data3.3 <- read.csv("/Users/nicolechen/Desktop/R_proj/For postgrad/Dataset2024forpost/ex3.3.csv")
glm.logit <- glm(admit~gre+gpa+rank,family=binomial(link=logit) ,data=data3.3)
# 建立admit关于gpa,gre和rank的1ogistic 回归模型,数据为data3.3
summary(glm.logit) #模型汇总
##
## Call:
## glm(formula = admit ~ gre + gpa + rank, family = binomial(link = logit),
## data = data3.3)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.449548 1.132846 -3.045 0.00233 **
## gre 0.002294 0.001092 2.101 0.03564 *
## gpa 0.777014 0.327484 2.373 0.01766 *
## rank -0.560031 0.127137 -4.405 1.06e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 499.98 on 399 degrees of freedom
## Residual deviance: 459.44 on 396 degrees of freedom
## AIC: 467.44
##
## Number of Fisher Scoring iterations: 4
以上结果可以看出,gre, gpa和rank都显著,所以得到回归模型
\[\ln\frac{\widehat{p}}{1-\widehat{p}} = -3.449548 + 0.002294*gre + 0.777014*gpa - 0.560031*rank \]
data3.6 <- read.csv("/Users/nicolechen/Desktop/R_proj/For postgrad/Dataset2024forpost/ex3.6.csv")
model <- glm(y ~ x1 + x2 + x3, family = poisson(link = "log"), data = data3.6)
summary(model)
##
## Call:
## glm(formula = y ~ x1 + x2 + x3, family = poisson(link = "log"),
## data = data3.6)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.92331 0.23440 12.471 < 2e-16 ***
## x1 0.18978 0.06844 2.773 0.00556 **
## x2 -0.30919 0.11210 -2.758 0.00581 **
## x3 0.08594 0.11087 0.775 0.43825
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 43.907 on 11 degrees of freedom
## Residual deviance: 27.848 on 8 degrees of freedom
## AIC: 96.713
##
## Number of Fisher Scoring iterations: 4
exp(coef(model))
## (Intercept) x1 x2 x3
## 18.6028490 1.2089844 0.7340426 1.0897436
x1 (年龄) = 1.21:这个指数系数表示年龄每增加一个单位(从青年到中年或中年到老年),预期的满意度增加约1.21倍。也就是说,年龄越大,客户满意度略微上升。
x2 (性别) = 0.73:这个指数系数表示性别的影响。男性客户(x2 = 1)与女性客户(x2 = 0)相比,满意度的预期值降低为女性满意度的73%。这表明在相同的其他条件下,男性客户的满意度低于女性客户。
x3 (居住地) = 1.09:这个指数系数表示居住地的影响。居住在城市的客户(x3 = 1)的满意度大约是居住在农村客户(x3 = 2)的1.09倍。城市客户的满意度略高于农村客户。