logistic 2
(Intercept) 0.26*** 0.26*** 0.17*** 0.29*** 0.16**     -2.05*** -2.02*** -3.05***
  (0.02) (0.04) (0.05) (0.04) (0.06)     (0.19) (0.40) (0.58)
relevel(cluster, ref = “compagnonnage”)parallele   0.05 0.04 0.10** 0.05 0.01 0.01   0.46 0.51
    (0.03) (0.03) (0.04) (0.03) (0.03) (0.03)   (0.28) (0.28)
relevel(cluster, ref = “compagnonnage”)association   0.05 0.04 0.13** 0.04 -0.00 -0.02   0.54 0.44
    (0.03) (0.03) (0.04) (0.03) (0.03) (0.03)   (0.29) (0.30)
relevel(cluster, ref = “compagnonnage”)cocon   0.05 0.04 0.04 0.04 0.05 0.03   0.45 0.40
    (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)   (0.24) (0.25)
relevel(cluster, ref = “compagnonnage”)bastion   -0.02 -0.03 0.02 -0.03 -0.02 -0.04   -0.31 -0.37
    (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)   (0.27) (0.28)
factor(wave)2   0.04* 0.17*** 0.04* 0.05* 0.03 0.04*   0.35* 0.47*
    (0.02) (0.04) (0.02) (0.02) (0.02) (0.02)   (0.17) (0.19)
factor(wave)3   0.04* 0.20*** 0.04* 0.07*** 0.04* 0.06**   0.42* 0.63**
    (0.02) (0.04) (0.02) (0.02) (0.02) (0.02)   (0.17) (0.19)
length   -0.00 0.00 -0.00 -0.00       -0.03 -0.02
    (0.00) (0.00) (0.00) (0.00)       (0.02) (0.02)
factor(wave)2:length     -0.01***              
      (0.00)              
factor(wave)3:length     -0.01***              
      (0.00)              
sexh       -0.05 -0.12***         -1.09***
        (0.03) (0.02)         (0.21)
relevel(cluster, ref = “compagnonnage”)parallele:sexh       -0.11*            
        (0.05)            
relevel(cluster, ref = “compagnonnage”)association:sexh       -0.15**            
        (0.05)            
relevel(cluster, ref = “compagnonnage”)cocon:sexh       0.01            
        (0.04)            
relevel(cluster, ref = “compagnonnage”)bastion:sexh       -0.08            
        (0.05)            
educprof_school         0.01   -0.02     0.09
          (0.02)   (0.03)     (0.22)
educuniversity         0.05   0.01     0.47
          (0.03)   (0.05)     (0.29)
enfenfants_oui         0.08   0.12*     0.77
          (0.04)   (0.06)     (0.43)
activ25-75%         0.08***   0.08**     0.80***
          (0.02)   (0.03)     (0.24)
activ>=80%         0.08**   0.09**     0.74**
          (0.02)   (0.03)     (0.24)
AIC 1968.98 2009.98 2009.83 2001.46 1978.25     1978.34 1971.08 1904.93
BIC 1991.50 2071.89 2083.00 2091.51 2073.71     1995.23 2027.37 1994.78
Log Likelihood -980.49 -993.99 -991.92 -984.73 -972.12     -986.17 -975.54 -936.47
Num. obs. 2056 2056 2056 2056 2029 2056 2029 2056 2056 2029
Num. groups: id:v2.idmen 686 686 686 686 686     686 686 686
Num. groups: v2.idmen 343 343 343 343 343     343 343 343
Var: id:v2.idmen (Intercept) 0.03 0.03 0.03 0.03 0.03     1.60 1.67 1.25
Var: v2.idmen (Intercept) 0.06 0.06 0.06 0.06 0.06     4.58 4.36 4.72
Var: Residual 0.10 0.10 0.10 0.10 0.10          
R2           0.01 0.02      
Adj. R2           -0.49 -0.49      
***p < 0.001; **p < 0.01; *p < 0.05

Taux de transition entre vagues 1 et 2

library(DescTools)
homme <- subset(alldat, sex=="h"&wave==1)
homme2 <- subset(alldat, sex=="h"&wave==2)
Desc(table(homme$cluster, homme2$cluster))
## ------------------------------------------------------------------------------ 
## table(homme$cluster, homme2$cluster) (table)
## 
## Summary: 
## n: 343, rows: 5, columns: 5
## 
## Pearson's Chi-squared test:
##   X-squared = 57.47, df = 16, p-value = 1.388e-06
## Log likelihood ratio (G-test) test of independence:
##   G = 54.771, X-squared df = 16, p-value = 3.878e-06
## Mantel-Haenszel Chi-squared:
##   X-squared = 16.831, df = 1, p-value = 4.087e-05
## 
## Warning message:
##   Exp. counts < 5: Chi-squared approx. may be incorrect!!
## 
## 
## Contingency Coeff.     0.379
## Cramer's V             0.205
## Kendall Tau-b          0.184
## 
##                                                                        
##                         parallele   association   compagnonnage   cocon
##                                                                        
## parallele       freq           14             7               8       9
##                 perc         4.1%          2.0%            2.3%    2.6%
##                 p.row       30.4%         15.2%           17.4%   19.6%
##                 p.col       27.5%         25.0%            7.1%   12.3%
##                                                                        
## association     freq            9            10              16      13
##                 perc         2.6%          2.9%            4.7%    3.8%
##                 p.row       17.0%         18.9%           30.2%   24.5%
##                 p.col       17.6%         35.7%           14.2%   17.8%
##                                                                        
## compagnonnage   freq            4             2              35      13
##                 perc         1.2%          0.6%           10.2%    3.8%
##                 p.row        6.2%          3.1%           54.7%   20.3%
##                 p.col        7.8%          7.1%           31.0%   17.8%
##                                                                        
## cocon           freq           17             4              34      28
##                 perc         5.0%          1.2%            9.9%    8.2%
##                 p.row       15.3%          3.6%           30.6%   25.2%
##                 p.col       33.3%         14.3%           30.1%   38.4%
##                                                                        
## bastion         freq            7             5              20      10
##                 perc         2.0%          1.5%            5.8%    2.9%
##                 p.row       10.1%          7.2%           29.0%   14.5%
##                 p.col       13.7%         17.9%           17.7%   13.7%
##                                                                        
## Sum             freq           51            28             113      73
##                 perc        14.9%          8.2%           32.9%   21.3%
##                 p.row           .             .               .       .
##                 p.col           .             .               .       .
##                                                                        
##                                       
##                         bastion    Sum
##                                       
## parallele       freq          8     46
##                 perc       2.3%  13.4%
##                 p.row     17.4%      .
##                 p.col     10.3%      .
##                                       
## association     freq          5     53
##                 perc       1.5%  15.5%
##                 p.row      9.4%      .
##                 p.col      6.4%      .
##                                       
## compagnonnage   freq         10     64
##                 perc       2.9%  18.7%
##                 p.row     15.6%      .
##                 p.col     12.8%      .
##                                       
## cocon           freq         28    111
##                 perc       8.2%  32.4%
##                 p.row     25.2%      .
##                 p.col     35.9%      .
##                                       
## bastion         freq         27     69
##                 perc       7.9%  20.1%
##                 p.row     39.1%      .
##                 p.col     34.6%      .
##                                       
## Sum             freq         78    343
##                 perc      22.7% 100.0%
##                 p.row         .      .
##                 p.col         .      .
## 

Taux de transition entre vagues 2 et 3

homme3 <- subset(alldat, sex=="h"&wave==3)
Desc(table(homme2$cluster, homme3$cluster))
## ------------------------------------------------------------------------------ 
## table(homme2$cluster, homme3$cluster) (table)
## 
## Summary: 
## n: 343, rows: 5, columns: 5
## 
## Pearson's Chi-squared test:
##   X-squared = 110.18, df = 16, p-value = 4.142e-16
## Log likelihood ratio (G-test) test of independence:
##   G = 97.503, X-squared df = 16, p-value = 1.016e-13
## Mantel-Haenszel Chi-squared:
##   X-squared = 44.36, df = 1, p-value = 2.732e-11
## 
## Warning message:
##   Exp. counts < 5: Chi-squared approx. may be incorrect!!
## 
## 
## Contingency Coeff.     0.493
## Cramer's V             0.283
## Kendall Tau-b          0.312
## 
##                                                                        
##                         parallele   association   compagnonnage   cocon
##                                                                        
## parallele       freq           22             8               8       5
##                 perc         6.4%          2.3%            2.3%    1.5%
##                 p.row       43.1%         15.7%           15.7%    9.8%
##                 p.col       34.9%         20.0%            7.1%    8.5%
##                                                                        
## association     freq            8            10               6       2
##                 perc         2.3%          2.9%            1.7%    0.6%
##                 p.row       28.6%         35.7%           21.4%    7.1%
##                 p.col       12.7%         25.0%            5.3%    3.4%
##                                                                        
## compagnonnage   freq           14             9              62      15
##                 perc         4.1%          2.6%           18.1%    4.4%
##                 p.row       12.4%          8.0%           54.9%   13.3%
##                 p.col       22.2%         22.5%           54.9%   25.4%
##                                                                        
## cocon           freq           14             7              20      21
##                 perc         4.1%          2.0%            5.8%    6.1%
##                 p.row       19.2%          9.6%           27.4%   28.8%
##                 p.col       22.2%         17.5%           17.7%   35.6%
##                                                                        
## bastion         freq            5             6              17      16
##                 perc         1.5%          1.7%            5.0%    4.7%
##                 p.row        6.4%          7.7%           21.8%   20.5%
##                 p.col        7.9%         15.0%           15.0%   27.1%
##                                                                        
## Sum             freq           63            40             113      59
##                 perc        18.4%         11.7%           32.9%   17.2%
##                 p.row           .             .               .       .
##                 p.col           .             .               .       .
##                                                                        
##                                       
##                         bastion    Sum
##                                       
## parallele       freq          8     51
##                 perc       2.3%  14.9%
##                 p.row     15.7%      .
##                 p.col     11.8%      .
##                                       
## association     freq          2     28
##                 perc       0.6%   8.2%
##                 p.row      7.1%      .
##                 p.col      2.9%      .
##                                       
## compagnonnage   freq         13    113
##                 perc       3.8%  32.9%
##                 p.row     11.5%      .
##                 p.col     19.1%      .
##                                       
## cocon           freq         11     73
##                 perc       3.2%  21.3%
##                 p.row     15.1%      .
##                 p.col     16.2%      .
##                                       
## bastion         freq         34     78
##                 perc       9.9%  22.7%
##                 p.row     43.6%      .
##                 p.col     50.0%      .
##                                       
## Sum             freq         68    343
##                 perc      19.8% 100.0%
##                 p.row         .      .
##                 p.col         .      .
##